Relative Positions of Half-sided Modular Inleusions

AQFTUK 10, CARDIFF

IAN KOOT

Friedrich-Alexander-Universität Erlangen-Nürnberg

June 6, 2025

Based on [arXiv:2503.18036]

Modular Theory

We consider the standard subspace $\overline{\mathcal{A}_{sa}\Omega}\subset\mathcal{H}.$

Definition |

A real subspace $H \subset \mathcal{H}$ is called a **standard subspace** if

$$H \cap iH = \{0\}, \quad \overline{H + iH} = \mathcal{H}$$

Then
$$S: h_1 + ih_2 \mapsto h_1 - ih_2$$
 gives $S =: J\Delta^{\frac{1}{2}}$, and

$$\Delta^{it}H = H, \quad JH = H'$$

Modular Theory

We consider the **standard subspace** $\overline{\mathcal{A}_{sa}\Omega} \subset \mathcal{H}$.

Definition

A real subspace $H \subset \mathcal{H}$ is called a **standard subspace** if

$$H \cap iH = \{0\}, \quad \overline{H + iH} = \mathcal{H}$$

Then
$$S:h_1+ih_2\mapsto h_1-ih_2$$
 gives $S=:J\Delta^{\frac{1}{2}}$, and
$$\Delta^{it}H=H,\quad JH=H'$$

Inclusions of Standard Subspaces

In AQFT we are interested in inclusions. What do inclusions do in this machine?

$$K\subseteq H\subseteq \mathcal{H}$$
 \longrightarrow $\stackrel{\mathsf{Modular}}{\longleftarrow}$ $\stackrel{\Delta_K^{it},J_K}{\Delta_H^{it},J_H}$ relation?

In general there is no clear relation. However, there is an 'easier' situation:

Definition

An inclusion of standard subspaces $K\subset H\subset \mathcal{H}$ is called a **Half-sided Modular Inclusion** (HSMI) if

$$\Delta_H^{-it}K\subset K\quad\text{ for }t\geq 0.$$

Examples of HSMI's (1)

Example 1: Wedge-loclized observables in vacuum Wightman theory.

$$\Delta^{-it}\phi(\vec{x})\Omega = \Delta^{-it}\phi(\vec{x})\Delta^{it}\Omega = \phi(\Lambda_{2\pi t}\vec{x})\Omega.$$

Examples of HSMI's (1)

Example 1: Wedge-loclized observables in vacuum Wightman theory.

$$\Delta^{-it}\phi(\vec{x})\Omega = \Delta^{-it}\phi(\vec{x})\Delta^{it}\Omega = \phi(\Lambda_{2\pi t}\vec{x})\Omega.$$

EXAMPLES OF HSMI'S (2)

Example 2: Lightcone-localized observables in massless vacuum Wightman theory.

EXAMPLES OF HSMI'S (2)

Example 2: Lightcone-localized observables in massless vacuum Wightman theory.

Examples of HSMI's (3)

Example 3: Massless thermal field theory (Borchers Yngvason 1999)

Examples of HSMI's (3)

Example 3: Massless thermal field theory (Borchers Yngvason 1999)

Examples of HSMI's (4)

Example 4: Standard subspace of a null cut (Morinelli Tanimoto Wegener, 2022).

Half-sided Modular Inclusions

So what does a HSMI actually bring?

Theorem

Let $K\subseteq H\subseteq \mathcal{H}$ be a HSMI. Then there exists a positively generated one-parameter group U such that $U(s)H\subseteq H$ for all $s\geq 0$ and U(1)H=K.

HSMI Examples revisited (1)

Example 1: Wedge-loclized observables in vacuum Wightman theory.

HSMI EXAMPLES REVISITED (2)

Wightman theory.

HSMI EXAMPLES REVISITED (3)

Example 3: Massless thermal field theory.

