• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Department of Mathematics
  • FAUTo the central FAU website
  • de
  • UnivIS
  • StudOn
  • meincampus
  • CRIS
  • emergency help

Department of Mathematics

Navigation Navigation close
  • Department
    • Chairs and Professorships
    • Organisation
    • Development Association
    • System Administration
    • Contact and Directions
    • Actual
    Portal Department of Mathematics
  • Research
    • Research Projects
    • Publications
    • Preprint Series Applied Mathematics
    Portal Research
  • Study
    • Advice and Services
    • Prospective students
    • Current students
    • International
    Portal Study
  • Events
  1. Home
  2. Applied Mathematics 1
  3. Research
  4. EconDrop3D

EconDrop3D

In page navigation: Applied Mathematics 1
  • Staff Members A-Z
    • Dr. Rufat Badal
    • Apratim Bhattacharya
    • Astrid Bigott
    • Prof. Dr. Martin Burger
    • Sebastian Czop
    • Prof. Dr. Günther Grün
    • Lea Föcke
    • Prof. Dr. Manuel Friedrich
    • Samira Kabri
    • Lorenz Klein
    • Jonas Knoch
    • Prof. Dr. Serge Kräutle
      • CV
      • Research
    • Prof. Dr. Wilhelm Merz
      • Research
    • Dr. Stefan Metzger
    • PD Dr. Maria Neuss-Radu
      • Research
      • Anne Petzold
    • Dr. Alexander Prechtel
      • Research
      • Teaching
    • Dr. Nadja Ray
    • Doris Schneider
      • Conference Preview
      • Research
    • Dr. habil. Raphael Schulz
      • Research
    • Joscha Seutter
    • Dr. Daniel Tenbrinck
    • Cornelia Weber
    • Lukas Weigand
    • Simon Zech
  • Teaching
    • Lectures, Seminars and Tutorium
    • Scripts
  • Workshop on Recent Developments in Modelling, Analysis, and Simulation of Processes in Porous Media
  • Research
    • Overview of Habilitation and Dissertation Theses
    • Research Group Porous Media
      • Multicomponent reactive transport
      • Multiscale problems in life sciences
      • Geophysical flows
      • Multiphase flow in porous media
      • Emergence in porous media
      • Stochastic modelling of porous media
    • Software
      • Software
        • SiMRX
        • flexBox
    • Richy 1D
    • Richy 2D/3D
    • FESTUNG
    • Projects
    • UTBEST3D
    • EconDrop3D
    • Research group Prof. Dr. Grün
      • Prof. Dr. Günther Grün
      • Research Interests
      • Projects
      • Prof. Dr. Günther Grün
        • Projects and Publications
        • Research interests
  • Former Members
    • Dr. Vadym Aizinger
      • Research
        • Software
    • Dr. Leon Bungert
    • Dr. Tobias Elbinger
    • Dr. Antonio Esposito
    • Dr. Hubertus Grillmeier
      • Research
    • Dr. Alicja Kerschbaum
    • Prof. Dr. Peter Knabner
      • Curriculum Vitae
      • Research
      • Teaching
        • Books
          • Mathematical Modeling
          • Numerical Methods for Elliptic and Parabolic Partial Differential Equations
        • Earlier Lectures
    • Dr. habil. Nicolae Suciu
    • Dr. Markus Knodel
      • Research
    • Alice Lieu, PhD
    • Dr. Balthasar Reuter
      • LaTeX templates
      • Research
      • Teaching
    • Dr. Andreas Rupp
      • Research
    • Dr. Oliver Sieber
    • Dr. Philipp Wacker
    • Dr. Patrick Weiß
    • Dr. Philipp Werner
  • Upcoming events
    • 50 Years Applied Mathematics
    • Math meets Reality
    • Mathematical Modeling of Biomedical Problems
    • PDEs meet uncertainty
    • Short Course: Stochastic Compactness and SPDEs
    • Workshop on Modelling, Analysis and Simulation of Processes in Porous Media
      • Program – Workshop on Modelling, Analysis and Simulation of Processes in Porous Media
      • Program – Workshop Porous Media

EconDrop3D

EconDrop3D
Main Developers Günther Grün, Fabian Klingbeil, Stefan Metzger
Numerical Method Finite-Element, Finite-Volume Method
Programming Language/Libraries C++, MPI, OpenMP, MUMPS, PARDISO

EconDrop3D

The software package EconDrop3D provides implementations of stable schemes for the following applications:

Diffuse interface models for two-phase flow of incompressible liquids with general mass densities.

 

  • Grün, G. & Klingbeil, F.: Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame-indifferent diffuse-interface model. Journal of Computational Physics, Elsevier, 2014, 257, Part A, 708-725.
  • Grün, G.: On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM Journal on Numerical Analysis, 2013, 51, 3036-3061.
  • Aland, S.; Boden, S.; Hahn, A.; Klingbeil, F.; Weismann, M. & Weller, S.: Quantitative comparison of Taylor flow simulations based on sharp-interface and diffuse-interface models. International Journal for Numerical Methods in Fluids, 2013, 73, 344-361.

Diffuse interface models for dynamic electrowetting and other electrokinetic phenomena

  • Eck, C.; Fontelos, M. A.; Grün, G.; Klingbeil, F. & Vantzos, O.: On a phase-field model for electrowetting. Interfaces and Free Boundaries, 2009, 11, 259-290.
  • Campillo-Funollet, E.; Grün, G. & Klingbeil, F.: On Modeling and Simulation of Electrokinetic Phenomena in Two-Phase Flow with General Mass Densities. SIAM Journal on Applied Mathematics, 2012, 72, 1899-1925.
  • Klingbeil, F.: On the numerics of diffuse-interface models for two-phase flow with species transport. Friedrich-Alexander-Universität Erlangen-Nürnberg, 2014.

Micro-Macro-models for two-phase flow of dilute polymer solutions

    • Model based on non-linear coupling of a momentum equation, a Cahn-Hilliard equation and a Fokker-Planck equation,
    • Simulation by Stefan Metzger

 

 

 

 

Thin-film equation

  • Non-negativity preserving numerical scheme,
  • see Wetting Kaleidoscope for more information.
  • Becker, J.; Grün, G.; Blossey, R.; Jacobs, K.; Mantz, H.; Mecke, K. R. & Seemann, R.: Complex dewetting scenarios captured by thin film models. Nature Materials, 2003, 2, 59-63.
  • Becker, J.: Numerische Simulation der Bildung fluider Strukturen auf inhomogenen Oberflächen. Rheinische Friedrich-Wilhelms-Universität, 2005.

 

 

Stochastic thin-film equation

  • Grün, G.; Mecke, K. & Rauscher, M.: Thin-film flow influenced by thermal noise. Journal of Statistical Physics, 2006, 122, 1261-1291.

Features

  • adaptive in space and time,
  • Mini-element, Taylor-Hood elements and stabilized P1-P1-elements available in 2D and in 3D for discretization of momentum equation,
  • Cartesian and cylindrical framework.
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Contact and Directions
  • Internal Pages
  • Staff Members A-Z
  • Imprint
  • Privacy
  • EN/DE
Up