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Motivation

Starting data:

Quasi-local C∗-algebra A∞ of some QFT;

A time evolution αt : A → A;

β-KMS state ωβ w.r.t αt.

By GNS we get a standard subspace H∞ ⊂ Hβ with known modular
group. (For free theory this reduces to 1-particle level)

Hard question

What are the modular groups of A(O)?

Only known example is in (Borchers and Yngvason, 1999), relies
heavily on Half-sided Modular Inclusion.
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Motivation

Mathematical questions that came up:

If K1 ⊂ H∞ and K2 ⊂ H∞ such that K1 ∩K2 is standard, are
K1 ∩K2 ⊂ K1 and K1 ∩K2 ⊂ K2 HSMI?

If K1 ⊂ H∞ and K2 ⊂ H∞ such that K1 ⊂ K2, when is
K1 ⊂ K2 a HSMI? Can we characterize situations where this is
the case?

How does this relate to the associated standard pairs? Do they
commute?

Can we construct explicit non-trivial examples to check these
sorts of questions?

So we investigate relative positions of Half-sided Modular
Inclusions, both in the abstract and in terms of their representation
theory.
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Standard Subspaces

Definition

A real subspace H ⊂ H of a complex Hilbert space H is a standard
subspace if

H ∩ iH = {0} and H + iH = H.

Tomita-Takesaki-modular theory then gives the modular group ∆it
H

and modular conjugation JH that satisfy

∆it
HH = H, JHH = H ′

J∆
1
2
Hh = ∆

− 1
2

H JHh = h for all h ∈ H
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Standard Subspaces (examples)

Let H = L2(R, dθ). We define

(∆it
H0
ψ)(θ) := ψ(θ − 2πt), (JH0ψ)(θ) := ψ(θ).

This gives

H0 =
{
ψ ∈ H2(Sπ) | ψ(θ + iπ) = ψ(θ)

}
Fourier transforming gives

(∆it
H̃0
ψ)(λ) := e−2πtλiψ(λ), (J

H̃0
ψ)(λ) := ψ(−λ)

and
H̃0 =

{
ψ ∈ L2(R, dλ) | e−πλψ(λ) = ψ(−λ)

}
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Inclusions of standard subspaces

Inclusions of standard subspaces are surprisingly subtle affairs. For
example:

Proposition (Borchers, 1999)

Let K ⊂ H ⊂ H be an inclusions of standard subspaces. Then
K ⊂ H if and only if

F : R → B(H), t 7→ ∆−it
H ∆it

K

extends to a bounded so-continuous function on S 1
2
, analytic in S 1

2

such that
F (t+ i

2) = ∆−it
H JHJK∆it

K , t ∈ R.

Proof: SHSK : K + iK → K + iK is equal to the identity.

5 31



Half-sided Modular Inclusions and
Standard Pairs



Half-sided Modular Inclusion

Recall that ∆it
HH = H. If K ⊂ H and ∆it

HK = K for all t ∈ R, then
K = H.

Definition

An inclusion K ⊂ H of standard subspaces is called a Half-sided
Modular Inclusion (HSMI) if

∆−it
H K ⊂ K for all t ≥ 0.

We call a Half-sided Modular Inclusion non-degenerate if⋂
t≥0

∆−it
H K = {0}
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Examples of HSMI’s (1)

Example 1: Wedge-loclized observables in vacuum Wightman theory.

∆−itϕ(x⃗)Ω = ∆−itϕ(x⃗)∆itΩ = ϕ(Λ2πtx⃗)Ω.
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Examples of HSMI’s (1)

Example 1: Wedge-loclized observables in vacuum Wightman theory.

