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The purpose of this talk was to describe a large family of interesting subfactors
that are often of type III, without normal conditional expectation (infinite index),
but despite these differences have various analogies with the more familiar finite
index type II1-subfactors. For instance, they require an underlying braiding and a
modular theory version of the subfactor-theoretic Fourier transform. These subfac-
tors go by the name of twisted Araki-Woods subfactors and have been introduced
in [CdSL23]. They are based on two data: an inclusion of standard subspaces and
a twist.

Inclusions of standard subspaces. A standard subspaceH of a complex Hilbert
space H is a closed real subspace H ⊂ H such that H∩iH = {0} and H + iH = H.
Specific examples of standard subspaces arise from von Neumann algebras M ⊂
B(H) with cyclic separating vector Ω as H := MsaΩ. Although not all standard
subspaces are of this form, the lattice Std(H) of of all standard subspaces of H
has interesting structural similarities to the lattice of von Neumann subalgebras
of B(H) and subfactors:

(i) Symplectic complementation H 7→ H ′ := {v ∈ H : 0 = Im⟨v, h⟩ ∀h ∈ H}
is an order-reversing involution on Std(H), resembling the commutant of
von Neumann algebras and the Bicommutant Theorem,

(ii) there is a natural notion of factor subspace, namely H ∈ Std(H) with
H ∩H ′ = {0},

(iii) proper irreducible inclusions K ⊊ H of factor subspaces K,H ∈ Std(H)
exist (i.e. K ′ ∩H = {0}), resembling irreducible subfactors,

(iv) any inclusion H0 ⊂ H1 of standard subspaces H0, H1 ∈ Std(H) naturally
extends to a tower and tunnel

. . . ⊂ H−1 ⊂ H0 ⊂ H1 ⊂ H2 ⊂ . . . ,(1)

resembling iterations of Jones’ basic construction.

While inclusions of standard subspaces do not come with an index, and are
basically incompatible with (analogues of) conditional expectations, a good re-
placement for these missing tools is modular theory: Any H ∈ Std(H) defines a
Tomita operator SH : H + iH → H + iH, given by SH(h1 + ih2) := h1 − ih2, and
the polar decomposition of this closed involution defines a one-parameter group
of unitaries ∆it

H , t ∈ R, preserving H, and an antiunitary JH mapping H onto
H ′. With this technique one for instance quickly checks that H2 := JH1

JH0
H

and H−1 := JH0
JH1

H0 are standard subspaces satisfying (1). One also checks
that proper inclusions K ⊊ H can only exist for dimH = ∞ because K ⊂ H is
equivalent to an extension SK ⊂ SH of Tomita operators.

Inclusions of standard subspaces can be seen as a spatial analogue of subfactors,
and are of interest in their own right [?]. No canonical map from inclusions of
standard subspaces to inclusions of von Neumann algebras exists, which is why we
have to introduce more data to define twisted Araki-Woods subfactors.
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Twisted Araki-Woods von Neumann algebras. Given a complex Hilbert
space H, an operator T = T ∗ ∈ B(H ⊗ H) with ∥T∥ ≤ 1 is called a twist if the
operators PT,n ∈ B(H⊗n), n ∈ N, iteratively defined by

PT,1 = 1, PT,2 := 1 + T, PT,n+1 = (1⊗ PT,n)(1 + T1 + T1T2 + . . .+ T1 · · ·Tn)

(in standard tensor leg notation), are all positive. In case T satisfies the Yang-
Baxter equation, PT,n is the corresponding quantum symmetrizer.

Given a twist T , we consider the tensor algebra
⊕

n≥0 H⊗n and the quo-

tient by its left ideal
⊕

n≥0 kerPT,n. Completed in the scalar product given by

⟨[Ψ], [Φ]⟩T =
∑

n≥0⟨[Ψ]n, PT,n[Φ]n⟩, it becomes a Hilbert space (the T -twisted

Fock space FT (H)), on which left tensor multiplication by ξ ∈ H defines an oper-
ator a∗T,L(ξ). With these definitions, the left twisted Araki-Woods von Neumann

algebra with twist T and standard subspace H ∈ Std(H) is

LT (H) := {a∗T,L(h) + aT,L(h) : h ∈ H}′′.(2)

Denoting by F the tensor flip, the von Neumann algebras LqF (H) are second
quantization factors for q = 1, generated by CAR algebras for q = −1, free group
factors for q = 0 and H maximally abelian [Voi85], variations of free group factors
for q = 0 and general standard subspace [Shl97]. So even in this very restricted
class of examples one sees type I, II, and III von Neumann algebras, commuta-
tive and noncommutative ones, hyperfinite and non-hyperfinite ones, showing that
LT (H) depends crucially on H and T .

