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Modular Theory and Standard
Subspaces




MODULAR THEORY: THE ESSENTIALS

Classically, we can summarise modular theory as follows:

m A von Neumann algebra A C B(H) and a vector Q2 € H such

that the map
A—=H, A~ AQ

is injective (i.e. 2 is separating) and has dense range (i.e. ) is
cyclic).

m The real subspace Ay, defines a conjugation on (a dense subset
of) H. This allows one to define one parameter group A% and
anti-unitary involution Jo with the properties

ABAAG = A, JAT=A,
(Q, AAqBAG'Q) = (Q, BAQ)




STANDARD SUBSPACES

We can distil this to the following:

Definition

A real (closed) subspace H C H of a complex Hilbert space H is a
standard subspace if

HniH={0} and H+iH ="H.
This has an ‘internal’ time evolution A%, and (anti-linear) conjugation
Jm, i.e.
AYH=H, JyH=H'
1 _1
JAZh =Ap*Jgh=h forallhe€ H



EXACT CONNECTION

m Given a VNA A and standard vector 2 € H, we can always
define H = A:,£2 C H. Not every standard subspace comes from
a VNA.

m However, given H C #, we can construct on F1(#) the CCR
and CAR algebra as generated by p(h) = a(h) + a*(h), for which
the vacuum is then again standard.

m One can even generalize this to twisted Fock spaces Fr(H) to
define twisted Araki-Woods Algebras L1 (H ), where one can find
conditions on the twist 1" and standard subspace H such that the
vacuum is standard. See: [Correa da Silva and Lechner, 2023|.

m In both cases, the modular data of the resulting algebra reduces
in the appropriate sense to the modular data of H C H.



STANDARD SUBSPACES (EXAMPLES)

Let # = L?*(R,df). We define

(A, ¥)(0) = ¢(0 — 2nt),  (Jmo¥)(6) = ¥(6).

This gives
Ho = {¢ € H¥(8,) | 9(6 +im) = % ()}

Fourier transforming gives

(AL )N = e ™),  (J59)(A) = 9(=X)

and

Hy = { € L(R,dN) | e ™p() = ¥(-N)




Half-sided Modular Inclusions and
Standard Pairs




HALF-SIDED MODULAR INCLUSION

Inclusions of standard subspaces are subtle affairs. However, with
extra assumptions they become more tractable.

Recall that A%H =H. If KC H and A%K = K for all t € R, then
K=H.

Definition
An inclusion K C H of standard subspaces is called a Half-sided
Modular Inclusion (HSMI) if

A'K C K forall t>0.

We call a Half-sided Modular Inclusion non-degenerate if

(ALK = {0}

t>0




EXAMPLES OF HSMI’S (1)

\

Example 1: Wedge-localized observables in vacuum Wightman theory.

ATHH(D)N = ATH(T)AMQ = ¢(AomT)Q.




ExamMPLES oF HSMI’s (1)

Example 1: Wedge-localized observables in vacuum Wightman theory.

ATEH(T)N = ATEH(Z)AYQ = G( Ao Q.
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ExXAMPLES OF HSMI’s (2)

Example 2: Lightcone-localized observables in massless vacuum
Wightman theory.



ExXAMPLES OF HSMI’s (2)

Example 2: Lightcone-localized observables in massless vacuum
Wightman theory.



ExaMPLES OF HSMI’s (3)

Example 3: Massless thermal field theory (Borchers Yngvason 1999)
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ExAMPLES oF HSMI’s (3)

Example 3: Massless thermal field theory (Borchers Yngvason 1999)
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ExXAMPLES OF HSMI’s (4)

Example 4: Standard subspace of a null cut (Morinelli Tanimoto
Wegener, 2022).
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STANDARD PAIRS

An easy way of constructing examples of Half-sided Modular
Inclusions is trough standard pairs:

Definition

A standard pair (H,U) consists of a standard subspace H C H and
a positively generated one-parameter group U : R — U(H) such that

U(s)H C H fors>0.

We call a standard pair non-degenerate if U has no invariant vectors.




CANONICAL EXAMPLE(S)

We define
0

Uo(s) : L*(R,df) — L*(R,df), (Uo(s)¥)(8) = e %(0)

and see that (Hy, Uy) is indeed a standard pair: for h € Hy and s > 0
we have

(U()(S)h) (9 + it) — ¢is cos(t)eee—s sin(t)eeh(g + it)
which is indeed L? and
(Uo(s)h) (0 + mi) = e~ h(6 + i) = i’ h(0).

