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Introduction

I think I can safely say that nobody understands quantum mechan-
ics.

- Richard Feynman, The character of Physical Law, p. 129, 1995

Few things are as counterintuitive as quantum mechanics. The probabilistic
structure, the scale at which it takes place, wave-particle duality, and many more
peculiarities make the quantum world one of the most difficult things to truly
understand (if that is even possible). It is also very intriguing, this world where
seemingly everything is possible (just look at the fact that the word “quantum”
appeared 30 times in this summer’s blockbuster Avengers: Endgame).

However, as strange as quantum mechanics might appear, it at least has to be
consistently strange. One of the definitions of ‘paradox’ given by the Merriam-
Webster dictionary is “a statement that is seemingly contradictory or opposed
to common sense and yet is perhaps true”. In this sense there have been quite
a few paradoxes in quantum mechanics, most famously Schrodingers cat, but
the Frauchiger-Renner paradox is different. In [Frauchiger and Renner, 2018],
Daniela Frauchiger and Renato Renner claim to have found a situation so
strange, that when quantum theory is applied to it, it contradicts itself.

This thesis is certainly not the first to address this paradox. It seems, how-
ever, that the discussion about this subject has been plagued by long explana-
tions and subtle analyses. The goal of this thesis is to try to take a mathematical
perspective to this paradox, in order to uncover what makes it ‘tick’, and if pos-
sible, debunk it.

In order to achieve this, first, in chapter 1, some time is spent looking at
the physical side of this problem. Some basic quantum mechanics is introduced,
and some historical influences are treated to give context to the Frauchiger-
Renner paper. Then we critically evaluate the Frauchiger-Renner Paper, first in
chapter 2 by introducing notation and taking a look at the thought experiment
that lies at the heart of the paradox. Lastly, in chapter 3, a detailed analysis
is put forward, along with possible weak spots in the proof of the contradiction
given by Frauchiger and Renner, after which we will take a look at some other
reactions to the paper.



Chapter 1

Quantum mechanical
concepts

The section that follows serves a dual purpose: on the one hand, for anyone
not familiar with either the physics or mathematics of quantum mechanics, it is
meant as a need-to-know summary of concepts in order to read this thesis. This
is by no means a sufficient summary to understand even elementary quantum
physics, but it should provide the directions in which one could look for further
reading on the topic.

On the other hand, since much of the literature concerned with the subject of
this thesis is hindered by a lack of precision or agreement on what “the rules” are
(to use terminology used in [Tausk, 2018]), this section aims to provide a solid
basis on which to conduct the discussion of the Frauchiger-Renner paradox/[]

1.1 Mathematics of quantum states

The mathematical structure with which we try to describe reality in quan-
tum mechanics , is a complex Hilbert space: a vector space H over C en-
dowed with a inner product (-,-) : H x H — C which gives rise to a norm

Il = \(1/1,77/1>|% and a metric d(v, ¢) = ||¢ — ¢||, which must make H a com-
plete metric space. When we say that a physical system is in a certain pure
state, we mean that the physical system corresponds to a unit vector v in
H, and we often write it as [1))[]] This notation, which might be somewhat
unusual for mathematicians, is called Dirac notation, and perhaps it becomes
more clear if we look at the inner product of two vectors |[¢) and |¢). The
function (¢, -) : H — C defined by ¢ — (¢, @) is a linear functionalﬂ which we

IThere are many introductory books on quantum mechanics, for example [Griffiths, 2005|,
which was used for the following section, together with [Landsman, 2017].

21t turns out that states that only differ by a constant phase actually behave the same: we
will come back to this at the end of this section.

3See any textbook on Functional Analysis, for example [MacCluer, 2009], p. 15



denote by (¢| := (¥, ), so that (¢, @) = (¥|¢). In this context, the vectors are
often called “kets” and the corresponding linear functionals are called “bras”.

We then relate this mathematical structure to physical systems via observ-
ables. Observables in the physical sense are just that: things we can observe or
measure. In our mathematical model, they correspond to self-adjoint linear
operators on H. So there’s a position operator, a spin operator, an angular
momentum operator, etcE|

We would now like something in our mathematical description that describes
those properties of our physical system which we are interested in, for example,
because we want to measure them to test our mathematical description. But
this is where our “classical” ideas of properties start to break down. We connect
our mathematical model in terms of the outcomes of measurements, which for
a given observable lie in its set of eigenvalues. This brings us to the following:

Postulate 1.1 (Born rule). Let H be the Hilbert space describing a physical
system, and let a be a self-adjoint operator corresponding to an observable with
a discrete spectrum. Let A be an eigenvalue of a, and ey be the projection
operator of H onto the eigenspace belonging to A. Furthermore, let |¢b) € H be
a unit vector, representing the state of the system. Then the probability that a
measurement of that observable will result in A is

Py(N) = llex [9)II*.

I have labeled this a postulate since this is essentially where the physics come
in. We assume that reality (in the form of measurements) is described by the
mathematical structure that is presented. This is of course very difficult to
prove, if at all possible, and therefore the label ‘postulate’ seems appropriate.

As we will see in a moment, this, and especially what happens to a state
after it has been measured, doesn’t correspond to our physical intuition and
gives rise to the many paradoxical situations with which this thesis is concerned
(and to even more with which it is not). It is important to note that this means
that most states don’t have definite values for observables. Only eigenstates
of a certain observable will give the same answer upon repeated measurements
when we ask what the “value” of that observable is.

Alternatively, and more generally, we could say that quantum mechanics
is described by C*-algebras, which are basically associative complex algebras
with a compatible norm and involution map x + x*. The most important
C*-algebra for quantum mechanics is B(H) of bounded operators on Hilbert
space. As before, self-adjoint operators are observables, so it is very natural to
consider linear functions w : B(H) — C such that w(a*a) > 0 (positivity) and

4These operators, in general, are not the same for different systems, even though they are
sometimes called by the same name. A spin—% particle is described by a two-dimensional

Hilbert space, while for a spin-1 particle it is three-dimensional, so they can’t be the same
operator.



w(1lg) = 1, which are called “states”. It turns out that those states for a finite
dimensional Hilbert space take the form

w(a) = Tr(pa)

for some p € B(H) with Tr(p) = 1 and p = b*b for some b € B(H)E Such a
p is called a density operator, which is a generalization of the unit vectors
in a Hilbert space mentioned earlier, since the simplest example of a density
matrix is a one-dimensional projection. We can now see that vectors in a
Hilbert space differing by a phase produce the same behaviour; the density
operator corresponding to such a pure state is a projection on a one-dimensional
subspace, and since the Hilbert space is a complex space, a vector lies in the
same one-dimensional subspace as that same vector multiplied by a complex
phase. So their density operators would be the same, since they project on the
same subspace.

