Prof. Dr. Günther Grün
Prof. Dr. Günther Grün
Secretary:
Short Curriculum Vitae
1986 – 1991 Study of Mathematics (Minor: Physics) at University of Bonn
1991 Diploma in Mathematics
1994 PhD in Mathematics, University of Bonn
1996 Marie-Curie-Research-Fellowship at Universita di Tor Vergata, Rome
2001 Habilitation in Mathematics, University of Bonn
2002 / 2003 Visiting Full Professorship at Duisburg University (“Lehrstuhlvertretung C4”)
2006 – Professor at University of Erlangen-Nürnberg
Further information about the research can be found on the working group’s website and their research interests.
Minisymposium “Stochastic free boundary problems” as part of FBP 2021, Weierstrass Institute for Applied Analysis and Stochastics, Berlin, September 2021 (together with Ana Djurdjevac and Benjamin Gess).
Workshop Numerical Analysis and Scientific Computing (FAU Erlangen) (together with Michael Fried), Nov. 2019.
COPDESC-Workshop Calculus of Variation and Nonlinear Partial Differential Equations (Regensburg) (together with G. Dolzmann and H. Garcke), March 2019.
Section Applied Analysis as part of the Annual Meeting of Society of Applied Mathematics and Mechanics (GAMM) at FAU Erlangen-Nürnberg, March 10th-14th, 2014.
ITN-Springschool Optimization in pde, reaction-diffusion systems and phase-field models , Saint Raphael, Apr. 7th-12th, 2013, (with D. Hilhorst and G. Leugering).
ITN-Winterschool Mathematical models for wetting: analysis and numerics, Veilbronn, Feb. 13th-17th, 2012.
Mini-Symposium Modeling, Analysis, and Simulation of Transport Phenomena in Multi-Phase Flow as part of ICIAM2011, Vancouver, July 18th-22nd, 2011.
Workshop Phase-Field Models in Fluid Mechanics at Regensburg University, Feb. 14th-16th, 2011 (together with Helmut Abels and Harald Garcke).
Section Applied Analysis as part of the Annual Meeting of Society of Applied Mathematics and Mechanics (GAMM) at TU Karlsruhe, March, 22nd – 26th, 2010.
Mini-Symposium Nichtlineare partielle Differentialgleichungen und Anwendungen as part of the Annual Meeting of Deutsche Mathematiker-Vereinigung (DMV) at Erlangen University, September, 19th – 23nd, 2008.
Mini-Symposium Nonlinear evolution equations and free boundary problems as part of the Annual Meeting of Deutsche Mathematiker-Vereinigung (DMV) at Bonn University, September, 18th – 22nd, 2006.
Member of Scientific Committee of the Conference Wetting: Theory and Experiment at Technion, Haifa, Israel, July, 3th – 7th, 2005.
Mini-Symposium Dünne viskose Filme/Thin liquid films as part of the Annual Meeting of Society of Applied Mathematics and Mechanics (GAMM) at TU Dresden, March, 21st – 27th, 2004.
Mini-Symposium Higher order evolution equations in continuum mechanics as part of ICIAM2003 , Sydney, July, 4th – 11th, 2003.
-
Interfaces, complex structures, and singular limits in continuum mechanics
(Third Party Funds Group – Overall project)
Term: 01-04-2018 - 30-09-2022
Funding source: DFG / Graduiertenkolleg (GRK) -
Free boundary propagation and noise: analysis and numerics of stochastic degenerate parabolic equations
(Third Party Funds Single)
Term: 01-04-2018 - 31-03-2020
Funding source: Deutsche Forschungsgemeinschaft (DFG), DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
URL: https://www1.am.uni-erlangen.de/~gruen/The porous-medium equation and the thin-film equation are prominent examples of nonnegativity preserving degenerate parabolic equations which give rise to free boundary problems with the free boundary at time t > 0 defined as the boundary of the solution’s support at that time.
As they are supposed to describe the spreading of gas in a porous-medium or the spreading of a viscous droplet on a horizontal surface, respectively, mathematical results on the propagation of free boundaries become relevant in applications. In contrast to, e.g., the heat equation, where solutions to initial value problems with compactly supported nonnegative initial data
instantaneously become globally positive, finite propagation and waiting time phenomena are characteristic features of degenerate parabolic equations.
