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Modular Theory and Standard
Subspaces



Modular Theory: the essentials

Classically, we can summarise modular theory as follows:

A von Neumann algebra A ⊂ B(H) and a vector Ω ∈ H such
that the map

A → H, A 7→ AΩ

is injective (i.e. Ω is separating) and has dense range (i.e. Ω is
cyclic).

The real subspace Asa defines a conjugation on (a dense subset
of) H. This allows one to define one parameter group ∆it

Ω and
anti-unitary involution JΩ with the properties

∆it
ΩA∆−it

Ω = A, JAJ = A′,

⟨Ω, A∆ΩB∆−1
Ω Ω⟩ = ⟨Ω, BAΩ⟩
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Standard Subspaces

We can distil this to the following:

Definition

A real (closed) subspace H ⊂ H of a complex Hilbert space H is a
standard subspace if

H ∩ iH = {0} and H + iH = H.

This has an ‘internal’ time evolution ∆it
H and (anti-linear) conjugation

JH , i.e.

∆it
HH = H, JHH = H ′

J∆
1
2
Hh = ∆

− 1
2

H JHh = h for all h ∈ H
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Exact connection

Given a VNA A and standard vector Ω ∈ H, we can always
define H = AsaΩ ⊂ H. Not every standard subspace comes from
a VNA.

However, given H ⊂ H, we can construct on F±(H) the CCR
and CAR algebra as generated by φ(h) = a(h) + a∗(h), for which
the vacuum is then again standard.

One can even generalize this to twisted Fock spaces FT (H) to
define twisted Araki-Woods Algebras LT (H), where one can find
conditions on the twist T and standard subspace H such that the
vacuum is standard. See: [Correa da Silva and Lechner, 2023].

In both cases, the modular data of the resulting algebra reduces
in the appropriate sense to the modular data of H ⊂ H.
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Standard Subspaces (examples)

Let H = L2(R, dθ). We define

(∆it
H0
ψ)(θ) := ψ(θ − 2πt), (JH0ψ)(θ) := ψ(θ).

This gives

H0 =
{
ψ ∈ H2(Sπ) | ψ(θ + iπ) = ψ(θ)

}
Fourier transforming gives

(∆it
H̃0
ψ)(λ) := e−2πtλiψ(λ), (J

H̃0
ψ)(λ) := ψ(−λ)

and
H̃0 =

{
ψ ∈ L2(R, dλ) | e−πλψ(λ) = ψ(−λ)

}
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Half-sided Modular Inclusions and
Standard Pairs



Half-sided Modular Inclusion

Inclusions of standard subspaces are subtle affairs. However, with
extra assumptions they become more tractable.
Recall that ∆it

HH = H. If K ⊂ H and ∆it
HK = K for all t ∈ R, then

K = H.

Definition

An inclusion K ⊂ H of standard subspaces is called a Half-sided
Modular Inclusion (HSMI) if

∆−it
H K ⊂ K for all t ≥ 0.

We call a Half-sided Modular Inclusion non-degenerate if⋂
t≥0

∆−it
H K = {0}
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Examples of HSMI’s (1)

Example 1: Wedge-localized observables in vacuum Wightman theory.

∆−itϕ(x⃗)Ω = ∆−itϕ(x⃗)∆itΩ = ϕ(Λ2πtx⃗)Ω.

6 33



Examples of HSMI’s (1)
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Examples of HSMI’s (2)

Example 2: Lightcone-localized observables in massless vacuum
Wightman theory.
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Examples of HSMI’s (2)

Example 2: Lightcone-localized observables in massless vacuum
Wightman theory.
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Examples of HSMI’s (3)

Example 3: Massless thermal field theory (Borchers Yngvason 1999)

8 33



Examples of HSMI’s (3)

Example 3: Massless thermal field theory (Borchers Yngvason 1999)
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Examples of HSMI’s (4)

Example 4: Standard subspace of a null cut (Morinelli Tanimoto
Wegener, 2022).
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Standard Pairs

An easy way of constructing examples of Half-sided Modular
Inclusions is trough standard pairs:

Definition

A standard pair (H,U) consists of a standard subspace H ⊂ H and
a positively generated one-parameter group U : R → U(H) such that

U(s)H ⊂ H for s ≥ 0.

