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Abstracts

Inclusions of Standard Subspaces
GANDALF LECHNER
(joint work with Ricardo Correa da Silva)

Standard subspaces naturally appear in the context of von Neumann algebras,
where any von Neumann algebra in standard form gives rise to a standard subspace
encoding its modular data, and in quantum field theory, where standard subspaces
encode localization regions. From this perspective, standard subspaces appear as
auxiliary objects. There is however growing evidence that standard subspaces are
interesting objects in their own right — for example, they lead to an independent
notion of entropy [5], can naturally be constructed on the basis of suitable Lie
group representations [13], and lie at the basis of the recently introduced twisted
Araki-Woods algebras [3].

In these and other applications, one is typically not interested in a single stan-
dard subspace (the set of all standard subspaces H of a complex Hilbert space
‘H can easily be classified, see [9, Cor. 2.1.5]), but rather in families of standard
subspaces and their intersection, inclusion and covariance properties. The topic
of this talk was therefore to initiate an abstract discussion of inclusions
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of standard subspaces, without reference to von Neumann algebras or group rep-
resentations. This can be seen as an analogue of the study of inclusions of von
Neumann algebras, or more specifically subfactors.

We review some known results about inclusions of standard subspaces and then
reported on joint work in progress with R. Correa da Silva [4].

Inclusions and irreducible inclusions. Given a standard subspace K, can we
embed it properly into a larger standard subspace H, or can we properly embed
a smaller standard subspace into K? This question is answered in the following
lemma:

Lemma 1. [7] Let K C H be a standard subspace. Then the following are
equivalent:

(1) There exists a standard subspace H C H such that K C H.
(2) There exists a standard subspace H C H such that H C K.
(3) The modular operator Ay is unbounded.

Guided by the comparison with subfactor theory, we are particularly interested
in understanding érreducible inclusions, which by definition are inclusions K C H
with K’ N H = {0}. Here K’ denotes the symplectic complement of K. Clearly,
this requires in particular K’ N K = {0}, i.e. K must be a factorial subspace
(a factor, for short). Recall that a factor has a well-defined cutting projection
Pg: K+ K — K, k+k — k5]

The basic result in this regard is a reformulated version of a proposition from [7].



4 Oberwolfach Report 50/2023/2023

Proposition 2. Let K C H be a standard subspace. Then the following are
equivalent:

(1) There exists a standard subspace H C H such that K C H is irreducible.

(2) There exists a standard subspace H C H such that H C K is irreducible.

(3) The modular operator Ak is unbounded, K is a factor, and the cutting
projection Py of K is unbounded.

This proposition states that irreducible inclusions of standard subspaces exist
in abundance. A central question is then how to detect whether a given inclusion
is irreducible, or how to detect whether the relative symplectic complement K'NH
is cyclic (hence standard).

Detecting irreducibility. Let K, H be a pair of standard subspaces. Then [2,
Prop. 4.1]

K'NH+i(K'NnH)={vedom(SxSy) : SiSuv=ruv}.

This characterization is however often difficult to use as it leads to intricate domain
questions. The same holds true for other characterizations that we derived for
K’ N H in terms of polarizers and projections [4].

Comparing with the von Neumann algebraic situation, two notions that are
helpful tools in the understanding of relative commutants are the split property [6]
and modular nuclearity [1]. We give standard subspace formulations for both of
them and investigate their consequences in [4]. Here we focus on the nuclearity
aspects.

Definition 3. An inclusion K C H of standard subspaces is said to satisfy mod-

ular nuclearity if the real linear operator A;I/ALE K, where Ex : H — K is the real
orthogonal projection onto K, is trace class.

Making use of [10, 1, 11], we then prove:

Theorem 4. [4] Let K C H be an inclusion of factor standard subspaces satisfying
modular nuclearity. Then dim(K' N H) = co.

A class of examples. As a concrete class of examples, we consider the irreducible
one-dimensional standard pair, namely the Hilbert space H = L*(R,, %) and the
standard subspace H C H given by the data (see [8, Sect. 4] for this and other
equivalent formulations)

(A%Y)(p) =v(e>™p),  (Ju)(p) =v(p).

The one-parameter group of unitaries (U(x))(p) = eP¥4)(p) acts half-sidedly by
endomorphisms of H, namely U(z)H C H, z > 0. It is known that the semigroup
of all unitaries V' € U(#H) that commute with U(z), € R, and satisfy VH C H,
are precisely the unitaries of the form V = ¢(P), where P is the generator of U
and ¢ an inner function of the upper half plane satisfying the symmetry condition
o(—p) = ¢(p), p > 0 [12, Thm. 2.3].

We are therefore presented with the family of concrete inclusions p(P)H C H.
In the talk it was explained that the modular nuclearity condition fails except for




Standard Subspaces in Quantum Field Theory and Representation Theory 5

quite specifically chosen inner functions . Nonetheless it is possible to understand
and sometimes explicitly compute the relative symplectic complement p(P)H' NH,
which can be {0}, finite-dimensional, infinite-dimensional, or cyclic depending
on ¢. In particular, there are interesting relations relating the number of zeros of
the inner function ¢ and the dimension of p(P)H' N H.

The structures found in this class of examples are currently being investigated
alongside more general methods for analyzing relative symplectic complements of
standard subspaces [4].
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