Friedrich-Alexander-Universität Erlangen-Nürnberg

Modular theory in Algebraic Quantum Field Theory Half-sided Modular Inclusions, Standard Pairs and beyond

lan Koot

RSME Congress of Young Researchers 2025 January 16, 2025

• Hilbert space \mathcal{H}

- Hilbert space \mathcal{H}
- For 'each' $\mathcal{O} \subset \mathbb{R}^2$ a von Neumann algebra $\mathcal{A}(\mathcal{O}) \subset B(\mathcal{H})$ (collect them as \mathcal{A}_{∞})

- Hilbert space \mathcal{H}
- For 'each' $\mathcal{O} \subset \mathbb{R}^2$ a von Neumann algebra $\mathcal{A}(\mathcal{O}) \subset B(\mathcal{H})$ (collect them as \mathcal{A}_{∞})
- A representation $U : \mathbb{R}^2 \to \mathcal{U}(\mathcal{H})$

- Hilbert space \mathcal{H}
- For 'each' $\mathcal{O} \subset \mathbb{R}^2$ a von Neumann algebra $\mathcal{A}(\mathcal{O}) \subset B(\mathcal{H})$ (collect them as \mathcal{A}_{∞})
- A representation $U : \mathbb{R}^2 \to \mathcal{U}(\mathcal{H})$
- A vector $\Omega \in \mathcal{H}$ or a state ω on \mathcal{A}_{∞}

- Hilbert space \mathcal{H}
- For 'each' $\mathcal{O} \subset \mathbb{R}^2$ a von Neumann algebra $\mathcal{A}(\mathcal{O}) \subset B(\mathcal{H})$ (collect them as \mathcal{A}_{∞})
- A representation $U : \mathbb{R}^2 \to \mathcal{U}(\mathcal{H})$
- A vector $\Omega \in \mathcal{H}$ or a state ω on \mathcal{A}_{∞}

Satisfying conditions **inspired by physical interpretation**:

• $\mathcal{A}(\mathcal{O})_{sa}$: observables that are measurable in spacetime region \mathcal{O} .

- Hilbert space \mathcal{H}
- For 'each' $\mathcal{O} \subset \mathbb{R}^2$ a von Neumann algebra $\mathcal{A}(\mathcal{O}) \subset B(\mathcal{H})$ (collect them as \mathcal{A}_{∞})
- A representation $U : \mathbb{R}^2 \to \mathcal{U}(\mathcal{H})$
- A vector $\Omega \in \mathcal{H}$ or a state ω on \mathcal{A}_{∞}

Satisfying conditions **inspired by physical interpretation**:

- $\mathcal{A}(\mathcal{O})_{sa}$: observables that are measurable in spacetime region \mathcal{O} .
- $U(\vec{x})$: translation between reference frames

- Hilbert space \mathcal{H}
- For 'each' $\mathcal{O} \subset \mathbb{R}^2$ a von Neumann algebra $\mathcal{A}(\mathcal{O}) \subset B(\mathcal{H})$ (collect them as \mathcal{A}_{∞})
- A representation $U : \mathbb{R}^2 \to \mathcal{U}(\mathcal{H})$
- A vector $\Omega \in \mathcal{H}$ or a state ω on \mathcal{A}_{∞}

Satisfying conditions **inspired by physical interpretation**:

- $\mathcal{A}(\mathcal{O})_{sa}$: observables that are measurable in spacetime region \mathcal{O} .
- $U(\vec{x})$: translation between reference frames
- ω : expected value for observables.

 $\begin{array}{l} \text{Mathematical objects: }\mathcal{H} \text{ Hilbert space,} \\ \mathcal{A}(\mathcal{O}) \subset B(\mathcal{H}) \text{ von Neumann Algebras,} \\ U: \mathbb{R}^2 \rightarrow \mathcal{U}(\mathcal{H}). \end{array}$

 $\begin{array}{l} \text{Mathematical objects: } \mathcal{H} \text{ Hilbert space,} \\ \mathcal{A}(\mathcal{O}) \subset B(\mathcal{H}) \text{ von Neumann Algebras,} \\ U : \mathbb{R}^2 \to \mathcal{U}(\mathcal{H}). \\ \bullet \mathcal{O}_1 \subset \mathcal{O}_2 \quad \Rightarrow \quad \mathcal{A}(\mathcal{O}_1) \subset \mathcal{A}(\mathcal{O}_2) \end{array}$