1.1.1 Time evolution

Physics is very much concerned with the way physical systems evolve over time.
It is here that we need to make a specification. The Frauchiger-Renner paradox
is mostly discussed within the foundations of quantum theory, and in order not
to obscure the underlying concepts, we will primarily examine non-relativistic
quantum theory, as opposed to relativistic quantum theory, which is the attempt
at unifying quantum theory and special/general relativity.

In non-relativistic quantum mechanics, a system can evolve in two ways.
Most of the time, it will evolve in a unitary way. This can be realized in two
ways. The first, called the Schrédinger picture, realizes this time evolution by
making the state vector of a system dependent on time:

9 (t2)) = U2 [¢(t)),

where Uttf is some unitary operator describing the time evolution. In non-
relativistic quantum mechanics, this unitary time evolution is given by the
Schrddinger equation:

d1¥(t)) [
h————— = ——V t % t
i — 2 p(0) + V() ()
The second way in which this unitary evolution can be realized is called the
Heisenberg picture. Here, the operators are time-dependent, instead of the state

vectors. Say we have an operator a, then

alts) [¥) = U a(t1) U2 |4) .

One can show using the Born rule that the expectation value of a mea-
surement of an observable a given that the system is in state |¢) is (¢]a |¥).

5For infinite-dimensional Hilbert spaces, this can be done if the states are “normal”: see
|[Landsman, 2017, section 2.2.



Using this expression, we can see that the two pictures give the same expecta-
tion value for all observables at all times (also using that the linear functional
corresponding to a vector b|¢) for an operator b is b* (1/|).

Things are different when we perform a measurement of an observable, and
therefore have to apply . If the state was |¢)) before the measurement, it
“jumps” to ey 1) /|lex |¥)]], where A is the value of the observable we measured
(and ey |¥) /|lex [)|| is therefore the projection of the state onto the eigenspace
of A, scaled to be a unit vector again). This evolution is in general not unitary.

When we measure a system that is not in an eigenstate of our observable,
multiple different outcomes of the measurement have a non-zero probability of
happening. However, since the state jumps to an eigenvector of the observable
after the measurement, if we do a measurement again immediately after the first
measurement (so that there is no significant time evolution of the state) we are
certain to find the same value. The system behaves differently after the first
measurement, and so we must have changed the system by measuring it for the
first time.

1.2 Relevant quantum effects

Now that we have set up the general framework of quantum mechanics, it is
time to consider some of the implications that are relevant to this thesis.

Superposition

Suppose we have an observable a with eigenvectors |1¢;) corresponding to eigen-
values \;. According to postulate when the state of a system corresponds
to an eigenstate of the observable, say [11), then if we measure a, there is only
one value for which we have a non-zero probability to measure it, namely ;.
We could therefore say that the value of a is well-defined.

However, there is also the possibility that a state corresponds to a linear
combination of eigenvectors, for example |11) + |12) (where A1 # A2). Now
postulate predicts that both A\; and A; have a non-zero probability of oc-
curring. The system is now said to be in a superposition of states ¥; and s
with respect to the observable a.

Expanding on this idea, we can see that the Schrodinger equation, which
as stated above dictates the time-evolution of a quantum system, is a linear
partial differential equation. This means that a linear combination of solutions
also satisfies the equation. Given an observable a, we might be able to find
solutions to the Schrodinger equation that are at any time t eigenvectors of a.
But a linear combination of those solutions is again a solution, albeit without
a well-defined value for a. A system in such a linear combination of states
over time behaves like it is in a superposition of multiple well-defined values
for a existing simultaneously, until we measure the system with respect to a,
at which point we collapse the superposition and force the system to take on a
well-defined value for a.



Composed systems and Entanglement

Most of the difficulties that arise in this thesis have to do with systems that
consist of multiple subsystems. We describe these kinds of systems by the tensor
product: given vector spaces U and V', the tensor product is a vector space U RV
with a bilinear map ® : U x V. — U ®@ V (written as ®(u,v) = v ® v), such
that for every bilinear map to a third vector space b : U x V. — W, there is a
linear map B : U @ V. — W with b(u,v) = B(u ® v). However, we will not use
this definition explicitly. Instead, for the purposes of this thesis, it can best be
thought of as follows: take bases (u;) € U and (v;) € V, then U ® V has as a
basis (u; ®v;) e U® V.

Let’s look at an example. Suppose we have two non-interacting, totally
independent spin-% systems. The first system is in a state corresponding to
alt); +bll); € Hi with respect to some z-axis, and the second is in a state
corresponding to a|1), + 1)y € Ha. Then the whole system corresponds to
the state

(a |T>1 +b |¢>1) ® (a ‘T>2 +8 |¢>2)
=aa|t); @My +aB|1); @ L)y +ball) @)y +08 ) ®[1),
ac [1)y [Ny +aB 1)y g +ball)y [Ty +0811) ;1 [4),

where the last line is an often used abbreviation. Sometimes, in order to improve
legibility, we will denote |[¢) |§) as |1, ¢), especially when describing the bra of
a composed ket, which in this case would be (¢, ¢|.

Note that not all vectors in U ® V' can be written as the product of a vector
in U with a vector in V: for example, an often encountered state of a system
consisting of two spin—% subsystems is

D1 e = 1y 112 (1.1)

which cannot be written as a single product of linear superpositions of ups and
downs. Such a state is said to be entangled. Though it is maybe not immediately
clear from the mathematical structure why this would be remarkable, if we
know a system is in such a state, then whenever we measure one particle, we
immediately know the state of the other; wherever that other particle might
be. Considering that in relativity, signals cannot travel faster than the speed of
light, this seems strange. Properties of a theory that state that objects that are
sufficiently far away from each other cannot influence each other are in general
referred to as locality properties, and there are a few subtle variations on this
concept. I will discuss this further in section [I.4.2]

1.3 Measurements

Until now, we have considered “measurements” to be somewhat of a mysterious
building block of our description of reality. It is very unclear what exactly
happens when a measurement is performed. To illustrate this, let’s look at an



example: we have some kind of measuring device D, and a Spin—% particle S
that is measured by D. Assume that S is in the state %(\T) +11)) € Hg (using
the subscript on Hg to denote which system it is the Hilbert space of). When
we turn on the device, it will display either 1 or |: if we perform the same
experiment many times, we expect to see both outcomes about half of the time.
But what exactly is it that makes S decide to jump? Even more peculiarly,
when we look at Hg ® Hp, we see that the time evolution is given by