We call a standard pair non-degenerate if U has no invariant vectors.
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Canonical example(s)

We define

U0(s) : L
2(R, dθ) → L2(R, dθ), (U0(s)ψ)(θ) = eise

θ
ψ(θ)

and see that (H0, U0) is indeed a standard pair: for h ∈ H0 and s ≥ 0
we have

(U0(s)h)(θ + it) = eis cos(t)e
θ
e−s sin(t)eθh(θ + it)

which is indeed L2 and

(U0(s)h)(θ + πi) = e−iseθh(θ + πi) = eiseθh(θ).

We can of course Fourier transform to construct a standard pair
(H̃0, Ũ0), with Ũ0 given by convolution with the distribution√

π

2
δ +

1√
2π

P
(
eiλ ln(−is)Γ(−iλ)

)
11 33



Borchers’ theorem (Std. Pair → HSMI)

Theorem (Borchers 1992)

Let (H,U) be a standard pair. Then

∆it
HU(s)∆−it

H = U(e−2πts) and JHU(s)JH = U(−s)

This means that

∆−it
H U(1)H = U(e2πt)∆−it

H H

= U(1)U(e2πt − 1)H

⊂ U(1)H

for t ≥ 0; so indeed, U(1)H ⊂ H is a HSMI!

12 33



Converse (HSMI → Std. Pair)

Theorem (Wiesbrock 1993, Araki & Zsido 2005)

Let K ⊂ H be a Half-sided Modular Inclusion in H. Then

U(1− e−2πt) := ∆it
K∆−it

H

can be uniquely extended to a one-parameter group U : R → U(H).
Furthermore, (H,U) is a standard pair and K = U(1)H.

The proof relies on many analytic extension arguments, as is common
in modular theory.
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HSMI Examples revisited (1)

∆it
H U(s)

Example 1: Wedge-localized observables in vacuum Wightman theory.
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HSMI Examples revisited (2)

∆it
H U(s)

Example 2: Lightcone-localized observables in massless vacuum
Wightman theory.
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HSMI Examples revisited (3)

∆it
H U(s)

Example 3: Massless thermal field theory.
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Relation between HSMI’s and Std. Pairs

Summarizing: for every standard subspace H ⊂ H there is a bijection
between:

Half-sided Modular Inclusion:
K ⊆ H ⊆ H standard subspace
such that ∆−it

H K ⊂ K for t ≥ 0.

Standard pair:
Positively generated
U : R → U(H) such that
U(s)H ⊂ H for s ≥ 0.

Proposition

A Half-sided Modular Inclusion is non-degenerate if and only if its
associated standard pair is non-degenerate, i.e.⋂

t≥0

∆−it
H K = {0} ⇔ ker ∂U = {0}

Note that it might not be easy to calculate one or the other!
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Summary of Prerequisites

Standard subspaces are real subspaces H ⊂ H that ‘complexify’
to H. They have an ‘internal’ time evolution ∆it

H .

Inclusions of standard subspaces are in general tricky affairs.

There is a bijection between Half-sided Modular Inclusions
K ⊂ H (meaning ∆−it

H K ⊂ K for t ≥ 0) and standard pairs
(H,U) (meaning U(s)H ⊂ H for s ≥ 0).

The crucial commutation relation for a standard pair is
∆it

HU(s)∆−it
H = U(e−2πts).
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Two dimensions



Two-dimensional standard pairs

Recall that a standard pair (H,U) consists of a standard subspace
H ⊂ H and a representation U : R → U(H) (where U(t) := eitP )
such that

P ≥ 0;

U(R+)H ⊂ H.

