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MOTIVATION

Starting data:
m Quasi-local C*-algebra A, of some QFT;
m A time evolution oy : A — A;
m 3-KMS state wg w.r.t az.

By GNS we get a standard subspace H,, C Hg with known modular
group. (For free theory this reduces to 1-particle level)

What are the modular groups of A(O)?

Only known example is in (Borchers and Yngvason, 1999), relies
heavily on Half-sided Modular Inclusion.



MOTIVATION

Mathematical questions that came up:
m If K1 C Hy, and Ko C H, such that K7 N K> is standard, are
KinNnKy; C Ky and K1 N Ky C Ky HSMI?
m If K1 C Hy and Ky C H, such that K1 C Ko, when is
K1 C K9 a HSMI? Can we characterize situations where this is
the case?
m How does this relate to the associated standard pairs? Do they
commute?
m Can we construct explicit non-trivial examples to check these
sorts of questions?
So we investigate relative positions of Half-sided Modular
Inclusions, both in the abstract and in terms of their representation
theory.



Standard Subspaces




STANDARD SUBSPACES

Definition
A real subspace H C H of a complex Hilbert space H is a standard

subspace if
HniH={0} and H+iH ="H.

Tomita-Takesaki-modular theory then gives the modular group Aﬁf]
and modular conjugation Jy that satisfy
AYH=H, JyH=H'
1 _1
JARh =Ap*Jgh=h forallhe H



STANDARD SUBSPACES (EXAMPLES)

Let # = L?*(R,df). We define

(A, ¥)(0) = ¢(0 — 2nt),  (Jmo¥)(6) = ¥(6).

This gives
Ho = {¢ € H¥(8,) | 9(6 +im) = % ()}

Fourier transforming gives

(AL )N = e ™),  (J59)(A) = 9(=X)

and

Hy = { € L(R,dN) | e ™p() = ¥(-N)




INCLUSIONS OF STANDARD SUBSPACES

Inclusions of standard subspaces are surprisingly subtle affairs. For
example:

Proposition (Borchers, 1999)

Let K C H C H be an inclusions of standard subspaces. Then
K C H if and only if

F:R— B(H), t— AF'AL

extends to a bounded so-continuous function on S1, analytic in S1
2 2

such that ‘ ' ‘
F(t+ %) = A In kA, teR.

Proof: SgSk : K + K — K 4 1K is equal to the identity.




Half-sided Modular Inclusions and
Standard Pairs




HALF-SIDED MODULAR INCLUSION

Recall that A%H —H. If KC H and AgK = K for all t € R, then
K=H.

Definition

An inclusion K C H of standard subspaces is called a Half-sided
Modular Inclusion (HSMI) if

AI_{“K Cc K forallt>0.

We call a Half-sided Modular Inclusion non-degenerate if

(AR"K ={0}

>0



EXAMPLES OF HSMI’S (1)

\

Example 1: Wedge-loclized observables in vacuum Wightman theory.

ATHH(D)N = ATH(T)AMQ = ¢(AomT)Q.



ExampLES OF HSMI’s (1)

Example 1: Wedge-loclized observables in vacuum Wightman theory.

ATHG(@)Q = A1) A = P(Agm)



ExXAMPLES OF HSMI’s (2)

Example 2: Lightcone-localized observables in massless vacuum
Wightman theory.
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ExXAMPLES OF HSMI’s (2)

Example 2: Lightcone-localized observables in massless vacuum
Wightman theory.
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ExaMPLES OF HSMI’s (3)

Example 3: Massless thermal field theory (Borchers Yngvason 1999)
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ExAMPLES oF HSMI’s (3)

Example 3: Massless thermal field theory (Borchers Yngvason 1999)
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ExXAMPLES OF HSMI’s (4)

Example 4: Standard subspace of a null cut (Morinelli Tanimoto
Wegener, 2022).




STANDARD PAIRS

An easy way of constructing examples of Half-sided Modular
Inclusions is trough standard pairs:

Definition

A standard pair (H,U) consists of a standard subspace H C H and
a positively generated one-parameter group U : R — U(H) such that

U(s)H C H fors>0.

We call a standard pair non-degenerate if U has no invariant vectors.




CANONICAL EXAMPLE(S)

We define

0

Uo(s) : L*(R,df) — L*(R,df), (Uo(s)¥)(6) = e %(0)

and see that (Hy, Uy) is indeed a standard pair: for h € Hy and s > 0

we have ‘ , o
(U()(S)h)(e—l—it) _ ezscos(t)e e—ssm(t)e h(H)

which is indeed L? and
(Uo(s)h)(0 + i) = e " (0 + i) = eis¢” h(6).