2z
V2

where |w) , is some kind of waiting state the device has before the measurement
goes through, and [1) , and |]) , are states which the device takes on after it has
measured a certain value. So if we look at only .S, the system goes from one state
to two possible different states, and the evolution is therefore not invertible, but
if we look at S and D together, suddenly the evolution is invertible. It appears
that the entanglement is spreading out like a bubble, entangling with more and
more of its surroundings as all the systems interact. Since the beginning of
quantum theory, many ways of looking at this so-called measurement problem
have arisen

(Ms+s)®w)p = %ﬂﬂs ®Mp+Hs®@p), (1.2)

1.4 Historical perspective of the
Frauchiger-Renner Paradox

As is to be expected, the Frauchiger-Renner paradox did not just come from
nowhere: the paradox is a combination of some other peculiar phenomena in
quantum mechanics. To understand what exactly makes the Frauchiger-Renner
paradox work, we need to look at what it adds to previous concepts. In this
section, I introduce some of those concepts in order to discuss which new aspects
the Frauchiger-Renner paper introduced. Later, in section we will compare
this historical context with the paper itself.

1.4.1 Wigner’s Friend Paradox

The Frauchiger-Renner Paradox is primarily based on another thought exper-
iment called Wigner’s Friend Paradoz, first published by Eugene Wigner in
[Wigner, 1961]. One of the main questions Wigner poses in the article is whether
our mind can influence physical reality:

Does, conversely, the consciousness influence the Physico-chemical
conditions? In other words, does the human body deviate from the
laws of physics, as gleaned from the study of inanimate nature? The
traditional answer to this question is, “No”: the body influences the
mind but the mind does not influence the body. Yet at least two
reasons can be given to support the opposite thesis, |[...]

SFor an example of an overview, see: [Landsman, 2017], ch. 11



One of the reasons which Wigner gives for believing that the human body devi-
ates from the laws of physics, which I will only mention briefly due to the mere
tangential relation to the subject of this thesis, is that Wigner observes that
“we do not know of any phenomenon in which one subject is influenced by an-
other without exerting an influence thereupon”. Basically, he claims that since
we have not found any such phenomenon (which is already quite a significant
claim, one I find to be unsupported in the article), quantum mechanics will also
likely not be such a phenomenon.

The other reason is the most important for our purposes. Wigner proposes
a thought experiment: there is a quantum system in a quantum state, say
ala) + BlYe). Now, instead of observing the system ourselves, we let a friend
observe the system. This means we assign to the joint system of the quantum
system and our friend the state a|Yva) ® |xa) + B |¥B) ® |[xB). Here |x4) and
|xB) are vectors in the Hilbert space of our friend (which is very complex, but if
quantum mechanics is universally applicable, it should exist). When we then ask
our friend which state he observed, he will answer either “A” or “B”. But when
we ask what he thought that he had measured before we asked him about it, he
will respond the same: even though for us, the friend and quantum system were
in a joint quantum superposition before we asked him. Wigner says that this
“appears absurd because it implies that my friend was in a state of suspended
animation before he answered my question”. This, according to Wigner, implies
that the consciousness of our friend was likely the reason that the quantum state
collapsed.

To my knowledge, this view of consciousness as the cause of wavefunction
collapse is not widely shared in the field of quantum mechanics, and certainly not
by authors discussed in this thesis. The focus on consciousness is therefore not
relevant for the discussion of the Frauchiger-Renner paper and all the literature
that it has motivated. However, the experiment itself, viewed separately from
Wigner’s interpretation, still seems paradoxical, and it is an important building
block for the Frauchiger-Renner paradox.

For example, an alternative analysis can be found in [Healey, 2017], which
goes roughly as follows. We have Wigner, observing a lab containing a friend,
whom we will call FEI and a quantum system, which we will call S. This
quantum system is in the state ZZ ¢i|pi) € Hg, with Hg the Hilbert space
corresponding to S. At the start of the experiment, just before the lab becomes
totally isolated, both Wigner and his friend agree that the state of the lab cor-
responds to some state 1)) € Hp,, where H, is the Hilbert space corresponding
to the lab, including the friend and S (so Hy, = Hs ® H', where H' describes
the friend, the measuring apparatus, and the rest of the lab). Then, the lab is
sealed so that it becomes an isolated system. We will call the time at which
this happens ¢;. When everything is sealed, the friend in the lab performs a
measurement with respect to the observable ). i|¢;) (¢;] at time t., and we
will fix a time 5 > t.

"In [Healey, 2017], Healey uses the names Eugene and John, for Eugene Wigner and John
von Neumann. However, for the sake of consistency with notation used later, W and F will
be used here.
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Let the state of the lab at time ¢ be given by |¢(¢)). Both Wigner and the
friend will agree that |¢(t;)) = |¢o). But for Wigner, there is only unitary
evolution in the lab, since he doesn’t actually measure the lab, and the state
[¢(ty)) will be Uff [tho), where Uttif is the unitary evolution predicted by quan-
tum mechanics. The friend, on the contrary, does measure a quantum system,
and will correspondingly collapse the state of the lab. Suppose he measures j,
then |1(tf)) = U/m oejo Uff [to), which will generally not be the same state.
However, for each measurement that the friend can make, he would assign a dif-
ferent state. This means that our friend would be in a superposition of assigning
states. This seems strange, but it does not imply any contradictions.

1.4.2 Bell-type experiments

Another type of experiment that illustrates the peculiarity of quantum mechan-
ics is one proposed by John Stewart Bell in [Bell, 1964], based on a thought
experiment proposed by Einstein, , and Rosen (collectively known as EPR) in
[Einstein et al., 1935], and its refinement by Bohm in [Bohm, 1960], p. 614[]
EPR claimed that quantum mechanics was not complete and that certain hid-
den variables should be considered to complete the theory. In his paper, Bell
shows that if such a hidden variable theory is local, meaning the state of a system
can only be influenced by things sufficiently close to that system (for example,
within its past light cone), it cannot explain the outcome quantum mechanics
predicts for the thought experiment.

Specifically, Bell considers spin measurements of two entangled spin particles
in a “singlet state”, meaning they have zero total spin (like the state in ),
by two different observers, A and B, which are assumed to be very far away.
The directions in which they measure the spin are @ and g, respectively. It is
then assumed that the outcome of the measurement of A only depends on @
and a hidden variable A, not on b (and vice versa). This condition is called
signal-locality, meaning that the probability with which one of the observers
find a certain outcome given the settings of both observers, does not depend on
the other observer’s settings.