∆−itϕ(x⃗)Ω = ∆−itϕ(x⃗)∆itΩ = ϕ(Λ2πtx⃗)Ω.
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Examples of HSMI’s (2)

Example 2: Lightcone-localized observables in massless vacuum
Wightman theory.
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Examples of HSMI’s (2)

Example 2: Lightcone-localized observables in massless vacuum
Wightman theory.
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Examples of HSMI’s (3)

Example 3: Massless thermal field theory (Borchers Yngvason 1999)
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Examples of HSMI’s (3)

Example 3: Massless thermal field theory (Borchers Yngvason 1999)
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Examples of HSMI’s (4)

Example 4: Standard subspace of a null cut (Morinelli Tanimoto
Wegener, 2022).
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Standard Pairs

An easy way of constructing examples of Half-sided Modular
Inclusions is trough standard pairs:

Definition

A standard pair (H,U) consists of a standard subspace H ⊂ H and
a positively generated one-parameter group U : R → U(H) such that

U(s)H ⊂ H for s ≥ 0.

We call a standard pair non-degenerate if U has no invariant vectors.
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Canonical example(s)

We define

U0(s) : L
2(R, dθ) → L2(R, dθ), (U0(s)ψ)(θ) = eise

θ
ψ(θ)

and see that (H0, U0) is indeed a standard pair: for h ∈ H0 and s ≥ 0
we have

(U0(s)h)(θ + it) = eis cos(t)e
θ
e−s sin(t)eθh(θ)

which is indeed L2 and

(U0(s)h)(θ + πi) = e−iseθh(θ + πi) = eiseθh(θ).

We can of course Fourier transform to construct a standard pair
(H̃0, Ũ0), with Ũ0 given by convolution with the distribution√

π

2
δ +

1√
2π

P
(
eiλ ln(−is)Γ(−iλ)

)
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Borchers’ theorem (Std. Pair → HSMI)

Theorem (Borchers 1992)

Let (H,U) be a standard pair. Then

∆it
HU(s)∆−it

H = U(e−2πts) and JHU(s)JH = U(−s)

This means that

∆−it
H U(1)H = U(e2πt)∆−it

H H

= U(1)U(e2πt − 1)H

⊂ U(1)H

for t ≥ 0; so indeed, U(1)H ⊂ H is a HSMI!
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Converse (HSMI → Std. Pair)

Theorem (Wiesbrock 1993, Araki & Zsido 2005)

Let K ⊂ H be a Half-sided Modular Inclusion in H. Then

U(1− e−2πt) := ∆it
K∆−it

H

can be extended to a one-parameter group U : R → U(H).
Furthermore, (H,U) is a standard pair and K = U(1)H.

The proof relies on many analytic extension arguments, as is common
in modular theory.
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HSMI Examples revisited (1)

∆it
H U(s)

Example 1: Wedge-loclized observables in vacuum Wightman theory.
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HSMI Examples revisited (2)

∆it
H U(s)

Example 2: Lightcone-localized observables in massless vacuum
Wightman theory.
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HSMI Examples revisited (3)

∆it
H U(s)

Example 3: Massless thermal field theory.
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Relation between HSMI’s and Std.
Pairs; Representation theory



Relation between HSMI’s and Std. Pairs

Summarizing: for every standard subspace H ⊂ H there is a bijection
between:

Half-sided Modular Inclusion:
K ⊆ H ⊆ H standard subspace
such that ∆−it

H K ⊂ K for t ≥ 0.

Standard pair:
Positively generated
U : R → U(H) such that
U(s)H ⊂ H for s ≥ 0.

Proposition

A Half-sided Modular Inclusion is non-degenerate if and only if its
associated standard pair is non-degenerate, i.e.⋂

t≥0

∆−it
H K = {0} ⇔ ker ∂U = {0}

Note that it might not be easy to calculate one or the other!
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Commutation Relations

These relations are actually just a form of the Canonical
Commutation Relations. Compare, for U(s) = eisP , the following:

Standard Pair: ∆it
HU(s)∆−it

H = U(e−2πts)

Generator: ∆it
HP∆

−it
H = e−2πtP

Weyl relations: ∆it
HP

is∆−is
H = e−2πtsiP is

ax + b group relations: [i ln∆H , iP ] = −2πiP

CCR: [ln∆H , lnP ] = 2πi

Our canonical example is simply the Schrödinger representation!
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Representation theory