In this project, stochastic partial differential equations shall be studied which arise from the aforementioned degenerate parabolic equations by adding multiplicative noise in form of source terms or of convective terms. The scope is to investigate the impact of noise on the propagation of free boundaries, including in particular necessary and sufficient conditions for the occurrence
of waiting time phenomena and results on the size of waiting times. Technically, the project relies both on rigorous mathematical analysis and on numerical simulation. -
Molecular Communication Systems
(FAU Funds)
Term: 01-01-2017 - 31-12-2019
URL: https://www.idc.tf.fau.de/efi-mcs/Neuentstehende Anwendungen in der Biologie, Nanotechnologie und Medizin machen die Vernetzung von Objekten und Maschinen mit Abmessungen im Nano- und Mikrometerbereich erforderlich. Traditionelle elektromagnetische Ansätze für den Entwurf entsprechender Kommunikationssysteme sind für solch kleine Größenordnungen nicht geeignet. In der Natur jedoch ist die Kommunikation zwischen Nano- und Mikro-Objekten, wie z.B. Bakterien und anderen Zellen, weit verbreitet. Dabei kommen oft Signalmoleküle als Informationsträger zum Einsatz, so dass ein natürliches molekulares Kommunikationssystem entsteht. Das Projekt bündelt die an der FAU vorhandene Expertise auf den Gebieten Elektrotechnik, Biologie, Materialwissenschaften, Mathematik und Nanomedizin, um – ausgehend von in der Natur vorkommenden Mechanismen und Prozessen – synthetische molekulare Kommunikationssysteme zu entwerfen und zu implementieren.
-
Diffuse interface models for transport processes at fluidic interfaces
(Third Party Funds Group – Sub project)
Overall project: SPP 1506: Fluide Grenzflächen
Term: 01-06-2013 - 31-10-2017
Funding source: DFG / Schwerpunktprogramm (SPP)In recent years, diffuse interface models turned out to be a promising approach to describe fundamental features of two-phase flow like droplet break-up or coalescence. In the second funding period, novel thermodynamical consistent phase-field models for species transport in two-phase flow shall be derived with an emphasis on soluble surfactants. Additional phenomena -- ranging from microscale effects like molecule orientation over thermal effects to electrostatic interactions -- shall be included as well. On this basis, new sharp-interface models shall be derived by formal asymptotic analysis.
For selected diffuse-interface models, existence of solutions and stability of fluidic interfaces will be investigated by rigorous mathematical analysis. Stable numerical schemes shall be formulated and implemented in two and three space dimensions. By numerical simulations, partially guided by the "Leitmassnahme" Taylor-flow, the models shall be validated and further improved. By numerical analysis, convergence shall be established for the prototypical problem of species transport in two-phase flow with general mass densities. -
Diffuse interface models for transport processes at fluidic interfaces
(Third Party Funds Group – Sub project)
Overall project: SPP 1506: Fluide Grenzflächen
Term: 01-04-2010 - 30-04-2013
Funding source: DFG / Schwerpunktprogramm (SPP)Topological transitions like droplet coalescence or droplet break-up are fundamental features of two-phase flows. In recent years, diffuse interface models turned out to be a promising approach to describe such phenomena. Species transport across fluidic interfaces and the effects exerted by soluble and insoluble surfactants are additional issues of still increasing technological importance. For those phenomena, novel thermodynamically consistent diffuse interface models shall be developed taking in particular general densities into account. Based on rigorous mathematical analysis, existence and qualitative behaviour of solutions will be investigated, this way enhancing the understanding of the fundamental model properties. Starting from energy and entropy inequalities, stable and convergent numerical schemes shall be formulated and implemented in two and three spatial dimensions. By numerical simulations, the models shall be validated and further improved.