Mathematically, this is achieved by assuming that the outcome of the mea-
surement of A is given by the function A(X, &) which assigns 1 or —1 to every
hidden variable and every vector @, and the same for B(X,b). He then defines
P(,b) as the expectation value of A(\,@)-B(A, b); this means that P(@,@) = —1
since with the same setting both observers will always observe the spin to be in
the opposite direction, and P(a, l;) =0if @ and b are orthogonal. In general, for
the quantum-mechanical singlet state, we have P(d, g) =—d-b.

Bell now deduces the following, which has come to be known as Bell’s in-
equality:

|P(a@,b) — P(a,&)| — P(b,é&) < 1.

8This section will only briefly mention the contradiction between locality and various kinds
of hidden variable theory that underlie the Bell, Kochen-Specker and GHZ articles. For
extensive mathematical analysis, see [Landsman, 2017], ch. 6
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This inequality holds for all theories in which the outcome for each observer
is determined solely by their own setting and the hidden variable, or in other
words, all signal-local hidden variable theories. However, taking

a= (*1/\@a 1/\/5)’52 (0,1),¢=(1,0),

we have L
l@-é—a-bl—b-é¢=v2>1.

This means, that there is no signal-local hidden variable theory which reproduces
the results from quantum mechanics.

In their 1969 paper [Clauser et al., 1969], Clauser, Horne, Shimony, and Holt
(collectively known as CHSH) aim to make Bell’s experiment and inequality
easier to test. To do this, they dropped the assumption that if the two observers
were to choose the same orientation, they would measure exact correlation, since
this is practically unattainable. They then arrive at the CHSH inequality, of
which Bell’s inequality is a special case.

Bell’s thought experiment, however, relied on observations of averages, which
could be considered non-ideal. Greenberger, Horne and Zeilinger (collectively
GHZ) in [Greenberger et al., 1989] devised a similar experiment, but this time,
it was for four particles, and later, in [Greenberger et al., 1990] (together with
Shimony), they designed one for three particles, in the latter also supplying a
way to make the experiment easier to do in real life. These experiments only
relied on events happening with absolute certainty, so they would be easier to
realize.

1.4.3 Hardy’s paradox

While the experiments mentioned above show the peculiarities of quantum en-
tanglement, and show how quantum entanglement defies our traditional under-
standing of reality, there is another thought experiment that shows the dangers
of trying to reason too hastily within a quantum mechanical world. Consider the
following paradox, called Hardy’s paradoz, after Lucien Hardy, who published it
in [Hardy, 1992]. Like the previous articles Hardy’s article is concerned with the
possibility of local hidden variable theories as an explanation for quantum the-
ory. However, I will follow an analysis in [Aharonov et al., 2002] which I think
better shows the kinds of reasoning errors one can make in quantum mechanics,
and which is, therefore, more applicable to this caseEI

The experiment goes as follows (see Figure : An electron and a positron
are both fired at their own beamsplitter, following paths s~ and s* towards the
beamsplitter, respectively. The electron will either take path v~ or u™ to its
second beamsplitter, and the positron will either take path v or u™ to its own
second beamsplitter. However, u™ and u~ overlap, so that when the positron
takes the path u and the electron takes path u~, the particles annihilate and
produce photons.

91 would also like to mention the short but very interesting video by MinutePhysics on
YouTube about Hardy’s paradox: https://www.youtube.com/watch?v=Ph3d-ByEA7Q
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Figure 1.1: The thought experiment used in [Hardy, 1992]. BS1* and BS2% are
beamsplitters for postitrons and electrons. The electron comes to BS1—, and
“chooses” between v~ and u~. However, when the positron “chooses” path u™,
the electron and positron would annihilate. Image source: [Hardy, 1992]

The beamsplitters are tuned so that the time evolution is described by:

5#) = =5 (i) + %)) (13)
Then, at beamsplitter two, we have

1) — 5 (1) +1]d)) (1.9

0%) — 5 (i]e*) +1d). (15)

which means that we have a total evolution of
1 . _ _
s s™) — 7 (=21 =3[ [e7) +ildT) em) —[dT)[d7)),  (1.6)

where +y is the state where the particles have annihilated and produced a photon.

Now consider the probability that both the d detectors fire: this corresponds to
the state |d*,d ™). By postulate this has a probability of

g\ (gt g-let M2 WLt Mot L

i) st = flama| =1 3P = 5

of happening (in the sense that if we repeat the pattern sufficiently many times,
both d detectors will simultaneously fire on average 1 in 16 times).
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However, reasoning from the ‘point of view’ of the electron and the positron,
it seems that the d detectors never fire simultaneously{’] Consider what hap-
pens when we remove the positron from the setup: the time evolution of the

electron is now given by composing equation (|1.3)) with equations (1.4]) and (|1.5))

to form )
|s7) = 5 (@ (le7) +ild™)) + (i) +[d7)))
or, writing out the right-hand side,
|s*> — 1 }c*> .

This means that when the positron is not in the setup, the d~ detector will
never fire, and the ¢~ detector always fires. The same holds for the positron if
we remove the electron: it that case the d* detector will never fire, and the ¢t
detector will always fire.

The argument continues by noting that if the positron would take the outer
route v, it would be like the electron was fired without the positron, since they
cannot annihilate. This means, that if the positron would take the v™ route,
the ¢~ detector will always fires. We can reason the same for the electron: if it
takes the v~ path, the positron proceeds like there would be no electron, and
the ¢t detector always fires.

Finally, consider the case that the d* detector fires. By the above reasoning,
this means that the electron did not take the v~ path, because if it did, the
¢t detector would fire and not the d* detector. But if we now consider the
case that the d— detector fires, we can conclude that the positron did not take
the v+ path for the same reason. But this means that dt and d~ can never
fire simultaneously, because if neither the ¢ nor the ¢~ detector fire, both the
electron and the positron will have taken the u path, and that means that they
would have annihilated, leaving no electron and positron for the d detectors to
detect!

Errors and connection to Wigner’s friend paradox

What goes wrong here is that in reasoning from the ‘point of view’ of the
positron, we concluded that it must either take path v or path u*, and simi-
larly that the electron must either take path v~ or path u~. This does not take
into account that the different options might interfere with each other: if both
the d detectors fire, then after the experiment the particles are still in a super-
position of which path they took. By reasoning from these different cases, we
assume that those cases are well-defined, which they are not. We are essentially
assuming that one particle measures the other to force it into a path instead of
a superposition of paths, and as noted in section this changes the system,
something which will not happen if we actually perform the experiment, since
there is no reason for the particles to measure each other.