Theorem (Stone - von Neumann)

For every non-degenerate standard pair (H,U) in H there exists a
Hilbert space K, a maximally abelian standard subspace HK ⊂ K
and a unitary map V : H → L2 ⊗K such that

VH = H0 ⊗R HK

VU(t)V∗ = U0(t)⊗ 1K

Note that for H0, we have

ln∆H0 = 2πi∂θ and P0 := ∂U0 =M [eθ]

For H̃0 we have ln∆
H̃0

=M [2πλ] and P̃0 := ∂Ũ0 = ei∂λ (reversed
roles/Fourier transformed).
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Summary of Prerequisites

Standard subspaces are real subspaces H ⊂ H that ‘complexify’
to H.

Inclusions of standard subspaces are in general tricky affairs.

There is a bijection between Half-sided Modular Inclusions
K ⊂ H (meaning ∆−it

H K ⊂ K for t ≥ 0) and standard pairs
(H,U) (meaning U(s)H ⊂ H for s ≥ 0).

The crucial commutation relation for a standard pair is
∆it

HU(s)∆−it
H = U(e−2πts).

Because of representation theory, every HSMI/Standard Pair is
unitarily equivalent to multiples of (H0, U0).
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Investigation

We fix an ‘environment’ standard subspace H.

Suppose we have two HSMI’s K1 ⊂ H and K2 ⊂ H, or
equivalently, two Standard Pairs (U1, H) and (U2, H). We want
to know how K1 and K2 can relate to each other.

For concrete examples, it is easier to prescribe U1 and U2.

Can we read off relative positions of K1 and K2 from U1

and U2?
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Analytic extension characterization (1)

Recall that K1 ⊂ K2 if and only if ∆−it
K2

∆it
K1

extends boundedly to a
strip.
If both are of the form Kj = Uj(1)H, one has

∆−it
K2

∆it
K1

= U1(1)∆
−it
H U1(−1)U2(1)∆

it
HU2(−1)

= U1(1)U1(−e2πt)U2(e
2πt)U2(−1)

Lemma

Let (Uj , H), j = 1, 2 be standard pairs. Then U1(1)H ⊂ U2(1)H if
and only if

s 7→ U2(−s)U1(s)

extends to a bounded so-continuous function on C+ that is analytic
on C+.
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Analytic extension characterization (2)

Lemma

Let (Uj , H), j = 1, 2 be standard pairs. Then U1(1)H ⊂ U2(1)H if
and only if

s 7→ U2(−s)U1(s)

extends to a bounded so-continuous function on C+ that is analytic
on C+.

Let Uj(s) = eisPj . Note: because Pj ≥ 0 we can always extend
s 7→ Uj(s) to C+. So U1 has to ‘fall off quick enough’ to compensate
U2.
So maybe P2 ≤ P1? This is indeed necessary, but not sufficient.
But bounded + entire analytic = constant, so can we manually bound
this function on the lower half plane?
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Entire + bounded = constant

Let Ej be the spectral measure for Pj . Then for ψj ∈ Ej [(aj , bj)] we
see

z 7→ ⟨ψ2, U2(−z)U1(z)ψ1⟩ = ⟨U2(z), U1(z)ψ1⟩

is entire. Also, we have

|⟨U2(z)ψ2, U1(z)ψ1⟩| ≤ eya2e−yb1∥ψ1∥∥ψ2∥.

So if b1 ≥ a2, then z 7→ ⟨ψ2, U2(−z)U1(z)ψ1⟩ is entire analytic and
bounded, so constant.
If b1 > a2, then the bound even guarantees that

⟨ψ2, U2(−z)U1(z)ψ1⟩ = 0

for all z ∈ C. In particular, we have ⟨ψ2, ψ1⟩ = 0.
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Necessary condition

Proposition

Let (Uj , H), j = 1, 2 be non-degenerate standard pairs, Uj(t) = eitPj ,
and Ej [I] = χI(Pj). If U1(1)H ⊂ U2(1)H, then

E1[(0, a)] ⊥ E2[(a,∞)].

for all a ≥ 0. In particular E1[(0, 1)]H ⊂ E2[(0, 1)]H.