We can of course Fourier transform to construct a standard pair
(Ho, Uy), with Uy given by convolution with the distribution

w 1 iXn(—is)py
\/;H—\/%P (e D(=i\))



BORCHERS’ THEOREM (STD. PAIR — HSMI)

Theorem (Borchers 1992)

Let (H,U) be a standard pair. Then

ALU(s)A =U(e ®™s) and JyU(s)Ju = U(—s)

This means that

AF'UH =U(e™) A H
=U()U(e*™ -~ 1)H
cUMLH

for t > 0; so indeed, U(1)H C H is a HSMI!



CONVERSE (HSMI — STD. PAIR)

Theorem (Wiesbrock 1993, Araki & Zsido 2005)
Let K C H be a Half-sided Modular Inclusion in H. Then

U(l—e ™) := ALALH

can be extended to a one-parameter group U : R — U(H).
Furthermore, (H,U) is a standard pair and K = U(1)H.

The proof relies on many analytic extension arguments, as is common
in modular theory.



HSMI EXAMPLES REVISITED (1)

Example 1: Wedge-loclized observables in vacuum Wightman theory.




HSMI EXAMPLES REVISITED (2)

it
AH

Example 2: Lightcone-localized observables in massless vacuum
Wightman theory.




HSMI EXAMPLES REVISITED (3)

Al U(s)

Example 3: Massless thermal field theory.



Relation between HSMI’s and Std.
Pairs; Representation theory




RELATION BETWEEN HSMI’S AND STD. PAIRS

Summarizing: for every standard subspace H C H there is a bijection

between:
Half-sided Modular Inclusion: Standard pair:
K C H C H standard subspace Positively generated

such that ALK C K fort >0. U :R — U(H) such that
U(s)H C H for s > 0.

A Half-sided Modular Inclusion is non-degenerate if and only if its
associated standard pair is non-degenerate, i.e.

(ALK = {0} © keroU = {0}
t>0

Note that it might not be easy to calculate one or the other!



COMMUTATION RELATIONS

These relations are actually just a form of the Canonical

Commutation Relations. Compare, for U(s) = esP the following:
Standard Pair: ALU(s)AF = U(e ™ s)
Generator: AYPAL? = e7?™P
Weyl| relations: A P AL = e 2misi pis
ax + b group relations: [iln Ay, iP] = —2miP
CCR: InApg,In P] = 27

Our canonical example is simply the Schrodinger representation!



REPRESENTATION THEORY

Theorem (Stone - von Neumann)

For every non-degenerate standard pair (H,U) in ‘H there exists a
Hilbert space I, a maximally abelian standard subspace Hyx C K
and a unitary map V : H — L? ® K such that

VH = Hy ®r Hx
VUV =Up(t) ® 1
Note that for Hy, we have
In Ap, =270y and Py := 0Uy = M[ee]

For Hy we have In A = M2 ] and Py = 09Uy = € (reversed
roles/Fourier transformed)



SUMMARY OF PREREQUISITES

m Standard subspaces are real subspaces H C H that ‘complexify’
to H.

m Inclusions of standard subspaces are in general tricky affairs.

m There is a bijection between Half-sided Modular Inclusions
K C H (meaning A"K C K for t > 0) and standard pairs
(H,U) (meaning U(s)H C H for s > 0).

m The crucial commutation relation for a standard pair is
ARU(s)AF" = U(e~2s).

m Because of representation theory, every HSMI/Standard Pair is
unitarily equivalent to multiples of (Hy, Uy).




Relative Positions




INVESTIGATION

m We fix an ‘environment’ standard subspace H.

m Suppose we have two HSMI's K1 € H and Ky C H, or
equivalently, two Standard Pairs (U;, H) and (Us, H). We want
to know how K7 and K5 can relate to each other.

m For concrete examples, it is easier to prescribe U; and Us.

m Can we read off relative positions of K; and K> from U;
and Uy?




ANALYTIC EXTENSION CHARACTERIZATION (1)

Recall that K; C K3 if and only if A[}’;A?ﬁ extends boundedly to a
strip.
If both are of the form K; = U;(1)H, one has

Ay Ak,

= U1(1) AL U1(-1)U2(1) A% Us(-1)

= Ur()U1(=e*™)Us(e*™)Uz(~1)

Let (U;, H), j = 1,2 be standard pairs. Then U;(1)H C Us(1)H if
and only if

s+ Ua(—s)Uyp(s)

extends to a bounded so-continuous function on C that is analytic
on C,.



ANALYTIC EXTENSION CHARACTERIZATION (2)

Lemma

Let (U;, H), j = 1,2 be standard pairs. Then U;(1)H C Us(1)H if
and only if

s+ Us(—s)Uyp(s)

extends to a bounded so-continuous function on C that is analytic
on C..

Let U;(s) = e®*Fi. Note: because P; > 0 we can always extend

s — Uj(s) to C4. So U; has to ‘fall off quick enough’ to compensate
Us.