10This is very similar to the analysis of the Frauchiger-Renner paradox that will be made
in section [3.1} we will compare the reasoning in Hardy’s paradox and the Frauchiger-Renner
paradox in section
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Hardy’s paradox shows that one must be very careful with which states are
well-defined and which are not. There is also a very strong link with Wigner’s
friend paradox. In Wigner’s friend paradox, the friend in the lab measures a
quantum system, and the question is which state the friend is in. The above
reasoning shows that the state is really undefined until we measure the state of
the friend, because if we would reason like the friend was in an actual state (even
if we would not know which one), we get contradictions like the one above. With
that in mind, we are ready to take a look at the Frauchiger-Renner paradox,
to see if the reasoning of Frauchiger and Renner is significantly different or has
the same problems.
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Chapter 2

The Frauchiger-Renner
Paper

Now that we have acquainted ourselves with some appropriate concepts, it is
time to discuss the main subject of this thesis: the paper

[Frauchiger and Renner, 2018]. In this chapter, first, some notation will be in-
troduced in order to facilitate our discussion of the contents of the Frauchiger-
Renner paper. After this, a description of the thought experiment central to
the paper is given. The analysis will be given in the next chapter.

2.1 Definitions and assumptions

The Frauchiger-Renner paper is for the most part about ‘agents’ reasoning using
quantum mechanics, and we will be making statements about the validity of
their statements. We would like to make a definition similar to the following:

‘Definition’ 2.1. A Quantum Theory is a theory in the language with constants
for every agent and physical system, together with the language of Hilbert spaces,
and a 5-place relation m and for every agent A a binary relation ~ 4.

Here m(S,¢,T, A, \) is T if A measures system S at time ¢ to be A\ with
respect to the observable T', and S(t) ~4 1 is true if agent A must assign state
1 to system S at time ¢.

However, this definitions presents many subtleties. For example, it is not
clear from this definition that there even exists a model for such a theory, and if
there is a model, there might be many. Additionally, it is not clear what exactly
a ‘physical system’ or an ‘agent’ is. Considering this, we can still use the ideas
of mathematical logic to closely examine the Frauchiger-Renner paradox in a
more systematic way. This is not a true axiomatization, just the basis of a more
mathematical view.

Having established this, we assume that all agents in the paradox reason
with the same quantum theory, and write ¢ - ¢ if every agent can logically
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conclude v if they now ¢. The difference in knowledge only arises when someone
has actually done a measurement, and therefore knows that some statement
m(S,t, T, A, \) is true, while others do not. If m(S,¢,T, A, \) ¢, then all
agents know that v follows form m(S,¢,T, A, \), but only agents who know
that m(S,t,T, A, \) is true for them, will be able to say that 1 is true for them.
If only a certain agent A is able to conclude 1, we denote this as 4 1.

So what do these agents reason about? They make statements about the as-
signment of states to physical (quantum) systems, and then predict the outcome
of measurements. Beginning with the former, we should account for a situation
where person A, due to having more information than person B, might reason
that person B would have to assign a different state to a physical system than
they do themselves. Take, for example, Wigner’s Friend paradox (section|1.4.1]).
Here Wigner would assign Uttif |tho) to the lab, but the friend, who is inside the
superposition, would assign Uj*e,, Uttf [10)-

So, as briefly described above, we introduce:

Definition 2.2. If an agent A should assign a state |1)) to a physical system X
at time t, we say that

X(t) ~a ).

As mentioned in ‘definition’ [2.1] we need a precise way to describe mea-
surements. One would be tempted to consider a measurement as some random
variable, whose distribution is determined by postulate [[LI} In that case, a
definition such as the following might be in order:

‘Definition’ 2.3. We write m(X(t),T, A) to denote the outcome of a mea-
surement of operator T of a system X at time t by agent A. Specifically,
m(X(t), T, A) is in the spectrum of T.

However, writing m(X(t),T,A) = X does then not answer the question
whether that measurement was even made at all. That is why the 5-place
relation in ‘definition’ was introduced, so we could say the following:

Definition 2.4. Let T' be an observable of the Hilbert Space corresponding to
the system X at time t. If agent A will measure \ with certainty, where X is
some eigenvalue of T, we say m(X (¢),T, A) = .

We thus have m(X,t, T, A, \) < m(X(t),T,A) = X. From time to time
it will be clearer to number experiments, so m(X(¢t),T, A) = A would become
m(1) = X if the measurement of observable T on system X at time ¢ by A was
measurement 1. We will write m(X (¢),T, A) # X for =(m(X (¢),T,A) = X) (so a
measurement will definitely not result in \), as another notational convenience
(but keep in mind, we don’t suppose m(X(t),T, A) to mean anything on its
own).

Note that “measurement 1 will certainly not result in A” is not the same as
“measurement 1 will not certainly result in A”. If an agent A can conclude the
former, we write

Fam(l) # A,
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or equivalently
Fa _'(m(l) = )‘)?

but if they can only conclude the latter, we write
¥ m(l) = A

As mentioned above, the notation used throughout this thesis is based upon
mathematical logic. The fact that the above two statements are not equivalent,
reveals the fact that it is based upon intuitionistic logic. In intuitionistic logic,
the law of the excluded middle is not true in general (while it is in classical logic),
which corresponds to quantum mechanics: when we show that we cannot prove
that a certain result of a measurement will definitely not occur, it could be in
a superposition, so that we can also not guarantee that it definitely will.

We will now look at the three explicit assumptions made in the Frauchiger-
Renner paper and try to systematically describe what they say.

2.1.1 Q: partial Born rule

As the authors comment in the article, the first assumption is basically Postulate
but only considering events that have unit probability of happening, and, as
noted above, where everything is observer-dependent. In the article, Frauchiger
and Renner use a so-called “family of Heisenberg operators” to formulate this
assumption, which I find to be somewhat confusing. I think that what is meant,
is the measurement of some self-adjoint operator a with eigenvalues o(a), which
is measured at time t. We could then reformulate the assumption as follows:

Postulate 2.5 (Assumption Q). Let X(t) be a physical system at time t,
|y € H where H is the Hilbert space corresponding to X (t), let a be a self-
adjoint operator on H, and a ) = A |). Furthermore, let A be an agent. Then

X(t) ~a )y B m(X(t),a,A) = A

However, in the article, Frauchiger and Renner often use the inverse state-
ment: if a state is orthogonal to a certain eigenstate, than that eigenvalue will
definitely not occur as the outcome of the measurement.