We now define a two-dimensional standard pair (H,U) to be a
standard pair H ⊂ H with a representation U : R2 → U(H) (where
U(x⃗) = ei(x0P0+x1P1) such that

x0P0 + x1P1 ≥ 0 for x⃗ ∈ V+.

U(W )H ⊂ H.
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Two-dimensional Borchers’ theorem

For one-dimensional standard pairs we had:

Theorem (Borchers 1992)

Let (H,U) be a standard pair. Then

∆it
HU(s)∆−it

H = U(e−2πts) and JHU(s)JH = U(−s)

Now for two-dimensional standard pairs we have:

Theorem (Borchers 1992)

Let (H,U) be a two-dimensional standard pair. Then

∆it
HU(x⃗)∆−it

H = U(Λ−2πtx⃗) and JHU(x⃗)JH = U(−x⃗)
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Geometrical comparison

One-dimensional situation:

Two-dimensional situation:
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Geometrical comparison

One-dimensional situation:

Two-dimensional situation:
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2-Dimensional HSMI?

One-dimensional situation: we recognize that K ⊂ H comes from a
‘geometric’ situation K = U(1)H by verifying the ‘analytical’
condition ∆−it

H K ⊂ K for all t ≥ 0.

Question

How can we recognise when an inclusion K ⊂ H of standard
subspaces comes from a 2-dimensional standard pair (H,U) as
K = U(0, 1)H?

Plan of attack: suppose K = U(0, 1)H for a 2-dimensional standard
pair (H,U). Determine properties K satisfies with respect to ∆it

H

that we can formulate without referring to U explicitly.
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Interpolating HSMI’s

Note that K := U(0, 1)H is not an HSMI, but K+ := U(12 ,
1
2)H is!

K K+
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Obtaining the lightlike shifts

We can access the lightlike (= diagonal) directions:

Proposition

Suppose (H,U) is a 2-dimensional standard pair, and K = U(0, 1)H.
Then

K+ :=
∨
t≥0

∆−it
H K = U(12 ,

1
2)H, K− :=

∨
t≥0

∆it
HK = U(−1

2 ,
1
2)H

and K = K+ ∩K−.

Note that we can formulate the requirement K = K+ ∩K− without
referring to U ! What’s more, the half-sided modular inclusions
K+ ⊂ K and K− ⊂ K induce the one-parameter groups t 7→ U(t, t)
and t 7→ U(−t, t).
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Are we there yet?

So, given an inclusion of standard subspaces K ⊂ H, we do the
following:

Construct K+ :=
∨

t≥0∆
−it
H K and K− :=

∨
t≥0∆

it
HK;

Check that K = K+ ∩K−.

Construct the positively generated one-parameter groups U+

associated to K+ ⊂ H and U− associated to K− ⊂ H.

Construct U(x⃗) := U+(
x0+x1

2 )U−(
x0−x1

2 )

If one started with K = U(0, 1)H for some two-dimensional standard
pair (H,U), one would recover precisely U .
However, U+ and U− are not guaranteed to commute!
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Relative Positions



Scenario

So our scenario is the following:

We have a standard subspace H ⊂ H representing ‘the
environment’.

We have two positively generated one-parameter groups U1, U2

such that (H,U1) and (H,U2) are (one-dimensional) standard
pairs.

We have that U1(1)H ∩ U2(1)H is standard.

Doest this guarantee that U1 and U2 commute? Or, formulated more
succinctly, for two Half-sided Modular Inclusions K1 ⊂ H and
K2 ⊂ H, what can K1 ∩K2 look like? Is K1 ∩K2 ⊂ Kj also a HSMI?
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Relative Positions of Half-sided Modular
Inclusions

If K1 ⊂ H and K2 ⊂ H are HSMI’s, and K1 ∩K2 is standard, then
K1 ∩K2 is a HSMI. In this case, we can consider K1 ∩K2 as ‘the
largest HSMI in H that is contained in both K1 and K2’.