HSMI'S AND STANDARD PAIRS

By Borchers' Theorem, for a given standard subspace $H \subset \mathcal{H}$ there is a bijection between the following concepts:

Half-sided Modular Inclusion:

 $K\subseteq H\subseteq \mathcal{H}$ standard subspace such that $\Delta_H^{-it}K\subset K$ for $t\geq 0$.

Standard pair:

Positively generated $U: \mathbb{R} \to \mathcal{U}(\mathcal{H})$ such that $U(s)H \subset H$ for $s \geq 0$.

These concepts are related by the following commutation relations:

$$\Delta_H^{it}U(s)\Delta_H^{-it}=\Delta_K^{it}U(s)\Delta_K^{-it}=U(e^{-2\pi t}s)$$

CANONICAL COMMUTATION RELATIONS

These relations are actually just a form of the Canonical Commutation Relations. Compare, for $U(s)=e^{isP}$, the following:

Standard Pair: $\Delta_H^{it} U(s) \Delta_H^{-it} = U(e^{-2\pi t}s)$ Generator: $\Delta_H^{it} P \Delta_H^{-it} = e^{-2\pi t} P$ Weyl relations: $\Delta_H^{it} P^{is} \Delta_H^{-is} = e^{-2\pi t si} P^{is}$ ax + b group relations: $[i \ln \Delta_H, iP] = -2\pi i P$ CCR: $[\ln \Delta_H, \ln P] = 2\pi i$

THE QUESTION

For a given standard subspace $H\subseteq\mathcal{H}$, what does the set of all Half-sided Modular Inclusions in H look like?

- Characterize lattice structure?
- Can a HSMI be 'partly localized'?
- Good way to construct non-trivial examples?

THE TOOL

It turns out, in this case we can relate inclusions of standard subspaces to inclusions of complex subspaces.

Theorem (IK '25)

Let (U_1,H) and (U_2,H) be two n.d. standard pairs, and let $U_j(t)=:e^{itP_j}$ for j=1,2. Furthermore, let E^{P_j} be the spectral measure associated to P_j . Then

$$U_1(1)H \subset U_2(1)H \quad \Leftrightarrow \quad E^{P_1}[(0,1)] \leq E^{P_2}[(0,1)].$$

The proof is based on anlysis of the extension of $\Delta_2^{it}\Delta_1^{-it}$ to a strip in the complex plane.

.4

CONCRETE EXAMPLES

We further use the representation theory of CCR to conclude:

Stone-Von Neumann Theorem

If (U,H) is a n.d. standard pair, then there is a Hilbert space $\mathcal K$ and a unitary map $\mathbf V:\mathcal H\to L^2(\mathbb R,\mathcal K)$ such that

$$(\mathbf{V} \ln P \mathbf{V}^* \psi)(\theta) = i \psi'(\theta), \quad (\mathbf{V} \ln \Delta_H \mathbf{V}^* \psi)(\theta) = 2\pi \theta \psi(\theta)$$

In particular, this means that

$$\mathbf{V}E^P[(0,1)] = \mathbb{H}^2(\mathbb{C}_+, \mathcal{K})$$

CONCLUSIONS AND OUTLOOK

Using this we can draw some conclusions:

- If the standard pairs (U_1, H) and (U_2, H) are *irreducible*, then $U_1(1)H \subset U_2(1)H$ if and only if $U_1 = \varphi(\ln \Delta_H)U_2\overline{\varphi}(\ln \Delta_H)$ for a symmetric inner function $\varphi : \mathbb{C}_+ \to \mathbb{C}$.
- There exist standard subspaces $K_1, K_2, H \subseteq \mathcal{H}$ such that $K_1 \subseteq H$ and $K_2 \subseteq H$ are HSMI, and $K_1 \subset K_2$, but $K_1 \subset K_2$ is not a HSMI.
- There exist standard pairs (U_1, H) and (U_2, H) such that $U_1(1)H \subset U_2(1)H$ but $[U_1(t), U_2(t)] \neq 0$.