This does not follow from Postulate but we can prove it by including
another statement that Frauchiger and Renner include in their assumptions,
namely lemma [2.10} which we will discuss later. Formulated more precisely:

Lemma 2.6. Let X(t) be a physical system at time t, V), |¢) € H where H is
the Hilbert space corresponding to X (t), let a be a self-adjoint operator on H with
two orthogonal eigenvectors |¢) and |¢), and let A be an agent. Additionally,
let \ be the eigenvalue corresponding to |¢), and suppose a measurement of a
was made at (or just before) time t by A. Then:

X(t) ~ale) B m(X(t),a,A) # A
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Proof. Let a|¢) = p|¢). Then by postulate
X(t) ~alg)y £ om(X(t),a,4) = p.
Since a measurement has just been made at time ¢, we can use lemma [2.10}

m(X(t),a,A) =p F m(X(t),a,A) # A

2.1.2 C: Self-consistency

Frauchiger and Renner call the next assumption “Self-Consistency”:

if A knows that x = &, and B knows that A knows that x = &, than
B knows that z = €.

This is where the difference in perspective comes in. Translating this to our
notation we get:

Postulate 2.7 (Assumption C). Let A and B be agents, X (t) a physical system
at time t, a an observable on X, and X\ € o(a). Then

(l_A m(X(t)7a’B) = )\) F m(X(t),CL, B) =\

However, as noted in section since all agents use the same logic, the only
differences in what they can prove as true are statements that follow from a
measurement they made. If someone can conclude 4 m(X(t),a,B) = A,
meaning some observer A can conclude m(X(¢),a,B) = A, but others can-
not conclude this, then m(X(t), a, B) = X follows from some other assumptions
m(X;(t;),a;, A) = A\;, which only A knows to be true. This can only happen if
A actually made those measurements of a; on X; at times ¢; and got \; as a
result. But if we know that A can conclude m(X(t),a, B) = A\, we know that
they must have been able to conclude m(S;(t;),a;, A) = A; for all i, meaning
that they must have measured those values. But this means that we essentially
have measured those systems ourselves! Formulating this more precisely:

Theorem 2.8. If all agents reason with the same logic, then
(Fag) o
for all agents A and all sentences ¢.

Proof. All agents reason with the same logic, so the only difference in provability
is caused by actual measurements. This means that 4 ¢ is equivalent to

{m(Xi(ti),ai, A) = Ni|[i €I} ¢

together with the fact that A measured \; at t; for all ¢, where I is some
finite index set (making infinitely many measurements seems somewhat un-
realistic). But knowing that A measured \; at t; is exactly the statement
m(X;(t;),a;, A) = A;, so if we know those to be true, then ¢ is true. O

Theorem [2.8 shows that Postulate [2.7] does not really introduce anything new.
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2.1.3 S: Single world

The last explicit assumption is mentioned in an off-hand way at the end of
Frauchiger and Renner’s analysis:

We have thus reached a contradiction - unless agent W would accept
that w simultaneously admits multiple values. For our discussion
below, it will be useful to introduce an explicit assumption, termed
Assumption (S), which disallows this;

They formulate this assumption as follows:

If an agent A is has established that x = £ at time ¢, then they must
necessarily deny that z # £ at time t.

By x Frauchiger and Renner mean the result of a measurement, so when we
make this explicit, we arrive at the following:

Postulate 2.9 (Assumption S). Let X(¢t) be a physical system at time t, and
let a be a self-adjoint operator on the Hilbert space corresponding to X (t), let
A € o(a), and let A and B be agents. Then

(m(X(t),a,A) =) A (m(X(t),a,A)#N\) F L.

The goal of adding this assumption is to exclude many-worlds interpretations
of quantum mechanics, which Frauchiger and Renner believe to circumvent the
paradox. It is not entirely clear to me how exactly those interpretations would
do this. Perhaps it is intended as the assumption that the outcome of a measure-
ment is described by a single variable. However, as the assumption is formulated
in the paper, it is trivially satisfied by all forms of logic.

A statement often used in their analysis is the following:

Lemma 2.10. Let X (t) be physical system at time t, and let a be a self-adjoint
operator on the Hilbert space corresponding to X (t). Let A and B be agents.
Additionally, suppose that a has 2 eigenvalues A and N, and that a measurement
is actually made at (a time just before) t. Then

m(X(t),a,A) #X F m(X(t),a,A) =\

This doesn’t follow directly from postulate it essentially states one of the
fundamental properties of quantum mechanics, namely that directly after a
measurement a system must be in a well-defined state (and so if it isn’t in one
eigenstate it must be in the other). When a system is in a superposition, this
does not hold, and so we must include the condition that a measurement has
just been made in order for this lemma to hold.

2.2 Set-up of the gedankenexperiment

Having covered the assumptions and some notation, let us take a look at the
thought experiment that underlies the Frauchiger-Renner paper.
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Figure 2.1: An overview of the Frauchiger-Renner thought experiment. There
are two labs, L and L, each with their own observers inside and outside the
lab, F, W, F and W, respectively. The arrows 1 through 5 are measurements
made by observers, and quantum systems R and S are entangled. Note that
measurement 4 does not explicitly appear in the original paper.

An overview of the experiment is provided in Figure First I will explain
what the basic idea is, then describe the initial state of the experiment, and
lastly provide a description of the proceedings of the measurementﬂ

In principle, the experiment considers isolated laboratories containing ob-
servers who measure a two-state quantum system, to be two-state quantum-
system themselves, in the sense that they are in a superposition of the observer
having measured state 1 and the observer having measured state 2. Some per-
son outside of the lab can then in theory measure the entire lab as a two-state
system. Additionally, the super-observers outside of the labs in the experiment
measure with respect to a different basis of the state-space than the observers
inside the labs do. So if an observer inside a lab measures the quantum system
and collapses its state, by definition the whole lab is in a superposition for the
super-observer, and vice versa. The whole experiment is based on this idea.

n the rest of this thesis, the unitary evolution of time will be given by the identity
operator, since its effects are not relevant to the discussion.
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Let us take a close look at all parts of the experiment. There are two isolated
labs, L and L, each containing a quantum system and an observer. The quantum
systems are called R and S respectively, and the observers inside the labs are
called F and F. Outside each lab, there is another observer, the one outside L
being called W and the one outside L being called W.

In the paper, the system S is prepared by F and then transported to the
other lab, all the while keeping both labs isolated. I think this is somewhat
confusing and difficult to imagine. We could instead imagine S and R to be
entangled in the specific state

[Wrs) = V1/31h) 1)+ V2/31t) (1) + 1) € € @ €2, (2.1)

which produces the same effect as F' passing system S to F in one of the two
states, depending on the result of measurement 1 (see Figure nﬂ Here |h),
t), |T> and |]) are the two orthogonal states of R and S respectively.