 $\begin{array}{l} \text{Mathematical objects: }\mathcal{H} \text{ Hilbert space,} \\ \mathcal{A}(\mathcal{O}) \subset B(\mathcal{H}) \text{ von Neumann Algebras,} \\ U: \mathbb{R}^2 \rightarrow \mathcal{U}(\mathcal{H}). \end{array}$

•
$$\mathcal{O}_1 \subset \mathcal{O}_2 \quad \Rightarrow \quad \mathcal{A}(\mathcal{O}_1) \subset \mathcal{A}(\mathcal{O}_2)$$

• \mathcal{O}_1 and \mathcal{O}_2 spacelike separated $\Rightarrow \mathcal{A}(\mathcal{O}_1)$ and $\mathcal{A}(\mathcal{O}_2)$ commute.

Mathematical objects: \mathcal{H} Hilbert space, $\mathcal{A}(\mathcal{O}) \subset B(\mathcal{H})$ von Neumann Algebras, $U : \mathbb{R}^2 \to \mathcal{U}(\mathcal{H})$.

•
$$\mathcal{O}_1 \subset \mathcal{O}_2 \quad \Rightarrow \quad \mathcal{A}(\mathcal{O}_1) \subset \mathcal{A}(\mathcal{O}_2)$$

• \mathcal{O}_1 and \mathcal{O}_2 spacelike separated $\Rightarrow \mathcal{A}(\mathcal{O}_1)$ and $\mathcal{A}(\mathcal{O}_2)$ commute.

•
$$U(\vec{x})\mathcal{A}(\mathcal{O})U(\vec{x})^* = \mathcal{A}(\mathcal{O} + \vec{x})$$

 $\begin{array}{l} \text{Mathematical objects: }\mathcal{H} \text{ Hilbert space,} \\ \mathcal{A}(\mathcal{O}) \subset B(\mathcal{H}) \text{ von Neumann Algebras,} \\ U: \mathbb{R}^2 \rightarrow \mathcal{U}(\mathcal{H}). \end{array}$

- $\mathcal{O}_1 \subset \mathcal{O}_2 \quad \Rightarrow \quad \mathcal{A}(\mathcal{O}_1) \subset \mathcal{A}(\mathcal{O}_2)$
- \mathcal{O}_1 and \mathcal{O}_2 spacelike separated $\Rightarrow \mathcal{A}(\mathcal{O}_1)$ and $\mathcal{A}(\mathcal{O}_2)$ commute.
- $U(\vec{x})\mathcal{A}(\mathcal{O})U(\vec{x})^* = \mathcal{A}(\mathcal{O} + \vec{x})$

Where are the 'fields'?

Classically: field is a **value** at each point in spacetime.

Quantum: field is an **observable** at each point in spacetime.

But these are usually singular/unbounded!

 \rightarrow we 'smear' them

Let $\mathcal{A} \subset B(\mathcal{H})$ von Neumann Algebra, $\Omega \in \mathcal{H}$:

cyclic: $\overline{\mathcal{A}\Omega} = \mathcal{H}$, separating: $A\Omega = 0 \Rightarrow A = 0$

Cyclic (resp. separating) for ${\cal A}$ is equivalent to separating (resp. cyclic) for ${\cal A}'.$

Let $\mathcal{A} \subset B(\mathcal{H})$ von Neumann Algebra, $\Omega \in \mathcal{H}$:

cyclic: $\overline{\mathcal{A}\Omega} = \mathcal{H}$, separating: $A\Omega = 0 \Rightarrow A = 0$

Cyclic (resp. separating) for ${\cal A}$ is equivalent to separating (resp. cyclic) for ${\cal A}'.$

If \varOmega is standard for $\mathcal A$ (i.e. cyclic and separating) one defines

 $S_{\mathcal{A},\Omega}: \mathcal{A}\Omega \to \mathcal{A}\Omega, \quad A\Omega \mapsto A^*\Omega$

Let $\mathcal{A} \subset B(\mathcal{H})$ von Neumann Algebra, $\Omega \in \mathcal{H}$:

cyclic: $\overline{\mathcal{A}\Omega} = \mathcal{H}$, separating: $A\Omega = 0 \Rightarrow A = 0$

Cyclic (resp. separating) for ${\cal A}$ is equivalent to separating (resp. cyclic) for ${\cal A}'.$

