• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Department of Mathematics
  • FAUTo the central FAU website
Suche öffnen
  • de
  • UnivIS
  • StudOn
  • campo
  • CRIS
  • emergency help

Department of Mathematics

Navigation Navigation close
  • Department
    • Chairs and Professorships
    • Development Association
    • System Administration
    • Contact and Directions
    • Actual
    Portal Department of Mathematics
  • Research
    • Research Projects
    • Publications
    • Preprint Series Applied Mathematics
    Portal Research
  • Study
  • Events
  • Colloquium
  1. Home
  2. Applied Mathematics 1
  3. Research
  4. Research Group Porous Media
  5. Stochastic modelling of porous media

Stochastic modelling of porous media

In page navigation: Applied Mathematics 1
  • Staff Members A-Z
  • Teaching
  • Workshop on Recent Developments in Modelling, Analysis, and Simulation of Processes in Porous Media
  • Research
    • Overview of Habilitation and Dissertation Theses
    • Research Group Porous Media
      • Multicomponent reactive transport
      • Multiscale problems in life sciences
      • Geophysical flows
      • Multiphase flow in porous media
      • Emergence in porous media
      • Stochastic modelling of porous media
    • Research Interests
    • Software
    • Projects
    • Richy 1D
    • Richy 2D/3D
    • FESTUNG
    • Projects
    • UTBEST3D
    • EconDrop3D
    • Prof. Dr. Günther Grün
  • Former Members
  • Upcoming events

Stochastic modelling of porous media

Stochastic modeling of transport processes in porous media

Participants: Philipp Wacker, Nicolae Suciu, Alexander Prechtel; formerly: Fabian Brunner

The hydraulic conductivity in highly heterogeneous porous such as natural groundwater systems can be efficiently parameterized, mainly in large scale problems, merely as a space random function. Consequently, the modelled concentration transported in groundwater is random and stochastic predictive tools are required. The aim of our group is to develop robust numerical algorithms to solve evolution equations for the probability density function (PDF) of the random concentration field. This involves the formulation of the PDF equation for specific transport problems, solving large ensembles of transport problems which will be used for parameter calibrations and as reference stochastic solutions, and, finally, solving the PDF equation. The latter uses consistency constraints which render the PDF equation equivalent to a Fokker-Planck equation and to its Itô process representation. The systems of the resulting Itô equations is solved by tracking computational particles in physical and concentration spaces with a global random walk algorithm (GRW), stable, free of numerical diffusion, and insensitive to the increase of the number of particles.

Probability density functions (up) and corresponding cumulative distribution functions (down) of the concentration of a passive scalar transported along the mean flow trajectory in a saturated aquifer with hydraulic conductivity modelled as a space random function.

Friedrich-Alexander-Universität
Department of Mathematics

Cauerstraße 11
91058 Erlangen
  • Contact and Directions
  • Internal Pages
  • Staff members A-Z
  • Imprint
  • Privacy
  • EN/DE
  • RSS Feed
Up