From the point of view of modular theory, it is most important to understand
when the Fock vacuum Ω ∈ FT (H) is cyclic and separating for LT (H).

Theorem 1. Let H ∈ Std(H) and T ∈ B(H ⊗H) be a twist such that [T,∆it
H ⊗

∆it
H ] = 0 for all t ∈ R. Then Ω is cyclic and separating for LT (H) if and only if T

satisfies the Yang-Baxter equation and is crossing-symmetric w.r.t. H (explained
below).

Crossing-Symmetry. In order to define crossing-symmetry, we begin by saying
that an operator T ∈ B(H⊗2) is crossable if the equation given in terms of matrix-
coefficients

(3) ⟨ψ1 ⊗ ψ2,CrH(T )ψ3 ⊗ ψ4⟩ = ⟨ψ2 ⊗ S∗
Hψ4, TSHψ1 ⊗ ψ3⟩

defines a bounded operator CrH(T ). In case the Hilbert space is infinite dimen-
sional, one has to take into consideration that the vectors ψ1 and ψ4 must lie in
the domain of SH and S∗

H , respectively. A crossable operator is called crossing-
symmetric if CrH(T ) = T ∗.

The Yang-Baxter equation and crossing-symmetry, in the light of the theo-
rem above, are equivalent to the KMS condition and, in particular, the crossing-
symmetry carries all the analytic content of the KMS condition [CGL24]. Further-
more, one can immediately recognize the connection between the crossing map and
the subfactor-theoretic Fourier transform when representing the map defined in (3)
in graphical notation, where we highlight the dependence of the standard subspace
through SH and S∗

H , in contrast with the subfactor-theoretic Fourier transform.
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CrH(T ) = T

1⊗ S∗
H

SH ⊗ 1

Figure 1. Graphical representation of the crossing map.

The behaviour of two examples of twists under the crossing map is worth
mentioning: The tensor flip F is always crossing-symmetric independent of H;
The identity operator is crossable if and only if dimH < ∞, in which case
CrH(1) = Tr(∆)Pξ, where Pξ is the orthogonal projection in the direction of

the vector ξ =
∑dimH

n=1 en ⊗ SHen, which is a Temperley-Lieb projection, i.e.
(Pξ ⊗1)(1⊗Pξ)(Pξ ⊗1) = Tr(∆)−1Pξ ⊗1, as one could expected from the connec-
tion between the subfactor-theoretic Fourier transform and the Temperley–Lieb
algebra.

Inclusions of Twisted Araki-Woods von Neumann algebras. Turns out
that if T satisfies the Yang-Baxter equation, right tensor multiplication by ξ ∈ H
also defines an operator denoted a∗T,R(ξ) and, similarly, the right twisted Araki-

Woods von Neumann algebra RT (H). Under the hypotheses of Theorem 1,
namely, in case T is also crossing-symmetric w.r.t. H and satisfies [T,∆it

H⊗∆it
H ] = 0

for all t ∈ R, we can also determine the commutant of the twisted Araki-Woods
algebras LT (H)′ = RT (H

′).
Given an inclusion of standard subspaces K ⊂ H, we have the correspondent

inclusion of the von Neumann algebras LT (K) ⊂ LT (H). We are interested in
knowing when such inclusion is irreducible, i.e. when the relative commutant
satisfy C(K,H) := LT (K)′ ∩ LT (H) = C · 1, [CdSL23, CdSL25].

Theorem 2. Let H ∈ Std(H) and T ∈ B(H⊗H) be a twist such that, ∥T∥ < 1,
[T,∆it

H ⊗ ∆it
H ] = 0 for all t ∈ R, T satisfies the Yang-Baxter equation and is

crossing-symmetric w.r.t. H. Then, if ∆
1
4

HEK is non-compact, C(K,H) = C · 1.

It follows that, if we have a twist T satisfying the hypothesis of the theorem
above for the standard subspace H and another standard subspace K ⊂ H such

that ∆
1
4

HEK is non-compact. Then, ∆
1
4

HEH is also non-compact and

Z(LT (H)) = C(H,H) = C · 1 = C(K,H) ⊃ Z(LT (K)),

meaning, in particular, that LT (K) is a subfactor of LT (H).
We remark that, from the point of view of Algebraic Quantum Field Theory,

one is often interested in having a large relative commutant. In that direction, we
can say that, if in addition to all assumptions of Theorem 2, but ∥T∥ < 1, one

also have that ∆
1
4

HEK is trace class and its trace norm is less than 1. Then, in
case LT (H) is a type III factor, the relative commutant C(K,H) is also type III.
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