• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Department of Mathematics
  • FAUTo the central FAU website
Suche öffnen
  • de
  • UnivIS
  • StudOn
  • campo
  • CRIS
  • emergency help

Department of Mathematics

Navigation Navigation close
  • Department
    • Chairs and Professorships
    • Boards and Commissions
    • Organisation
    • Development Association
    • System Administration
    • Contact and Directions
    • Actual
    Portal Department of Mathematics
  • Research
    • Research Projects
    • Publications
    • Preprint Series Applied Mathematics
    Portal Research
  • Study
  • Events
  • Colloquium
  1. Home
  2. Applied Mathematics 1
  3. Former Members
  4. Dr. Leon Bungert

Dr. Leon Bungert

In page navigation: Applied Mathematics 1
  • Staff Members A-Z
  • Teaching
  • Workshop on Recent Developments in Modelling, Analysis, and Simulation of Processes in Porous Media
  • Research
  • Former Members
    • Dr. Vadym Aizinger
    • Dr. Apratim Bhattacharya
    • Astrid Bigott
    • Dr. Leon Bungert
    • Prof. Dr. Martin Burger
    • Dr. Tobias Elbinger
    • PD Dr. Florian Frank
    • Dr. Antonio Esposito
    • Dr. Lea Föcke
    • Dr. Hubertus Grillmeier
    • Samira Kabri
    • Dr. Alicja Kerschbaum
    • Prof. Dr. Peter Knabner
    • Dr. habil. Nicolae Suciu
    • Dr. Jonas Knoch
    • Dr. Markus Knodel
    • Alice Lieu, PhD
    • Dr. Balthasar Reuter
    • Dr. Andreas Rupp
    • Doris Schneider
    • Dr. habil. Raphael Schulz
    • Dr. Oliver Sieber
    • Dr. Philipp Wacker
    • Lukas Weigand
    • Dr. Patrick Weiß
    • Dr. Philipp Werner
    • Dr. Simon Zech
  • Upcoming events

Dr. Leon Bungert

We could not find any entry with the given search term 5907.

We could not find any entry with the given search term 5907.

Research Interests

My research primarily focuses on spectral theory of nonlinear operators. For instance, I examine how eigenvectors of these operators can be calculated and under which conditions one can decompose an arbitrary vector into eigenvectors.

What may sound abstract has numerous applications in pattern recognition as well in signal and image processing. For example, if you want to subdivide the network of your Facebook friends into peer groups, the optimal subdivision is described by the eigenvector of a nonlinear operator. Inner-mathematically, the study of nonlinear eigenproblems has interesting connections to the asymptotic behavior of partial differential equations or the solution of inverse problems.

My second research interest is image reconstruction using structural side-information. Within imaging one often differentiates between functional and structural imaging. The former typically allows to visualize information that is invisible to the human eye, such as infrared radiation. Structural imaging, in contrast, as the name suggests, is able to map spatial structures very precisely, as for example high-resolution cameras do. I am working on methods to combine the best of these two worlds, i.e. to fuse a functional image and a structural image into a functional image with a high spatial resolution. This is particularly challenging if the two images are not co-registered.

Résumé

  • *1994 in Nürnberg
  • Abitur, Ostendorfer Gymnasium Neumarkt i.d.OPf., 2012.
  • Bachelor of Science in Mathematics with minor Theoretical Physics, FAU Erlangen, 2016.
  • Master of Science in Mathematics with minor Computer Science, FAU Erlangen, 2017.
  • Research Assistant and PhD Student at Institute for Applied Mathematics, WWU Münster, 04/2018 – 09/2018.
  • Research Assistant and PhD Student at Chair for Applied Mathematics, FAU Erlangen, from 10/2018.