-
Fronts and Interfaces in Science and Technology
(Third Party Funds Group – Sub project)
Overall project: Fronts and Interfaces in Science and Technology
Term: 01-02-2010 - 31-12-2013
Funding source: EU - 7. RP / People / Initial Training Networks (ITN)With this network, the universities of Bath, Eindhoven, Erlangen, Haifa (Technion), Madrid (Complutense), Paris (Orsay), Rome (La Sapienza), Zürich and the industrial partners EGIS and SIEMENS AG foster a joint training platform for PhD-students working on analysis and control of interfacial phenomena. Applications range from image processing over reaction-diffusion systems to complex multi-phase flow.
FAU is involved in three projects, guided by Proff. Grün, Knabner, and Leugering. The first one is concerned with the effects electric fields have on two-phase flow with electrolyte solutions. The goal is to derive thermodynamically consistent diffuse-interface models for general mass densities and ion distributions and to prove existence and regularity of solutions.
The second one is a tandem project with Prof. Peletier (TU Eindhoven) devoted to contaminant flow in porous media. There is experimental evidence that attachment to colloids strongly enhances contaminant transport. Derivation and analysis of appropriate multi-scale models are in the focus of this project.
Prof. Leugering's project -- jointly with Prof. Coron (University Pierre et Marie Curie, Paris) -- is devoted to optimal control and stabilization of flow of gas, water, and traffic in networked pipe- and road-systems. It focusses on reachability and stabilizability properties under constraints both in states and controls and on the derivation of appropriate sensitivities for a numerical treatment of optimal controls for systems of realistic size.
2022
Zero-contact angle solutions to stochastic thin-film equations
In: Journal of Evolution Equations 22 (2022)
ISSN: 1424-3199
DOI: 10.1007/s00028-022-00818-2
BibTeX: Download
, :
Existence of nonnegative solutions to stochastic thin-film equations in two space dimensions
In: Interfaces and Free Boundaries 24 (2022), p. 307-387
ISSN: 1463-9971
DOI: 10.4171/IFB/476
BibTeX: Download
, :
2021
Non-negative Martingale Solutions to the Stochastic Thin-Film Equation with Nonlinear Gradient Noise
In: Archive for Rational Mechanics and Analysis (2021)
ISSN: 0003-9527
DOI: 10.1007/s00205-021-01682-z
BibTeX: Download
, , , :
ON STOCHASTIC POROUS-MEDIUM EQUATIONS WITH CRITICAL-GROWTH CONSERVATIVE MULTIPLICATIVE NOISE
In: Discrete and Continuous Dynamical Systems 41 (2021), p. 2829-2871
ISSN: 1078-0947
DOI: 10.3934/dcds.2020388
BibTeX: Download
, , :
On the Field-Induced Transport of Magnetic Nanoparticles in Incompressible Flow: Existence of Global Solutions
In: Journal of Mathematical Fluid Mechanics 23 (2021), Article No.: 10
ISSN: 1422-6928
DOI: 10.1007/s00021-020-00523-5
BibTeX: Download
, :
2019
On the field-induced transport of magnetic nanoparticles in incompressible flow: Modeling and numerics
In: Mathematical Models & Methods in Applied Sciences (2019)
ISSN: 0218-2025
DOI: 10.1142/S0218202519500477
BibTeX: Download
, :
2018
Existence of positive solutions to stochastic thin-film equations
In: SIAM Journal on Mathematical Analysis 50 (2018), p. 411-455
ISSN: 0036-1410
DOI: 10.1137/16m1098796
BibTeX: Download
, :
Nonnegativity preserving convergent schemes for the stochastic porous-medium equation
In: Mathematics of Computation (2018), p. 1021-1059
ISSN: 0025-5718
DOI: 10.1090/mcom/3372
BibTeX: Download
, :
2017
Micro-macro-models for two-phase flow of dilute polymeric solutions: macroscopic limit, analysis, numerics
In: Advances in Mathematical Fluid Mechanics, Springer, 2017, p. 291-303 (Transport processes at fluidic interfaces)