Theorem (I.K. 2025)

Let (H,Uj) be non-degenerate standard pairs, Uj(s) = eisPj , and
Ej [I] = χI(Pj) for j = 1, 2. Then

U1(1)H ⊂ U2(1)H ⇔ E1[(0, 1)]H ⊂ E2[(0, 1)]H

Can this happen when U1 and U2 do not commute? We will construct
specific examples through representation theory.
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Canonical example revisited

Consider H0 ⊂ L2(R, dθ) given by (∆it
H0
ψ)(θ) = ψ(θ − 2πt) and

(JH0ψ)(θ) = ψ(θ). That came with

(U0(s)ψ)(θ) = eise
θ
ψ(θ)

meaning that U0(s) = eisP0 for P0 =M [eθ]. So

χ(0,1)(P0)L
2(R, dθ) = L2(R−, dθ) = FH2(C−)

Proposition

Let H ⊂ H be a subset such that {∆it
H | t ∈ R}′′ is maximally

abelian, and let (H,U1) and (H,U2) be non-degenerate standard
pairs. Then U1(1)H ⊂ U2(1)H if and only if

U1(s) = φ(ln∆H)U2(s)φ(ln∆H)∗

for a symmetric inner function φ : C− → C.
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Commutation Relations

The relations between U(s) and ∆it
H are actually just a form of the

Canonical Commutation Relations. Compare, for U(s) = eisP , the
following:

Standard Pair: ∆it
HU(s)∆−it

H = U(e−2πts)

Generator: ∆it
HP∆

−it
H = e−2πtP

Weyl relations: ∆it
HP

is∆−is
H = e−2πtsiP is

ax + b group relations: [i ln∆H , iP ] = −2πiP

CCR: [ln∆H , lnP ] = 2πi

Our canonical example is simply the Schrödinger representation!
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Representation theory

Theorem (Stone - von Neumann)

For every non-degenerate standard pair (H,U) in H there exists a
Hilbert space K, a maximally abelian standard subspace HK ⊂ K
and a unitary map V : H → L2 ⊗K such that

VH = H0 ⊗R HK

VU(t)V∗ = U0(t)⊗ 1K

Note that for H0, we have

ln∆H0 = 2πi∂θ and P0 := ∂U0 =M [eθ]

For H̃0 we have ln∆
H̃0

=M [2πλ] and P̃0 := ∂Ũ0 = ei∂λ (reversed
roles/Fourier transformed).
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Nontrivial example and implications

So, since

U1(1)H ⊂ U2(1)H ⇔ U1(s) = φ(ln∆H)U2(s)φ(ln∆H)∗

for φ a symmetric inner function, if we choose φ smartly (e.g.
φ(λ) = λ+i

λ−i), we guarantee U1 and U2 do not commute, even
though U1(1)H ⊂ U2(1)H.

One can show

U1(1)H ⊂ U2(1)H is HSMI ⇔ [U1(s), U2(s
′)] = 0

So translating to the HSMI-perspective, we know now that there
exist HSMI’s K1 ⊂ H and K2 ⊂ H such that K1 ⊂ K2 but not
as a HSMI.

2D standard pair situation: similar techniques can show that the
U+ and U− do not in general commute.
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Conclusion

Half-sided Modular Inclusions are analytic characterizations of
geometric inclusions (i.e. standard pairs).

One can characterize two-dimensional standard pairs as inclusions
K ⊂ H such that
▶ the associated spaces K+ :=

∨
t≥0 ∆

−it
H K and

K− :=
∨

t≥0 ∆
it
HK satisfy K = K+ ∩K−

▶ the one-parameter groups induced by the HSMI’s K+ ⊂ K and
K− ⊂ K commute.

We have counterexamples that show that the last requirement is
essential.
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