Projects

Publications

  • Bungert L., Burger M., Korolev Y., Schönlieb CB.:
    Variational regularisation for inverse problems with imperfect forward operators and general noise models
    In: Inverse Problems 36 (2020)
    ISSN: 0266-5611
    DOI: 10.1088/1361-6420/abc531
    URL: https://iopscience.iop.org/article/10.1088/1361-6420/abc531
    BibTeX: Download
  • Bungert L., Ehrhardt MJ.:
    Robust Image Reconstruction with Misaligned Structural Information
    In: IEEE Access (2020)
    ISSN: 2169-3536
    DOI: 10.1109/ACCESS.2020.3043638
    BibTeX: Download
  • Bungert L., Korolev Y., Burger M.:
    Structural analysis of an L-infinity variational problem and relations to distance functions
    In: Pure and Applied Analysis 2 (2020), p. 703 - 738
    ISSN: 2578-5893
    DOI: 10.2140/paa.2020.2.703
    URL: https://arxiv.org/abs/2001.07411
    BibTeX: Download
  • Doss M., Bungert L., Cichon D., Brauer H., Psiuk R.:
    Localization of Passive 3-D Coils as an Inverse Problem: Theoretical Analysis and a Numerical Method
    In: IEEE Transactions on Magnetics 56 (2020), Article No.: ARTN 7200410
    ISSN: 0018-9464
    DOI: 10.1109/TMAG.2020.2968858
    BibTeX: Download
  • Doß M., Bungert L., Cichon D., Brauer H., Psiuk R.:
    Localization of Passive 3D-Coils as an Inverse Problem: Theoretical Analysis and a Numerical Method
    In: IEEE Transactions on Magnetics (2020)
    ISSN: 0018-9464
    DOI: 10.1109/TMAG.2020.2968858
    URL: https://ieeexplore.ieee.org/abstract/document/8966997
    BibTeX: Download

  • Bungert L., Burger M.:
    Asymptotic profiles of nonlinear homogeneous evolution equations of gradient flow type
    In: Journal of Evolution Equations (2019)
    ISSN: 1424-3199
    DOI: 10.1007/s00028-019-00545-1
    URL: https://arxiv.org/abs/1906.09856
    BibTeX: Download
  • Bungert L., Burger M.:
    Solution paths of variational regularization methods for inverse problems
    In: Inverse Problems (2019)
    ISSN: 0266-5611
    DOI: 10.1088/1361-6420/ab1d71
    URL: https://arxiv.org/abs/1808.01783
    BibTeX: Download
  • Bungert L., Burger M., Chambolle A., Novaga M.:
    Nonlinear Spectral Decompositions by Gradient Flows of One-Homogeneous Functionals
    In: Analysis & Pde (2019)
    ISSN: 1948-206X
    URL: https://arxiv.org/abs/1901.06979
    BibTeX: Download
  • Bungert L., Burger M., Tenbrinck D.:
    Computing Nonlinear Eigenfunctions via Gradient Flow Extinction
    SSVM 2019 (Hofgeismar, 30-06-2019 - 04-07-2019)
    DOI: 10.1007/978-3-030-22368-7_23
    URL: https://arxiv.org/abs/1902.10414
    BibTeX: Download

  • Bungert L., Ehrhardt MJ., Coomes D., Rasch J., Reisenhofer R., Schönlieb CB.:
    Blind image fusion for hyperspectral imaging with the directional total variation
    In: Inverse Problems 34 (2018)
    ISSN: 0266-5611
    DOI: 10.1088/1361-6420/aaaf63
    BibTeX: Download
  • Bungert L., Ehrhardt MJ., Reisenhofer R.:
    Robust Blind Image Fusion for Misaligned Hyperspectral Imaging Data
    In: Proceedings in Applied Mathematics and Mechanics 18 (2018), p. 1 - 2
    ISSN: 1617-7061
    DOI: 10.1002/pamm.201800033
    BibTeX: Download
  • Fried M., Aizinger V., Bungert L.:
    Comparison of two local discontinuous Galerkin formulations for the subjective surfaces problem
    In: Computing and Visualization in Science (2018)
    ISSN: 1432-9360
    DOI: 10.1007/s00791-018-0291-4
    URL: https://link.springer.com/article/10.1007%2Fs00791-018-0291-4
    BibTeX: Download

2016

  • Bungert L., Aizinger V., Fried M.:
    A Discontinuous Galerkin Method for the Subjective Surfaces Problem
    In: Journal of Mathematical Imaging and Vision (2016), p. in press
    ISSN: 1573-7683
    DOI: 10.1007/s10851-016-0695-z
    BibTeX: Download
Friedrich-Alexander-Universität
Department of Mathematics

Cauerstraße 11
91058 Erlangen
  • Contact and Directions
  • Internal Pages
  • Staff members A-Z
  • Imprint
  • Privacy
  • EN/DE
  • RSS Feed
Up