So maybe P, < P;? This is indeed necessary, but not sufficient.
But bounded + entire analytic = constant, so can we manually bound
this function on the lower half plane?



ENTIRE + BOUNDED = CONSTANT

Let E; be the spectral measure for P;. Then for ¢; € Ej[(a;,b;)] we
see

z = (Y2, Ua(=2)Ur(2)91) = (U2(2), Ur(2)11)
is entire. Also, we have
[(Ua(Z)tha, Ur(2)11)] < €420 |y | [l

So if by > ag, then z +— (12, Ua(—2)Ui(z)1)1) is entire analytic and
bounded, so constant.
If by > as, then the bound even guarantees that

(2, Ua(—2)Ur(2)91) =0

for all z € C. In particular, we have (¢9,11) = 0.



NECESSARY CONDITION

Proposition

Let (Uj, H), j = 1,2 be non-degenerate standard pairs, U;(t) = e®%3,
and E;[I] = x1(P;). If Ui(1)H C Ux(1)H, then

E1[(0,a)] L Es[(a, 00)].
for all @ > 0. In particular E1[(0,1)]H C E3[(0,1)]H.
Note that because A%PjAI}it = 6_2”Pj, we have

E1[(0, )]H C E»[(0,1)] < Va>0: E1[(0,a)]H C Ex[(0,a)]




SUFFICIENT CONDITION

For the converse, we assume standard pairs (H,U;) such that
E1[(0,a)] < E3[(0,a)] for all @ > 0. We want to show that
Ua(—z)U1(z) is bounded for Imz > 0; the purely real direction only
adds unitaries, so we need to show:

3C > 0:Vy >0: ||e?2e ¥ < C.

The idea: for A > 0, take ¢ € Eq1[(A — d, A+ J)]H. Then in the worst
case scenario e ¥P19) &~ e ¥(A=9)y) and since
Er[(A =8, A\ + 8)|H C E2[(0, A+ 0)]

VP2 e ¥P1y) eyPQG—y(A—ls)w ~ ey(A+5)e—y(>\—5)w = 20y,

The A-dependence has disappeared, so this has a chance to be
bounded! Also, by choosing § small enough, we can bound uniformly

in .




MAIN RESULT

Theorem (1.K. 2025)

Let (H,U;) be non-degenerate standard pairs, U;(s) = e**Fs

EJ[I] = XI<Pj) for j = 1,2. Then

Ul(l)H C UQ(l)H == El[(O, 1)]7'[ C EQ[(O, 1)]7‘[
In fact we can bound |e¥"2e=¥1 ||, <1, so that
e~2P1ePe—3 1 <1

and ef? < e, Since In is operator monotone, we have P, < P;.

, and



Examples through representation
theory




CANONICAL EXAMPLE REVISITED

Consider Hy C L*(R, df) given by (Ai[f]od))(e) = (6 — 2xt) and
(Jr,)(0) = (6). That came with
(Uo(5)4)(0) = ()
meaning that Up(s) = e?*7 for Py = M[e?]. So
X(,1)(Po)L*(R, df) = L*(R—, df) = FH*(C-)

Proposition

Let H C H be a subset such that {A%¥ | t € R} is maximally
abelian, and let (H,U;) and (H, Uz) be non-degenerate standard
pairs. Then Uy (1)H C Us(1)H if and only if

Ul(S) = Lp(ln AH)UQ(S)QO(III AH>*

for a symmetric inner function ¢ : C_ — C.



NONTRIVIAL EXAMPLES

We take Hy and Uy as before, and consider the symmetric inner
function p(\) = 3£ Since

Apg, = FM[e¥™]F*
we have
p(InApg,) = FM[p(27 )] F*

which equals convolution with the Fourier transform of A — (27)),
which equals

1
5(6) — ;69/%;(_00,0(9).

One can explicitly check that (H, p(In Ap,)Usp(In Ap,)*) is a
standard pair. However, Uy and ¢(In A, )Upp(In Ag,) do not
commute!



CONCLUSION

m Half-sided Modular Inclusions and Standard Pairs have a rich
mathematical structure closely tied to their representation theory.

m Inclusions of standard pairs (i.e. inclusions of the associated
HSMI'’s) is equivalent to inclusions of their spectral subspaces.
m Using this we can construct concrete examples, so we know that:

» There exists K1 C H and Ky C H HSMI's such that K| C K>
but not as a HSMI.

» There exist standard pairs (H,U;) and (H,Us) such that P, < P;
but Uy (1)H ¢ Us(1)H.

31/31



	Standard Subspaces
	Half-sided Modular Inclusions and Standard Pairs
	Relation between HSMI's and Std. Pairs; Representation theory
	Relative Positions
	Examples through representation theory