BibTeX: Download
, :
Diffuse interface models for incompressible two-phase flows with different densities
In: Advances in Mathematical Fluid Mechanics, springer, 2017, p. 203-229 (Transport processes at fluidic interface)
BibTeX: Download
, , , :
2016
On fully decoupled, convergent schemes for diffuse interface models for two-phase flow with general mass densities
In: Communications in Computational Physics 19 (2016), p. 1473-1502
ISSN: 1815-2406
BibTeX: Download
, , :
On micro-macro-models for two-phase flow with dilute polymeric solutions -- modeling and analysis
In: Mathematical Models & Methods in Applied Sciences 26 (2016), p. 823-866
ISSN: 0218-2025
DOI: 10.1142/S0218202516500196
BibTeX: Download
, :
2015
Finite speed of propagation and waiting times for the stochastic porous medium equation -- a unifying approach
In: SIAM Journal on Mathematical Analysis 47 (2015), p. 825-854
ISSN: 0036-1410
BibTeX: Download
, :
2014
Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame-indifferent diffuse interface model
In: Journal of Computational Physics 257 (2014), p. 708-725
ISSN: 0021-9991
BibTeX: Download
, :
2013
On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities
In: SIAM Journal on Numerical Analysis 51 (2013), p. 3036-3061
ISSN: 0036-1429
DOI: 10.1137/130908208
BibTeX: Download
:
On uniqueness results for an elliptic-parabolic system of pde arising in dynamic electrowetting
In: ZAMM - Zeitschrift für angewandte Mathematik und Mechanik 93 (2013), p. 777-788
ISSN: 0044-2267
BibTeX: Download
, :
2012
Thermodynamically consistent diffuse interface models for incompressible two-phase flows with different densities
In: Mathematical Models & Methods in Applied Sciences 22 (2012), p. 1150013-1150052
ISSN: 0218-2025
BibTeX: Download
, , :
On modeling and simulation of electrokinetic phenomena in two-phase flow with general mass densities
In: SIAM Journal on Applied Mathematics 72 (2012), p. 1899-1925
ISSN: 0036-1399
BibTeX: Download
, , :
Numerical simulation of static and dynamic electrowetting
In: Journal of Adhesion Science and Technology 26 (2012), p. 1805-1824
ISSN: 0169-4243
BibTeX: Download
, , , :
2011
On a phase-field model for electrowetting and other electrokinetic phenomena
In: SIAM Journal on Mathematical Analysis 43 (2011), p. 527-563
ISSN: 0036-1410
BibTeX: Download
, , :
2009
A phase-field model for electrowetting
In: Interfaces and Free Boundaries 11 (2009), p. 259-290
ISSN: 1463-9963
DOI: 10.4171/IFB/211
BibTeX: Download
, , , , :
2007
A phase-field model for electrowetting and related phenomena
In: Proceedings in Applied Mathematics and Mechanics 7 (2007), p. 1151205-1151207
ISSN: 1617-7061
BibTeX: Download
, , , , :
2006
Lower bounds on waiting time for degenerate parabolic equations and systems
In: Interfaces and Free Boundaries 8 (2006), p. 111-129
ISSN: 1463-9971
BibTeX: Download
, :
Thin-film flow influenced by thermal noise
In: Journal of Statistical Physics 122 (2006), p. 1261-1291
ISSN: 0022-4715
BibTeX: Download
, , :
2005
The thin-film equation: recent advances and some new perspectives
In: Journal of Physics: Condensed Matter 17 (2005), p. 291-307
ISSN: 0953-8984
DOI: 10.1088/0953-8984/17/9/002
BibTeX: Download
, :
2004
Droplet spreading under weak slippage: existence for the Cauchy problem
In: Communications in Partial Differential Equations (2004), p. 1697-1744
ISSN: 0360-5302
BibTeX: Download
:
Droplet spreading under weak slippage: the waiting time phenomenon
In: Annales de l'Institut Henri Poincaré - Analyse Non Linéaire 21 (2004), p. 255-269
ISSN: 0294-1449
BibTeX: Download
:
Some remarks on modelling and simulation of thin-film flow
In: Proceedings in Applied Mathematics and Mechanics 4 (2004), p. 47-50