So we have entangled systems in two different labs, each with their own
observer inside, and each lab has a super-observer outside as well. As described
above, Frauchiger and Renner model the labs as being two-state systems, so L
would have the space spanned by |h); and [t); as a state-space, and L would
have the space spanned by [1), and |]), as a state-space. With that in mind,
we can define other vectors in their state-space, such as

fok), = V1/2|h)p — )
fail), = /1/2|h)p + V1/2[t);
ok}, = V1/2I0), = V1/2[1)
|fail) , = \/ﬁ\@ + \/7|T>L (2:2)

The whole experiment is performed in four steps:
1. F measures R with respect to the observable
) (h| = [t) (t| € B(C?),

getting either 1 (which we will call h for clarity) or -1 (which we will call
t); this will be measurement (1), made at time ¢;.

2. F measures S with respect to

1) (1 = 14} (4 € B(C?),

getting either 1 (1 for clarity) or -1 ({ for clarity); this will be measurement
(2), made at time ts.

2When we have two entangled systems, we can measure one by measuring the other. This
differs from how the systems R and S are treated in the Frauchiger-Renner though experiment
in the sense that F' cannot measure S by measuring R, since F' physically prepares the state
and then moves it to the other lab, while if R and S would be entangled, F' could measure
S by measuring R. However, in this experiment F always measures first, so the extra option
does not constitute a problem.
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3. W measures L with respect to
|ok) (ok| — [fail) (fail| € B(C?),

getting either 1 (‘ok’) or -1 (‘fail’); this will be measurement (3).
Note: as we will see later, it seems that W implicitly makes another
measurement here, one of I with respect to

M (M — ) (Hp € B(Cz)a

which we call measurement (4). Both measurements (3) and (4) will be
made at time t3.

4. Finally, W measures L with respect to
lok) (ok| — |fail) (fail| € B(C?),

getting either 1 (‘ok’) or -1 (‘fail’); this will be measurement (5), made at
time t4.

Sometimes, agents implicitly make 2 measurements at the same time. For
example, at a certain point, W implicitly measures both L with respect to the
basis (|1),]{)) and L with respect to the basis (|ok), |fail)). We will denote this
as measuring with respect to the observable

ok, ) (ok, 1| + 2 |fail, ) (fail, 1| 4 3 |ok, |) (ok, || + 4 |fail, |) (fail, ||

and denote the outcome 1 as (ok, 1), 2 as (fail, 1), etc.

We repeat the experiment until both W and W measure ‘ok’. As we will see
in the next section, according to Frauchiger and Renner, there are two ways in
which we can calculate the probability that this happens, which give different
results.
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Chapter 3

Discussion of the paradox

3.1 Analysis of information and the paradox

We will now analyze the reasoning Frauchiger and Renner use to come to their
contradictionE] On the one hand, they note that all the agents agree that the
initial state of the system LL is

s = 5 (102 105 + 10 15 + 1) (31)
= (1 i+ 200 1)~ R0 1)) (32)
= @I+ ) 60+ ) o)) (33)

1 o) - N
- \/;(3&”% fail) , + [Fail) 1 [ok) ;, — [ok)  [fail)
+ lol |Ok>L)’ (3.4)

using notation from (2.2)). Frauchiger and Renner claim that if we prepare a
system in a state that is not orthogonal to a given eigenspace of some eigenvalue
A of an observable a, and then measure the system with respect to a, and if
we then repeat the preparing and the measuring, eventually we will find A (as
opposed to when the initial state is orthogonal to the eigenspace belonging to
A, because then we will never measure ). They then claim that this follows
from postulate I find the proof that they give somewhat confusing (starting
with the fact that they equate a function to a vector), and I will just assume
it, since I don not believe this to be a widely contested claim. When assuming
this, we see that .

12

In the interest of making this analysis as easily comparable to the Frauchiger-Renner

paper as possible, I should note that in this analysis I have made some adjustments to the
order in which the calculations are made for narrative purposes.

<a{fn oky, |iEL> =
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implies that if we perform the experiment sufficiently many times, the outcome
m(3) =ok A m(5) = ok (3.5)

will occur. On the other hand, Frauchiger and Renner claim, quantum mechan-
ics also predicts that this never happens. Their reasoning goes as follows. First,
using , we see that

(Fz i) = 0

so we apply Lemma to agent W and system LL at time t5:
LL(t3) ~w |i) = m(LL,r; ® sy, Z) # ok, | (3.6)

Frauchiger and Renner now argue that if we assume ok is found, that means
that W knows that S cannot be in state |. There aren’t many details about this
reasoning in the paper, and so I have tried to fill in with what I think was meant.
This involves two parts; the ‘breaking up’ of the fact that W can’t measure ok
and | at the same time, and the way W measuring the lab L doesn’t result in
1 so that the system S inside L would then be in state |1).

The first statement we need to make is about the relationship between physi-
cal systems: how can we translate a measurement of a larger system to measure-
ments of subsystems? As noted in section [[.2] composite systems in quantum
mechanics are usually described by the tensor product. So we need an axiom
that describes that a measurement will ‘behave well’ under some kind of com-
position operation between physical systems, such as

(m(LL(ts). 75 @ 51, 1) £ @) A (m(3) = 3K) F m(4) £ 4 (3.7

In section [3:2] we will discuss whether this assumption is a good reflection of
the current understanding of the measuring of multi-body systems.

Frauchiger and Renner claim that this means that F must have found 1
earlier, since a measurement of the whole lab at time t3 cannot result in |.
But this looks a lot like Wigner’s Friend paradox: what are the claims that we
can make about a measurement made in a superposition before the time that a
measurement collapses that superposition? For now, we will denote this as

(m4)=1) F (m(2)=1). (3.8)
We now apply lemma to get
(m(2) #1) F (m(2)=1). (3.9)

Putting what we have until now together for the experiment as described above,
(m(3)=ok) F (m(2)=1), (3.10)

where we have dropped the assumption LL(t3) ~y U.? |i) for legibility.
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Now, we will be reasoning from the perspective of F'. The argument in the
paper is the same as used for (3.7)), only this time, different observers measure
both subsystems:

(m(RS(t1),r @5, F) # (b, 1)) A (m(2)=1)) F (m(1)# h). (3.11)

Note also that measurement (2) is made later than ¢;, and so here we must take
into account that F' might re-collapse the state. We will discuss this together
with the similar equation in section

Now Frauchiger and Renner use this to imply that when W measures ok, he
knows that F measured ¢. In our formulas, this would be the statement

m(3) =ok F m(2)=1
AN m2)=1tF ml)=t
= m(3) =ok F m(l)=t. (3.12)

Frauchiger and Renner seem to invoke assumption transferring the in-
ference from one agent to another. Whether these two statements actually agree
will be discussed in section [3.21

Now starting from m(1) = ¢, we again use the entanglement of R and S to
say

RS(t1) ~p VI/B(RY L)+ 6 D) + 6 [1) A m(1) =t
FS(t) ~p V1/2(11) + 1)), (3.13)

which again is not an assumption made explicitly, and we will discuss the validity
later. Finally, Frauchiger and Renner conclude that

S(t1) ~r V1/2(I1) + 1)) E m(5) # ok; (3.14)
Putting everything together, we get
m(3) =ok F m(5) # ok. (3.15)

This, according to Frauchiger and Renner, forms a contradiction with (3.5)),
which has to be true at some point.

