On solving/learning differential equations with kernels (H. Owhadi, Caltech)

Oct 08
08-10-2021 4:00 PM Uhr bis 5:00 PM Uhr
Online

On solving/learning differential equations with kernels.

Speaker:Prof. Dr. Houman Owhadi
Affiliation: Caltech, USA, Website

Zoom link
Meeting ID: 686 4453 8133
Passcode: 603054

Abstract: We present a simple, rigorous, and unified framework for solving and learning (possibly nonlinear) differential equations (PDEs and ODEs) using the framework of Gaussian processes/kernel methods.

For PDEs the proposed approach: (1) provides a natural generalization of collocation kernel methods to nonlinear PDEs and Inverse Problems; (2) has guaranteed convergence for a very general class of PDEs, and comes equipped with a path to compute error bounds for specific PDE approximations; (3) inherits the state-of-the-art computational complexity of linear solvers for dense kernel matrices. For ODEs, we illustrate the efficacy of the proposed approach by extrapolating weather/climate time series obtained from satellite data and highlight the importance of using adapted/learned kernels.

Parts of this talk are joint work with Yifan Chen, Boumediene Hamzi, Bamdad Hosseini, Romit Maulik, Florian Schäfer, Clint Scovel and Andrew Stuart.

https://en.www.math.fau.de/applied-analysis/

Friedrich-Alexander-Universität Erlangen-Nürnberg