Note that because ∆it
HPj∆

−it
H = e−2πtPj , we have

E1[(0, 1)]H ⊂ E2[(0, 1)] ⇔ ∀a ≥ 0 : E1[(0, a)]H ⊂ E2[(0, a)]
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Sufficient condition

For the converse, we assume standard pairs (H,Uj) such that
E1[(0, a)] ≤ E2[(0, a)] for all a ≥ 0. We want to show that
U2(−z)U1(z) is bounded for Imz ≥ 0; the purely real direction only
adds unitaries, so we need to show:

∃C > 0 : ∀y ≥ 0 : ∥eyP2e−yP1∥∞ ≤ C.

The idea: for λ > 0, take ψ ∈ E1[(λ− δ, λ+ δ)]H. Then in the worst
case scenario e−yP1ψ ≈ e−y(λ−δ)ψ, and since
E1[(λ− δ, λ+ δ)]H ⊂ E2[(0, λ+ δ)]

eyP2e−yP1ψ ≈ eyP2e−y(λ−δ)ψ ≈ ey(λ+δ)e−y(λ−δ)ψ = e2yδψ.

The λ-dependence has disappeared, so this has a chance to be
bounded! Also, by choosing δ small enough, we can bound uniformly
in y.
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Main Result

Theorem (I.K. 2025)

Let (H,Uj) be non-degenerate standard pairs, Uj(s) = eisPj , and
Ej [I] = χI(Pj) for j = 1, 2. Then

U1(1)H ⊂ U2(1)H ⇔ E1[(0, 1)]H ⊂ E2[(0, 1)]H

In fact we can bound ∥eyP2e−yP1∥∞ ≤ 1, so that

e−
1
2
P1eP2e−

1
2
P1 ≤ 1

and eP2 ≤ eP1 . Since ln is operator monotone, we have P2 ≤ P1.
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Canonical example revisited

Consider H0 ⊂ L2(R, dθ) given by (∆it
H0
ψ)(θ) = ψ(θ − 2πt) and

(JH0ψ)(θ) = ψ(θ). That came with

(U0(s)ψ)(θ) = eise
θ
ψ(θ)

meaning that U0(s) = eisP0 for P0 =M [eθ]. So

χ(0,1)(P0)L
2(R, dθ) = L2(R−, dθ) = FH2(C−)

Proposition

Let H ⊂ H be a subset such that {∆it
H | t ∈ R}′′ is maximally

abelian, and let (H,U1) and (H,U2) be non-degenerate standard
pairs. Then U1(1)H ⊂ U2(1)H if and only if

U1(s) = φ(ln∆H)U2(s)φ(ln∆H)∗

for a symmetric inner function φ : C− → C.
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Nontrivial examples

We take H0 and U0 as before, and consider the symmetric inner
function φ(λ) = λ+i

λ−i . Since

∆H0 = FM [e2πλ]F∗

we have
φ(ln∆H0) = FM [φ(2πλ)]F∗

which equals convolution with the Fourier transform of λ 7→ φ(2πλ),
which equals

δ(θ)− 1

π
eθ/2πχ−∞,0(θ).

One can explicitly check that (H,φ(ln∆H0)U0φ(ln∆H0)
∗) is a

standard pair. However, U0 and φ(ln∆H0)U0φ(ln∆H0) do not
commute!
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Conclusion

Half-sided Modular Inclusions and Standard Pairs have a rich
mathematical structure closely tied to their representation theory.

Inclusions of standard pairs (i.e. inclusions of the associated
HSMI’s) is equivalent to inclusions of their spectral subspaces.

Using this we can construct concrete examples, so we know that:
▶ There exists K1 ⊂ H and K2 ⊂ H HSMI’s such that K1 ⊂ K2

but not as a HSMI.
▶ There exist standard pairs (H,U1) and (H,U2) such that P2 ≤ P1

but U1(1)H ̸⊂ U2(1)H.
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