3.2 Explicit and Implicit assumptions

We have now gone through the entire proof that Frauchiger and Renner give.
This means that we can try to ‘fill in the gaps’: which statements can be
considered logical assumptions, and which cannot?

Assumption Q is, as noted above, a special case of quantum mechanics,
which we use all the time. This does not seem controversial to me. Assumption
S, as it is formulated in Postulate never explicitly used, and as stated in
section [2.1.3] it is just a result of the logic system that seems appropriate here.
Lemma, is what I think they really meant, since this is actually used in
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the paper. Again, the fact that after a measurement, a quantum system is in a
well-defined state, is well-established.

Frauchiger and Renner claim to use assumption C in . As stated in
section 2.1} the only difference in information different people have is that they
made measurements and so have a formula of the form m(n) = A which they
know to be true. But an agent cannot reason what another agent will measure
unless some outcome has a probability 1 of happening, otherwise it would not be
a random measurement. So assumption C does not add anything. The way the
reasoning is worded in the paper, like , also does not introduce anything
new: it is essentially

((a=bADb—=c)— (a— ),

and if such a formula would not be true in general, proving statements would
become very difficult.

This leaves us with the assumptions that were not stated beforehand. Firstly,
eq. describes a measurement of a composite system and how it relates to
the subsystems, as does eq. . Everything happens at the same time by
the same agent, so this does not seem very controversial to me.

Eq. does something similar, but I disagree with this assumption:
while it 4s true that a measurement done by F' of R at time t; wouldn’t have
resulted in h, the formula at the right hand side of eq. is about F' at t;!
At that point, from the perspective of F, F' was in a superposition, so it may
well be that m(1) = h was not valid, but that does not mean that -m(1) = h
was. This assumption is therefore questionable at best.

This is the same in : we cannot definitively say that the measurement
at time to would have resulted in 1, even though at time ¢4 it has a well-defined
value. So, this is also a questionable assumption.

These assumptions have a lot in common with Wigner’s friend paradox.
When someone is measuring in a lab, and the lab is in a superposition of all the
possible outcomes of the measurement, even though when we look inside the
lab later we can conclude what was measured earlier, we cannot conclude that
the outcome was welln defined at an earlier time.

Finally, (3.14). This would have been true if measurement 5 was also made
at time ¢;. However, now it is only true if the state of .S isn’t altered between ¢4
and t4. But the lab L is implicitly measured by W. This is the same situation
as a Bell measurement, and there we have seen, through Bell’s Theorem, that
measurements of entangled systems indeed can influence each other. So this
assumption is also invalid.

3.3 Comparison to historical perspective:
Hardy’s paradox
Just like in Hardy’s paradox, the Frauchiger-Renner paradox calculates a certain

probability in 2 ways: one by considering the system as a whole (the straightfor-
ward way), and one by considering subsystems (reasoning from a certain ‘point
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of view’). Like mentioned in section in a superposition the states are not
well-defined and trying to reason by looking at all the different possibilities,
even if it is not known which possibility occurred, will result in contradictions.
Specifically, the systems S and R correspond to the electron and the proton
in Hardy’s paradox, and F and F correspond to the first beam splitters and
the annihilation, in the sense that they create the superposition and entangle
the particles. The second beam splitters then correspond to W and W. The
only difference is exactly how the intial state is entangled, which gives slightly
different probabilities. By then changing the basis with which all the agents
measure, Hardy’s paradox can be exactly replicated. Perhaps the only signif-
icant difference is the fact that in the Frauchiger-Renner paradox, there are
conscious beings in the superpositions. However, to me, there seems to be no
evidence of consciousness playing a special role in quantum mechanics, and the
two paradoxes are therefore equivalent.

3.4 Reactions to the paper

As is to be expected, the Frauchiger-Renner paper spawned many reactions,
ranging from dismissal of the proof to claiming that the assumptions are not
satisfied in a certain interpretation of quantum mechanics and developing new
interpretations that circumvent the theorem. There are, however, too many
papers to discuss here, many of which contain reasoning which I am unable to
follow. I would, however, like to mention some papers with ideas similar to this
paper.

For example, in [Sudbery, 2019] it is argued that there are hidden assump-
tions which make the theorem invalid. Notably, one of the 5 (!) hidden assump-
tions is locality, which through Bell’s theorem is in contradiction with quantum
mechanics, and which is also what we concluded in section (3.2

On the other hand, [Tausk, 2018] takes issue with the reasoning that a mea-
surement of tails by F leads to a measurement of W resulting in “fail”. They
argue that since F is in a superposition with respect to W, this means that the
“heads” possibility interferes with the state, and therefore the direct inference
is invalid. This is very similar to the reasoning we used to disqualify
and . |[Healey, 2018] also finds an additional assumption, which he calls
Intervention insensitivity:

The truth-value of an outcome-counterfactual is insensitive to the
occurrence of a physically isolated intervening event.

An outcome-counterfactual is then defined as a statement of the form ‘If the
outcome of a quantum measurement a had been z, then the outcome of another
measurement b would have been y’. Healey also suggests that this assumption
violates Bell’s theorem, and should be rejected, saying that the Frauchiger-
Renner paradox “raises no new worry about non-locality”.
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3.5 Conclusion

In conclusion, it seems that the Frauchiger-Renner paradox does not offer a re-
striction on the interpretations of quantum mechanics which we can use, instead
offering another example of why careful analysis is often needed in quantum me-
chanics. Careful analysis of the reasoning used in [Frauchiger and Renner, 2018]
suggests that assumptions were used that do not reflect quantum mechanics and
instead imply a contradiction through Bell’s Theorem, and a closer inspection of
the thought experiment suggests that the thought experiment is almost identical
to the one used in Hardy’s paradox.

The logical formalism used in this thesis is not a true axiomatization of
quantum logic, and although it is based upon concepts in mathematical logic like
formal theories and proofs, a closer examination of the possibilities an problems
of such a logical system in order to avoid future confusion might be desirable.
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