If Ω is **standard** for \mathcal{A} (i.e. cyclic and separating) one defines

 $S_{\mathcal{A},\Omega}: \mathcal{A}\Omega \to \mathcal{A}\Omega, \quad A\Omega \mapsto A^*\Omega$

Looks innocent, is usually unbounded, with $\overline{S_{\mathcal{A}',\Omega}} = (S_{\mathcal{A},\Omega})^*$. Polar decomposition (with abuse of notation)

$$S_{\mathcal{A},\Omega} = J_{\mathcal{A},\Omega} \Delta_{\mathcal{A},\Omega}^{\frac{1}{2}}$$

Modular Theory

These objects satisfy properties which *a priori* are not obvious at all:

$$\Delta^{it}\Omega = \Omega, \quad \Delta^{it}\mathcal{A}\Delta^{-it} = \mathcal{A}, \quad J\mathcal{A}J = \mathcal{A}'$$

Modular Theory

These objects satisfy properties which *a priori* are not obvious at all:

$$\Delta^{it}\Omega = \Omega, \quad \Delta^{it}\mathcal{A}\Delta^{-it} = \mathcal{A}, \quad J\mathcal{A}J = \mathcal{A}'$$

Example: matrix case

Let $\mathcal{H} := M_n(\mathbb{C})$ with $\langle A, B \rangle := \operatorname{tr}(A^*B)$. We take $\Omega = \rho^{\frac{1}{2}}$ (from $A \mapsto \operatorname{tr}(\rho A)$) Writing $L[A] : B \mapsto AB$ we have $\mathcal{A} := L[M_n(\mathbb{C})] \subset B(M_n(\mathbb{C}))$. Then $\mathcal{A}' = R[M_n(\mathbb{C})]$ (right multipliers). The modular objects now are:

$$J(A) = A^*, \quad \Delta^{it}(A) = \rho^{it} A \rho^{-it}$$

so that indeed

$$J\Delta^{\frac{1}{2}}(L[A]\rho^{\frac{1}{2}}) = J(\rho^{\frac{1}{2}}(A\rho^{\frac{1}{2}})\rho^{-\frac{1}{2}}) = A^*\rho^{\frac{1}{2}} = L[A]^*\rho^{\frac{1}{2}}$$

Theorem (Takesaki 1970)

Let $(\mathcal{H}, \mathcal{A}(\cdot), U, \Omega)$ be a QFT. Then the state $\langle \Omega, \cdot \Omega \rangle$ on $\mathcal{A}(\mathcal{O})$ is at "temperature" β w.r.t. the time evolution U((t, 0)) if and only if

$$\Delta_{\mathcal{A}(\mathcal{O}),\Omega}^{it} = U\left(\left(-\frac{\beta t}{2},0\right)\right)$$

Theorem (Borchers 1992)

Let $(\mathcal{H}, \mathcal{A}(\cdot), U, \Omega)$ be a QFT, such that U is a **positive energy** representation and Ω is a **vacuum vector** for U. Then

$$\Delta^{it}_{\mathcal{A}(W),\Omega} U(\vec{x}) \Delta^{-it}_{\mathcal{A}(W),\Omega} = U(\Lambda_{2\pi t} \vec{x})$$

Summary: QFT & Mod. Th.

In Summary:

• QFT: von Neumann Algebras $\mathcal{A}(\mathcal{O})$ with **inclusion** and **commutation** relations + **unitary representation** U of \mathbb{R}^2 + a state ω (sometimes given by a vector Ω).

Summary: QFT & Mod. Th.

In Summary:

- QFT: von Neumann Algebras A(O) with inclusion and commutation relations + unitary representation U of R² + a state ω (sometimes given by a vector Ω).
- Modular theory: von Neumann Algebra and a standard vector \Rightarrow the modular group Δ^{it} and the modular conjugation J 'for free'.

Summary: QFT & Mod. Th.

In Summary:

- QFT: von Neumann Algebras $\mathcal{A}(\mathcal{O})$ with **inclusion** and **commutation** relations + **unitary representation** U of \mathbb{R}^2 + a state ω (sometimes given by a vector Ω).
- Modular theory: von Neumann Algebra and a standard vector \Rightarrow the modular group Δ^{it} and the modular conjugation J 'for free'.
- We're interested in the interaction between QFT and modular theory.

