• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Department of Mathematics
  • FAUTo the central FAU website
  • de
  • UnivIS
  • StudOn
  • meincampus
  • CRIS
  • emergency help

Department of Mathematics

Navigation Navigation close
  • Department
    • Chairs and Professorships
    • Organisation
    • Development Association
    • System Administration
    • Contact and Directions
    • Actual
    Portal Department of Mathematics
  • Research
    • Research Projects
    • Publications
    • Preprint Series Applied Mathematics
    Portal Research
  • Study
    • Advice and Services
    • Prospective students
    • Current students
    • International
    Portal Study
  • Events
  1. Home
  2. Analysis
  3. People
  4. Prof. Dr. Emil Wiedemann

Prof. Dr. Emil Wiedemann

In page navigation: Analysis
  • People
    • Prof. Dr. Emil Wiedemann
      • Publications
    • Guests

Prof. Dr. Emil Wiedemann

Prof. Dr. Emil Wiedemann

Prof. Dr. Emil Wiedemann

Department of Mathematics
Chair of Analyis

Room: Raum 01.348
Cauerstr. 11
91058 Erlangen
  • Phone number: +49 9131 85-67048
  • Email: emil.wiedemann@fau.de

Scientific Career

  • Since 2023: Chair of Analysis, University of Erlangen-Nürnberg
  • 2018-2023: Head of the Institute of Applied Analysis, University of Ulm, Germany
  • 2016-2018: Professor at the Institute of Applied Mathematics, Leibniz University of Hannover, Germany
  • 2014-2016: Hausdorff Postdoc, University of Bonn, Germany
  • 2012-2014: PIMS Postdoc, University of British Columbia, Vancouver
  • 2012: PhD, University of Bonn
  • 2008: MASt in Mathematics, University of Cambridge
  • 2004-2007: Studies of mathematics and physics, LMU Munich

 

Research Interests

Analysis of partial differential equations, calculus of variations, mathematical problems in fluid mechanics. In particular:

  • compressible and incompressible Euler and Navier-Stokes equations and related models.
  • transport and continuity equations
  • convex integration
  • existence and uniqueness questions for weak, measure-valued and statistical solution terms of partial differential equations
  • partial differential equations in biology, e.g. population dynamics, cell division
  • variational problems in nonlinear elasticity theory
  • algorithmic fairness

Video recordings of some of my talks are available here and here.

Lecture Notes

  • Analysis: pdf
  • Functional Analysis: pdf
  • Hyperbolic Conservation Laws: pdf
  • Maßtheorie: pdf
  • Navier-Stokes Equations: pdf
  • Gewöhnliche Differentialgleichungen: pdf
  • Einführung in die partiellen Differentialgleichungen: pdf
Friedrich-Alexander-Universität
Department of Mathematics

Cauerstraße 11
91058 Erlangen
  • Contact and Directions
  • Internal Pages
  • Staff Members A-Z
  • Imprint
  • Privacy
  • EN/DE
Up