We can of course Fourier transform to construct a standard pair
(Ho, Uy), with Uy given by convolution with the distribution

w 1 iXIn(—is)py s
\/;6%—\/%7? (e D(=i))



BORCHERS’ THEOREM (STD. PAIR — HSMI)

Theorem (Borchers 1992)

Let (H,U) be a standard pair. Then

ALU(s)A =U(e ®™s) and JyU(s)Ju = U(—s)

This means that

AF'UH =U(e™) A H
=U()U(e*™ -~ 1)H
cUMLH

for t > 0; so indeed, U(1)H C H is a HSMI!




CONVERSE (HSMI — STD. PAIR)

Theorem (Wiesbrock 1993, Araki & Zsido 2005)
Let K C H be a Half-sided Modular Inclusion in H. Then

U(l—e ™) := ALALH

can be uniquely extended to a one-parameter group U : R — U(H).
Furthermore, (H,U) is a standard pair and K = U(1)H.

The proof relies on many analytic extension arguments, as is common
in modular theory.



HSMI EXAMPLES REVISITED (1)

Example 1: Wedge-localized observables in vacuum Wightman theory.




HSMI EXAMPLES REVISITED (2)

it
AH

Example 2: Lightcone-localized observables in massless vacuum
Wightman theory.
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HSMI EXAMPLES REVISITED (3)

Al U(s)

Example 3: Massless thermal field theory.



RELATION BETWEEN HSMI’S AND STD. PAIRS

Summarizing: for every standard subspace H C H there is a bijection

between:
Half-sided Modular Inclusion: Standard pair:
K C H C H standard subspace Positively generated

such that ALK C K fort >0. U :R — U(H) such that
U(s)H C H for s > 0.

A Half-sided Modular Inclusion is non-degenerate if and only if its
associated standard pair is non-degenerate, i.e.

(ALK = {0} © keroU = {0}
t>0

Note that it might not be easy to calculate one or the other!



SUMMARY OF PREREQUISITES

m Standard subspaces are real subspaces H C H that ‘complexify’
to H. They have an ‘internal’ time evolution A%.

m Inclusions of standard subspaces are in general tricky affairs.

m There is a bijection between Half-sided Modular Inclusions
K C H (meaning A" K C K for t > 0) and standard pairs
(H,U) (meaning U(s)H C H for s > 0).

m The crucial commutation relation for a standard pair is
ARU(s)AG" = U(e~2s).




Two dimensions




TWO-DIMENSIONAL STANDARD PAIRS

Recall that a standard pair (H,U) consists of a standard subspace
H C H and a representation U : R — U(H) (where U(t) := €i'P)
such that

m P>0;
m U(Ry)H C H.

We now define a two-dimensional standard pair (H,U) to be a
standard pair H C H with a representation U : R? — U(H) (where
U(Z) = ei(@ofotz1P1) gych that

m 0Py +x1P >0 for ¥ e V.
s UW)H C H.



TWO-DIMENSIONAL BORCHERS’ THEOREM

For one-dimensional standard pairs we had:

Theorem (Borchers 1992)

Let (H,U) be a standard pair. Then

ALU(s)AL =U(e ®™s) and JuU(s)Ju = U(—s)

Now for two-dimensional standard pairs we have:

Theorem (Borchers 1992)

Let (H,U) be a two-dimensional standard pair. Then

ALU@D)AL = U(A—omZ) and  JyU(E)Jg = U(-%)




(GEOMETRICAL COMPARISON

One-dimensional situation:
H K

U(S)HHHH*»*»*)*)
- < < —> —>

it
AH

Two-dimensional situation:
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One-dimensional situation:
H K

U(S)HHHH*»*»*)*)
- < < —> —>
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Two-dimensional situation:




2-DIMENSIONAL HSMI?

One-dimensional situation: we recognize that K C H comes from a
‘geometric’ situation K = U(1)H by verifying the ‘analytical’
condition A;{”K C K forall t > 0.

Question

How can we recognise when an inclusion K C H of standard
subspaces comes from a 2-dimensional standard pair (H,U) as
K=U(0,1)H?

Plan of attack: suppose K = U(0, 1)H for a 2-dimensional standard
pair (H,U). Determine properties K satisfies with respect to A%,
that we can formulate without referring to U explicitly.



INTERPOLATING HSMI’s

Note that K := U(0,1)H is not an HSMI, but K :=U(3, 5)H is!

K

K,




OBTAINING THE LIGHTLIKE SHIFTS

We can access the lightlike (= diagonal) directions:

Proposition

Suppose (H,U) is a 2-dimensional standard pair, and K = U(0,1)H
Then

K=\ AF'K = UL DH, K=\ AGK =U(-. )
t>0 t>0

and K =K,  NK_.

Note that we can formulate the requirement K = K, N K_ without
referring to U! What's more, the half-sided modular inclusions

K, C K and K_ C K induce the one-parameter groups ¢ — U (t,t)
and t — U(—t,1).



ARE WE THERE YET?

So, given an inclusion of standard subspaces K C H, we do the
following:

m Construct K := V5 ALK and K_ := Viso AYK;
m Check that K = Ky N K_.

m Construct the positively generated one-parameter groups U
associated to K1 C H and U_ associated to K_ C H.

m Construct U(Z) := U, (2321 )U_(Z05%)
If one started with K = U(0,1)H for some two-dimensional standard
pair (H,U), one would recover precisely U.

However, U, and U_ are not guaranteed to commute!




Relative Positions




SCENARIO

So our scenario is the following:

m We have a standard subspace H C H representing ‘the
environment’.

m We have two positively generated one-parameter groups Uy, Us
such that (H,U;) and (H,Us) are (one-dimensional) standard
pairs.

m We have that U;(1)H N Uy(1)H is standard.

Doest this guarantee that U; and Us commute? Or, formulated more
succinctly, for two Half-sided Modular Inclusions Ky C H and
K> C H, what can K1 N K3 look like? Is K1 N Ky C Kj also a HSMI?



RELATIVE POSITIONS OF HALF-SIDED MODULAR

INCLUSIONS

If K1 € H and Ko C H are HSMl's, and K1 N K> is standard, then
K71 N Ky is a HSMI. In this case, we can consider K1 N Ky as ‘the
largest HSMI in H that is contained in both K7 and K5 .

Theorem (1.K. 2025)

Let (H,U;) be non-degenerate standard pairs, U;(s) = e**f%, and
EJ[I] = XI<Pj) for j = 1,2. Then

Ul(l)H C UQ(l)H = El[(O, 1)]% C EQ[(O, 1)]%

Can this happen when U; and Us do not commute? We will construct
specific examples through representation theory.




CANONICAL EXAMPLE REVISITED

Consider Hy C L*(R, df) given by (Ai[f]od))(e) = (6 — 2xt) and
(Jr,)(0) = (6). That came with
(Uo(5)4)(0) = ()
meaning that Up(s) = e?*7 for Py = M[e?]. So
X(,1)(Po)L*(R, df) = L*(R—, df) = FH*(C-)

Proposition

Let H C H be a subset such that {A%¥ | t € R} is maximally
abelian, and let (H,U;) and (H, Uz) be non-degenerate standard
pairs. Then Uy (1)H C Us(1)H if and only if

Ul(S) = Lp(ln AH)UQ(S)QO(III AH>*

for a symmetric inner function ¢ : C_ — C.



COMMUTATION RELATIONS

The relations between U(s) and A% are actually just a form of the
Canonical Commutation Relations. Compare, for U(s) = e, the

following:
Standard Pair: A%U(s)AI}” = U(e~2mts)
Generator: A% PAG =72 p
Weyl relations: A% PBALS = e~ 2mtsipis
ax + b group relations: [iln Ay, iP] = —2miP
CCR: In Ag,In P] = 2mi

Our canonical example is simply the Schrodinger representation!




REPRESENTATION THEORY

Theorem (Stone - von Neumann)

For every non-degenerate standard pair (H,U) in ‘H there exists a
Hilbert space I, a maximally abelian standard subspace Hyx C K
and a unitary map V : H — L? ® K such that

VH = Hy ®r Hx
VUV =Up(t) ® 1
Note that for Hy, we have
In Ap, =270y and Py := 0Uy = M[ee]

For Hy we have In A = M2 ] and Py = 09Uy = € (reversed
roles/Fourier transformed)



NONTRIVIAL EXAMPLE AND IMPLICATIONS

m So, since
Ur(1)H Cc Uy(1)H < Ui(s) = o(In Ag)Us(s)p(In Ag)*

for p a symmetric inner function, if we choose ¢ smartly (e.g.
w(A) = %) we guarantee U; and Uz do not commute, even
though Ul(l)H C UQ(l)H.

m One can show
Ul(l)H C UQ(I)HiS HSMI & [Ul(s),UQ<S/)] =0

So translating to the HSMI-perspective, we know now that there
exist HSMl's K1 € H and K5 C H such that K1 C K5 but not
as a HSMI.

m 2D standard pair situation: similar techniques can show that the
U and U_ do not in general commute.



CONCLUSION

m Half-sided Modular Inclusions are analytic characterizations of
geometric inclusions (i.e. standard pairs).
m One can characterize two-dimensional standard pairs as inclusions
K C H such that
> the associated spaces K :=\/,, A5 K and
K_:=\/,5 ALK satisfy K = K N K_
» the one-parameter groups induced by the HSMI's K, C K and
K_ C K commute.
m We have counterexamples that show that the last requirement is
essential.
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