ISSN: 1617-7061
BibTeX: Download
, :
2003
Complex dewetting scenarios captured by thin-film models
In: Nature Materials 2 (2003), p. 59-63
ISSN: 1476-1122
DOI: 10.1038/nmat788
BibTeX: Download
, , , , , , :
Droplet spreading under weak slippage: a basic result on finite speed of propagation
In: SIAM Journal on Mathematical Analysis 34 (2003), p. 992-1006
ISSN: 0036-1410
BibTeX: Download
:
On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions
In: Mathematics of Computation 72 (2003), p. 1251-1279
ISSN: 0025-5718
BibTeX: Download
:
Correlated dewetting patterns in thin polystyrene films
In: Journal of Physics: Condensed Matter 15 (2003), p. 421-426
ISSN: 0953-8984
BibTeX: Download
, , , , , :
Satellite hole formation during dewetting; experiment and simulation
In: Journal of Physics: Condensed Matter 15 (2003), p. 3355-3366
ISSN: 0953-8984
BibTeX: Download
, , , , , :
Waiting time phenomena for degenerate parabolic equations -- a unifying approach
In: S. Hildebrandt, H. Karcher (ed.): Geometric analysis and nonlinear partial differential equations, Heidelberg: Springer-Verlag, 2003, p. 637-648
BibTeX: Download
, , :
2002
Droplet spreading under weak slippage: the optimal asymptotic propagation rate in the multi-dimensional case
In: Interfaces and Free Boundaries 4 (2002), p. 309-323
ISSN: 1463-9971
BibTeX: Download
:
Numerical methods for fourth order nonlinear diffusion problems
In: Applications of Mathematics 47 (2002), p. 517-543
ISSN: 0862-7940
BibTeX: Download
, , , :
On space-time adaptive convergent finite element schemes for a general class of lubrication-type equations
In: H.A. Mang, F.G. Rammerstorfer, J. Eberhardsteiner (ed.): Proceedings of the 5th World Congress on Computational Mechanics, Vienna Technical University, 2002
ISBN: 3-9501554-0-6
BibTeX: Download
, , :
A finite volume scheme for surfactant driven thin film flow
In: R. Herbin, D. Krönger (ed.): Proceedings of the Third International Symposium on Finite Volumes for Complex Applications, Hermes Penton Science, 2002, p. 567-574
ISBN: 1-9039-9634-1
BibTeX: Download
, , :
2001
On Bernis' interpolation inequalities in multiple space dimensions
In: Zeitschrift für Analysis und ihre Anwendungen 20 (2001), p. 987-998
ISSN: 0232-2064
BibTeX: Download
:
Dewetting films: Bifurcations and concentrations
In: Nonlinearity 14 (2001), p. 1569-1592
ISSN: 0951-7715
BibTeX: Download
, , :
A waiting time phenomenon for thin film equations
In: Annali della Scuola Normale Superiore di Pisa-Classe di Scienze XXX (2001), p. 437-463
ISSN: 0391-173X
BibTeX: Download
, , :
Simulation of singularities and instabilities in thin film flow
In: European Journal of Applied Mathematics 12 (2001), p. 293-320
ISSN: 0956-7925
BibTeX: Download
, :
2000
Nonnegativity preserving convergent schemes for the thin film equation
In: Numerische Mathematik 87 (2000), p. 113-152
ISSN: 0029-599X
BibTeX: Download
, :
1999
Entropy consistent finite volume schemes for the thin film equation
In: R. Vilsmeier, F. Benkhaldoun, D. Hänel (ed.): Finite volume schemes for complex applications II, Hermes Science Publications, Paris, 1999
BibTeX: Download
, :
1998
The thin viscous flow equation in higher space dimensions
In: Advances in Differential Equations 3 (1998), p. 417-440
ISSN: 1079-9389
BibTeX: Download
, , , :
On a fourth order degenerate parabolic equation: gobal entropy estimates and qualitative behavior of solutions
In: SIAM Journal on Mathematical Analysis 29 (1998), p. 321-342
ISSN: 0036-1410
BibTeX: Download
, , :
1995
Degenerate parabolic equations of fourth order and a plasticity model with nonlocal hardening
In: Zeitschrift für Analysis und ihre Anwendungen 14 (1995), p. 541-573
ISSN: 0232-2064
BibTeX: Download
: