Relative Positions of Half-sided Modular Inclusions

IAN KOOT

Friedrich-Alexander-Universität Erlangen-Nürnberg

July 23, 2025 Math. Phys. Seminar, Erlangen

Based on [arXiv:2503.18036] + some new stuff.

Modular Theory and Standard Subspaces

Modular Theory: the essentials

Classically, we can summarise modular theory as follows:

■ A von Neumann algebra $\mathcal{A} \subset B(\mathcal{H})$ and a vector $\Omega \in \mathcal{H}$ such that the map

$$A \to \mathcal{H}, A \mapsto A\Omega$$

is **injective** (i.e. Ω is *separating*) and has **dense range** (i.e. Ω is *cyclic*).

■ The real subspace \mathcal{A}_{sa} defines a conjugation on (a dense subset of) \mathcal{H} . This allows one to define one parameter group Δ_{Ω}^{it} and anti-unitary involution J_{Ω} with the properties

$$\begin{split} &\Delta_{\Omega}^{it}\mathcal{A}\Delta_{\Omega}^{-it}=\mathcal{A}, \quad J\mathcal{A}J=\mathcal{A}', \\ &\langle \Omega, A\Delta_{\Omega}B\Delta_{\Omega}^{-1}\Omega\rangle=\langle \Omega, BA\Omega\rangle \end{split}$$

STANDARD SUBSPACES

We can distil this to the following:

Definition

A real (closed) subspace $H\subset\mathcal{H}$ of a complex Hilbert space \mathcal{H} is a **standard subspace** if

$$H \cap iH = \{0\}$$
 and $\overline{H + iH} = \mathcal{H}$.

This has an 'internal' time evolution Δ_H^{it} and (anti-linear) conjugation J_H , i.e.

$$\begin{split} &\Delta_H^{it}H=H,\quad J_HH=H'\\ &J\Delta_H^{\frac{1}{2}}h=\Delta_H^{-\frac{1}{2}}J_Hh=h\quad \text{for all }h\in H \end{split}$$

EXACT CONNECTION

- Given a VNA \mathcal{A} and standard vector $\Omega \in \mathcal{H}$, we can always define $H = \overline{\mathcal{A}_{sa}\Omega} \subset \mathcal{H}$. Not every standard subspace comes from a VNA.
- However, given $H \subset \mathcal{H}$, we can construct on $\mathcal{F}_{\pm}(\mathcal{H})$ the CCR and CAR algebra as generated by $\varphi(h) = a(h) + a^*(h)$, for which the vacuum is then again standard.
- One can even generalize this to twisted Fock spaces $\mathcal{F}_T(\mathcal{H})$ to define *twisted Araki-Woods Algebras* $\mathcal{L}_T(H)$, where one can find conditions on the twist T and standard subspace H such that the vacuum is standard. See: [Correa da Silva and Lechner, 2023].
- In both cases, the modular data of the resulting algebra reduces in the appropriate sense to the modular data of $H \subset \mathcal{H}$.

STANDARD SUBSPACES (EXAMPLES)

Let $\mathcal{H} = L^2(\mathbb{R}, d\theta)$. We define

$$(\Delta_{H_0}^{it}\psi)(\theta) := \psi(\theta - 2\pi t), \quad (J_{H_0}\psi)(\theta) := \overline{\psi(\theta)}.$$

This gives

$$H_0 = \left\{ \psi \in \mathbb{H}^2(\mathbb{S}_\pi) \mid \psi(\theta + i\pi) = \overline{\psi(\theta)} \right\}$$

Fourier transforming gives

$$(\Delta^{it}_{\widetilde{H_0}}\psi)(\lambda):=e^{-2\pi t\lambda i}\psi(\lambda),\quad (J_{\widetilde{H_0}}\psi)(\lambda):=\overline{\psi(-\lambda)}$$

and

$$\widetilde{H_0} = \left\{ \psi \in L^2(\mathbb{R}, d\lambda) \mid e^{-\pi\lambda} \psi(\lambda) = \overline{\psi(-\lambda)} \right\}$$

Half-sided Modular Inclusions and

Standard Pairs

HALF-SIDED MODULAR INCLUSION

Inclusions of standard subspaces are subtle affairs. However, with extra assumptions they become more tractable.

Recall that $\Delta^{it}_H H = H.$ If $K \subset H$ and $\Delta^{it}_H K = K$ for all $t \in \mathbb{R}$, then K = H.

Definition

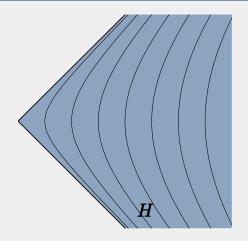
An inclusion $K\subset H$ of standard subspaces is called a **Half-sided Modular Inclusion** (HSMI) if

$$\Delta_H^{-it}K\subset K \quad \text{ for all } t\geq 0.$$

We call a Half-sided Modular Inclusion non-degenerate if

$$\bigcap_{t>0} \Delta_H^{-it} K = \{0\}$$

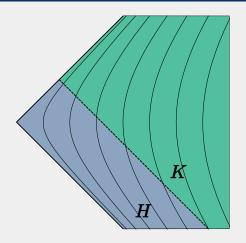
Examples of HSMI's (1)



Example 1: Wedge-localized observables in vacuum Wightman theory.

$$\Delta^{-it}\phi(\vec{x})\Omega = \Delta^{-it}\phi(\vec{x})\Delta^{it}\Omega = \phi(\Lambda_{2\pi t}\vec{x})\Omega.$$

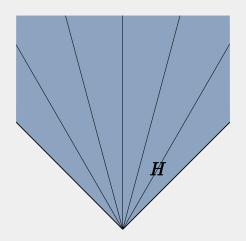
Examples of HSMI's (1)



Example 1: Wedge-localized observables in vacuum Wightman theory.

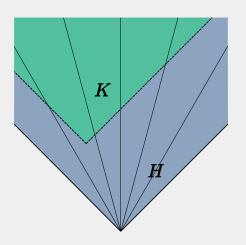
$$\Delta^{-it}\phi(\vec{x})\Omega = \Delta^{-it}\phi(\vec{x})\Delta^{it}\Omega = \phi(\Lambda_{2\pi t}\vec{x})\Omega.$$

EXAMPLES OF HSMI'S (2)



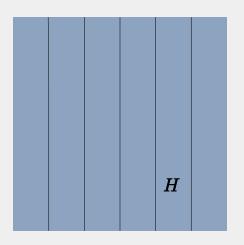
Example 2: Lightcone-localized observables in massless vacuum Wightman theory.

EXAMPLES OF HSMI'S (2)



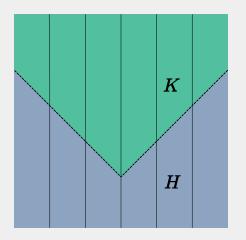
Example 2: Lightcone-localized observables in massless vacuum Wightman theory.

Examples of HSMI's (3)



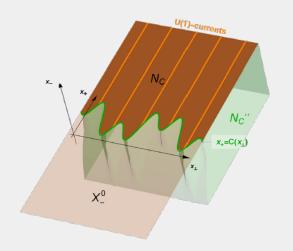
Example 3: Massless thermal field theory (Borchers Yngvason 1999)

Examples of HSMI's (3)



Example 3: Massless thermal field theory (Borchers Yngvason 1999)

Examples of HSMI's (4)



Example 4: Standard subspace of a null cut (Morinelli Tanimoto Wegener, 2022).

STANDARD PAIRS

An easy way of constructing examples of Half-sided Modular Inclusions is trough standard pairs:

Definition

A standard pair (H,U) consists of a standard subspace $H\subset\mathcal{H}$ and a positively generated one-parameter group $U:\mathbb{R}\to\mathcal{U}(\mathcal{H})$ such that

$$U(s)H \subset H$$
 for $s \ge 0$.

We call a standard pair ${\bf non\text{-}degenerate}$ if U has no invariant vectors.

CANONICAL EXAMPLE(S)

We define

$$U_0(s): L^2(\mathbb{R}, d\theta) \to L^2(\mathbb{R}, d\theta), \quad (U_0(s)\psi)(\theta) = e^{ise^{\theta}}\psi(\theta)$$

and see that (H_0, U_0) is indeed a standard pair: for $h \in H_0$ and $s \ge 0$ we have

$$(U_0(s)h)(\theta + it) = e^{is\cos(t)e^{\theta}}e^{-s\sin(t)e^{\theta}}h(\theta + it)$$

which is indeed L^2 and

$$(U_0(s)h)(\theta + \pi i) = e^{-ise^{\theta}}h(\theta + \pi i) = \overline{e^{ise^{\theta}}h(\theta)}.$$

We can of course Fourier transform to construct a standard pair $(\widetilde{H_0},\widetilde{U_0})$, with $\widetilde{U_0}$ given by convolution with the distribution

$$\sqrt{\frac{\pi}{2}}\delta + \frac{1}{\sqrt{2\pi}}\mathcal{P}\left(e^{i\lambda\ln(-is)}\Gamma(-i\lambda)\right)$$

Borchers' Theorem (Std. Pair \rightarrow HSMI)

Theorem (Borchers 1992)

Let (H, U) be a standard pair. Then

$$\Delta_H^{it}U(s)\Delta_H^{-it}=U(e^{-2\pi t}s)\quad\text{and}\quad J_HU(s)J_H=U(-s)$$

This means that

$$\begin{split} \Delta_H^{-it}U(1)H &= U(e^{2\pi t})\Delta_H^{-it}H\\ &= U(1)U(e^{2\pi t}-1)H\\ &\subset U(1)H \end{split}$$

for $t \ge 0$; so indeed, $U(1)H \subset H$ is a HSMI!

Converse (HSMI \rightarrow Std. Pair)

Theorem (Wiesbrock 1993, Araki & Zsido 2005)

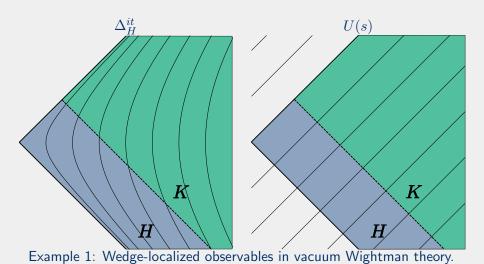
Let $K \subset H$ be a Half-sided Modular Inclusion in \mathcal{H} . Then

$$U(1 - e^{-2\pi t}) := \Delta_K^{it} \Delta_H^{-it}$$

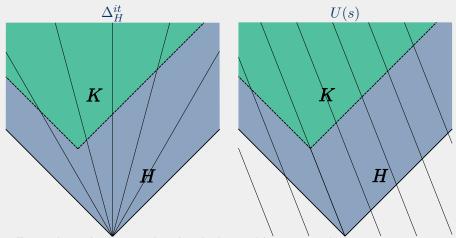
can be uniquely extended to a one-parameter group $U: \mathbb{R} \to \mathcal{U}(\mathcal{H})$. Furthermore, (H,U) is a **standard pair** and K=U(1)H.

The proof relies on many analytic extension arguments, as is common in modular theory.

HSMI EXAMPLES REVISITED (1)

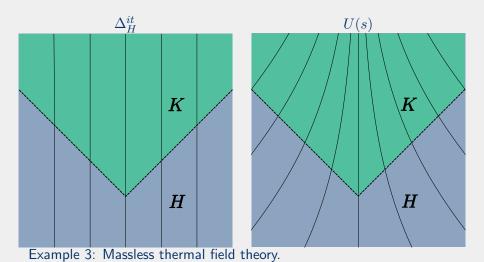


HSMI Examples revisited (2)



Example 2: Lightcone-localized observables in massless vacuum Wightman theory.

HSMI EXAMPLES REVISITED (3)



RELATION BETWEEN HSMI'S AND STD. PAIRS

Summarizing: for every standard subspace $H \subset \mathcal{H}$ there is a bijection between:

Half-sided Modular Inclusion:

 $K\subseteq H\subseteq \mathcal{H}$ standard subspace such that $\Delta_H^{-it}K\subset K$ for $t\geq 0$.

Standard pair:

Positively generated $U: \mathbb{R} \to \mathcal{U}(\mathcal{H})$ such that $U(s)H \subset H$ for $s \geq 0$.

Proposition

A Half-sided Modular Inclusion is non-degenerate if and only if its associated standard pair is non-degenerate, i.e.

$$\bigcap_{t>0} \Delta_H^{-it} K = \{0\} \iff \ker \partial U = \{0\}$$

Note that it might not be easy to calculate one or the other!

17

SUMMARY OF PREREQUISITES

- Standard subspaces are real subspaces $H \subset \mathcal{H}$ that 'complexify' to \mathcal{H} . They have an 'internal' time evolution Δ_H^{it} .
- Inclusions of standard subspaces are in general tricky affairs.
- There is a bijection between Half-sided Modular Inclusions $K \subset H$ (meaning $\Delta_H^{-it}K \subset K$ for $t \geq 0$) and standard pairs (H,U) (meaning $U(s)H \subset H$ for $s \geq 0$).
- The crucial commutation relation for a standard pair is $\Delta_H^{it}U(s)\Delta_H^{-it}=U(e^{-2\pi t}s).$

Two dimensions

TWO-DIMENSIONAL STANDARD PAIRS

Recall that a standard pair (H,U) consists of a standard subspace $H\subset\mathcal{H}$ and a representation $U:\mathbb{R}\to\mathcal{U}(\mathcal{H})$ (where $U(t):=e^{itP}$) such that

- $\blacksquare P \ge 0;$
- $U(\mathbb{R}_+)H \subset H.$

We now define a **two-dimensional standard pair** (H,U) to be a standard pair $H\subset \mathcal{H}$ with a representation $U:\mathbb{R}^2\to \mathcal{U}(\mathcal{H})$ (where $U(\vec{x})=e^{i(x_0P_0+x_1P_1)}$ such that

- $x_0 P_0 + x_1 P_1 \ge 0$ for $\vec{x} \in V_+$.
- $U(W)H \subset H$.

TWO-DIMENSIONAL BORCHERS' THEOREM

For one-dimensional standard pairs we had:

Theorem (Borchers 1992)

Let (H, U) be a standard pair. Then

$$\Delta_H^{it}U(s)\Delta_H^{-it}=U(e^{-2\pi t}s)\quad\text{and}\quad J_HU(s)J_H=U(-s)$$

Now for two-dimensional standard pairs we have:

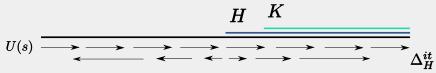
Theorem (Borchers 1992)

Let (H,U) be a two-dimensional standard pair. Then

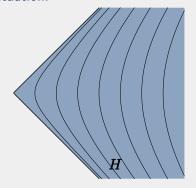
$$\Delta_H^{it} U(\vec{x}) \Delta_H^{-it} = U(\Lambda_{-2\pi t} \vec{x}) \quad \text{and} \quad J_H U(\vec{x}) J_H = U(-\vec{x})$$

GEOMETRICAL COMPARISON

One-dimensional situation:

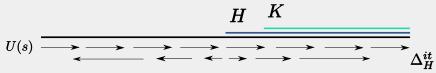


Two-dimensional situation:

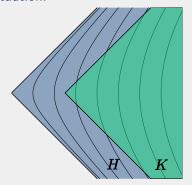


GEOMETRICAL COMPARISON

One-dimensional situation:



Two-dimensional situation:



2-DIMENSIONAL HSMI?

One-dimensional situation: we recognize that $K\subset H$ comes from a 'geometric' situation K=U(1)H by verifying the 'analytical' condition $\Delta_H^{-it}K\subset K$ for all $t\geq 0$.

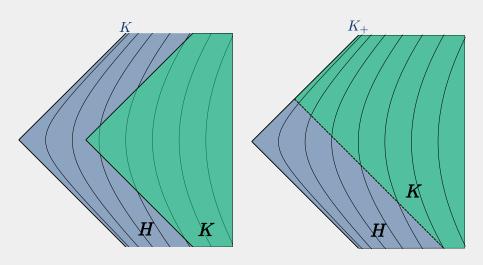
Question

How can we recognise when an inclusion $K\subset H$ of standard subspaces comes from a 2-dimensional standard pair (H,U) as K=U(0,1)H?

Plan of attack: suppose K=U(0,1)H for a 2-dimensional standard pair (H,U). Determine properties K satisfies with respect to Δ_H^{it} that we can formulate without referring to U explicitly.

INTERPOLATING HSMI'S

Note that K:=U(0,1)H is not an HSMI, but $K_+:=U(\frac{1}{2},\frac{1}{2})H$ is!



OBTAINING THE LIGHTLIKE SHIFTS

We can access the lightlike (= diagonal) directions:

Proposition

Suppose (H,U) is a 2-dimensional standard pair, and K=U(0,1)H. Then

$$K_{+} := \bigvee_{t \geq 0} \Delta_{H}^{-it} K = U(\frac{1}{2}, \frac{1}{2}) H, \quad K_{-} := \bigvee_{t \geq 0} \Delta_{H}^{it} K = U(-\frac{1}{2}, \frac{1}{2}) H$$

and $K = K_+ \cap K_-$.

Note that we can formulate the requirement $K=K_+\cap K_-$ without referring to U! What's more, the half-sided modular inclusions $K_+\subset K$ and $K_-\subset K$ induce the one-parameter groups $t\mapsto U(t,t)$ and $t\mapsto U(-t,t).$

ARE WE THERE YET?

So, given an inclusion of standard subspaces $K \subset H$, we do the following:

- lacksquare Construct $K_+ := \bigvee_{t \geq 0} \Delta_H^{-it} K$ and $K_- := \bigvee_{t \geq 0} \Delta_H^{it} K$;
- Check that $K = K_+ \cap K_-$.
- Construct the positively generated one-parameter groups U_+ associated to $K_+ \subset H$ and U_- associated to $K_- \subset H$.
- \blacksquare Construct $U(\vec{x}) := U_+(\frac{x_0+x_1}{2})U_-(\frac{x_0-x_1}{2})$

If one started with K=U(0,1)H for some two-dimensional standard pair (H,U), one would recover precisely U.

However, U_+ and U_- are not guaranteed to commute!

Relative Positions

Scenario

So our scenario is the following:

- We have a standard subspace $H \subset \mathcal{H}$ representing 'the environment'.
- We have two positively generated one-parameter groups U_1, U_2 such that (H, U_1) and (H, U_2) are (one-dimensional) standard pairs.
- We have that $U_1(1)H \cap U_2(1)H$ is standard.

Doest this guarantee that U_1 and U_2 commute? Or, formulated more succinctly, for two Half-sided Modular Inclusions $K_1 \subset H$ and $K_2 \subset H$, what can $K_1 \cap K_2$ look like? Is $K_1 \cap K_2 \subset K_j$ also a HSMI?

Relative Positions of Half-sided Modular Inclusions

If $K_1 \subset H$ and $K_2 \subset H$ are HSMI's, and $K_1 \cap K_2$ is standard, then $K_1 \cap K_2$ is a HSMI. In this case, we can consider $K_1 \cap K_2$ as 'the largest HSMI in H that is contained in both K_1 and K_2 '.

Theorem (I.K. 2025)

Let (H,U_j) be non-degenerate standard pairs, $U_j(s)=e^{isP_j}$, and $E_j[I]=\chi_I(P_j)$ for j=1,2. Then

$$U_1(1)H \subset U_2(1)H \quad \Leftrightarrow \quad E_1[(0,1)]\mathcal{H} \subset E_2[(0,1)]\mathcal{H}$$

Can this happen when U_1 and U_2 do not commute? We will construct specific examples through representation theory.

CANONICAL EXAMPLE REVISITED

Consider $H_0 \subset L^2(\mathbb{R}, d\theta)$ given by $(\Delta_{H_0}^{it} \psi)(\theta) = \psi(\theta - 2\pi t)$ and $(J_{H_0} \psi)(\theta) = \overline{\psi(\theta)}$. That came with

$$(U_0(s)\psi)(\theta) = e^{ise^{\theta}}\psi(\theta)$$

meaning that $U_0(s) = e^{isP_0}$ for $P_0 = M[e^{\theta}]$. So

$$\chi_{(0,1)}(P_0)L^2(\mathbb{R}, d\theta) = L^2(\mathbb{R}_-, d\theta) = \mathcal{F}\mathbb{H}^2(\mathbb{C}_-)$$

Proposition

Let $H\subset \mathcal{H}$ be a subset such that $\{\Delta_H^{it}\mid t\in\mathbb{R}\}''$ is **maximally** abelian, and let (H,U_1) and (H,U_2) be non-degenerate standard pairs. Then $U_1(1)H\subset U_2(1)H$ if and only if

$$U_1(s) = \varphi(\ln \Delta_H)U_2(s)\varphi(\ln \Delta_H)^*$$

for a symmetric inner function $\varphi: \mathbb{C}_- \to \mathbb{C}$.

COMMUTATION RELATIONS

The relations between U(s) and Δ_H^{it} are actually just a form of the Canonical Commutation Relations. Compare, for $U(s)=e^{isP}$, the following:

$$\begin{array}{ll} \text{Standard Pair:} & \Delta_H^{it} U(s) \Delta_H^{-it} = U(e^{-2\pi t}s) \\ \text{Generator:} & \Delta_H^{it} P \Delta_H^{-it} = e^{-2\pi t}P \\ \text{Weyl relations:} & \Delta_H^{it} P^{is} \Delta_H^{-is} = e^{-2\pi tsi}P^{is} \\ \text{ax + b group relations:} & [i\ln \Delta_H, iP] = -2\pi iP \\ \text{CCR:} & [\ln \Delta_H, \ln P] = 2\pi i \end{array}$$

Our canonical example is simply the Schrödinger representation!

REPRESENTATION THEORY

Theorem (Stone - von Neumann)

For every non-degenerate standard pair (H,U) in $\mathcal H$ there exists a Hilbert space $\mathcal K$, a **maximally abelian** standard subspace $H_{\mathcal K}\subset \mathcal K$ and a unitary map $\mathbb V:\mathcal H\to L^2\otimes \mathcal K$ such that

$$VH = H_0 \otimes_{\mathbb{R}} H_{\mathcal{K}}$$
$$VU(t)V^* = U_0(t) \otimes 1_{\mathcal{K}}$$

Note that for H_0 , we have

$$\ln \Delta_{H_0} = 2\pi i \partial_{\theta} \text{ and } P_0 := \partial U_0 = M[e^{\theta}]$$

For $\widetilde{H_0}$ we have $\ln \Delta_{\widetilde{H_0}} = M[2\pi\lambda]$ and $\widetilde{P_0} := \partial \widetilde{U_0} = e^{i\partial_\lambda}$ (reversed roles/Fourier transformed).

Nontrivial example and implications

■ So, since

$$U_1(1)H \subset U_2(1)H \Leftrightarrow U_1(s) = \varphi(\ln \Delta_H)U_2(s)\varphi(\ln \Delta_H)^*$$

for φ a symmetric inner function, if we choose φ smartly (e.g. $\varphi(\lambda)=\frac{\lambda+i}{\lambda-i}$), we guarantee U_1 and U_2 do not commute, even though $U_1(1)H\subset U_2(1)H$.

One can show

$$U_1(1)H \subset U_2(1)H$$
is HSMI $\Leftrightarrow [U_1(s), U_2(s')] = 0$

So translating to the HSMI-perspective, we know now that there exist HSMI's $K_1 \subset H$ and $K_2 \subset H$ such that $K_1 \subset K_2$ but not as a HSMI.

 \blacksquare 2D standard pair situation: similar techniques can show that the U_+ and U_- do not in general commute.

CONCLUSION

- Half-sided Modular Inclusions are analytic characterizations of geometric inclusions (i.e. standard pairs).
- \blacksquare One can characterize two-dimensional standard pairs as inclusions $K\subset H$ such that
 - ▶ the associated spaces $K_+ := \bigvee_{t \geq 0} \Delta_H^{-it} K$ and $K_- := \bigvee_{t \geq 0} \Delta_H^{it} K$ satisfy $K = K_+ \cap K_-$
 - ▶ the one-parameter groups induced by the HSMI's $K_+ \subset K$ and $K_- \subset K$ commute.
- We have counterexamples that show that the last requirement is essential.

Relative Positions of Half-sided Modular Inclusions

IAN KOOT

Friedrich-Alexander-Universität Erlangen-Nürnberg

July 23, 2025 Math. Phys. Seminar, Erlangen

Based on [arXiv:2503.18036] + some new stuff.