Standard Pair

A simpler situation: suppose $\mathcal{A} \subset B(\mathcal{H})$ VNA, and $U : \mathbb{R} \to \mathcal{U}(\mathcal{H})$ *positively generated*. Geometrical assumption:

$$U(t)\mathcal{A}U(-t) \subset \mathcal{A} \quad \text{for } t \ge 0$$

The picture we have in mind:

A simpler situation: suppose $\mathcal{A} \subset B(\mathcal{H})$ VNA, and $U : \mathbb{R} \to \mathcal{U}(\mathcal{H})$ *positively generated*. Geometrical assumption:

$$U(t)\mathcal{A}U(-t)\subset \mathcal{A} \quad \text{for } t\geq 0$$

The picture we have in mind:

$$\mathcal{A}' \xrightarrow{U} \mathcal{A}$$

Theorem (Borchers 1992)

If (\mathcal{A},U) as above, and \varOmega is standard for \mathcal{A} and invariant for U, then

$$\Delta_{\mathcal{A},\Omega}^{it}U(s)\Delta_{\mathcal{A},\Omega}^{-it} = U(e^{-2\pi t}s)$$

Halfsided Modular Inclusions

Let us now introduce subalgebras; $A_1 = U(1)AU(-1)$ is a natural one.

Halfsided Modular Inclusions

Let us now introduce subalgebras; $A_1 = U(1)AU(-1)$ is a natural one.

Then A_1 satisfies a property only concerning the modular group:

$$\Delta_{\mathcal{A},\Omega}^{it}\mathcal{A}_1 \Delta_{\mathcal{A},\Omega}^{-it} = U(e^{-2\pi t})\mathcal{A}U(-e^{-2\pi t}) \subset U(1)\mathcal{A}U(-1) = \mathcal{A}_1$$
 for $t \leq 0$.

Let us now introduce subalgebras; $A_1 = U(1)AU(-1)$ is a natural one.

Then A_1 satisfies a property only concerning the modular group:

$$\Delta_{\mathcal{A},\Omega}^{it}\mathcal{A}_1 \Delta_{\mathcal{A},\Omega}^{-it} = U(e^{-2\pi t})\mathcal{A}U(-e^{-2\pi t}) \subset U(1)\mathcal{A}U(-1) = \mathcal{A}_1$$

for t < 0.

This is special! We call $A_1 \subset A$ a half-sided modular inclusion (w.r.t. Ω).

Std. Pairs and HSMIs

It is a totally non-obvious fact that *all* half-sided modular inclusions arise this way (Wiesbrock 1993, Araki-Zsido 2004):

$$\begin{cases} \mathcal{A}_1 \subset \mathcal{A}_2 \middle| \begin{array}{l} \mathcal{\Omega} \text{ std. for } \mathcal{A}_1 \\ \mathcal{\Delta}_{\mathcal{A}, \Omega}^{it} \mathcal{A}_1 \mathcal{\Delta}_{\mathcal{A}, \Omega}^{-it} \subset \mathcal{A}_1 \\ \text{ for all } t \leq 0 \end{array} \right\} \leftrightarrow \begin{cases} U : \mathbb{R} \to \mathcal{U}(\mathbb{R}) \middle| \begin{array}{l} U \text{ pos. gen.} \\ U(t) \mathcal{A} U(-t) \subset \mathcal{A} \\ \text{ for all } t \geq 0 \end{cases} \end{cases} \\ \mathcal{A}_1 \quad \mapsto \quad \mathcal{\Delta}_{\mathcal{A}_1}^{if(t)} \mathcal{\Delta}_{\mathcal{A}}^{-if(t)} \\ U(1) \mathcal{A} U(-1) \quad \leftarrow U \end{cases}$$

FAU

It is a totally non-obvious fact that *all* half-sided modular inclusions arise this way (Wiesbrock 1993, Araki-Zsido 2004):

$$\begin{cases} \mathcal{A}_1 \subset \mathcal{A}_2 \middle| \begin{array}{l} \mathcal{\Omega} \text{ std. for } \mathcal{A}_1 \\ \mathcal{\Delta}_{\mathcal{A}, \Omega}^{it} \mathcal{A}_1 \mathcal{\Delta}_{\mathcal{A}, \Omega}^{-it} \subset \mathcal{A}_1 \\ \text{ for all } t \leq 0 \end{array} \right\} \leftrightarrow \begin{cases} U : \mathbb{R} \to \mathcal{U}(\mathbb{R}) \middle| \begin{array}{l} U \text{ pos. gen.} \\ U(t) \mathcal{A} U(-t) \subset \mathcal{A} \\ \text{ for all } t \geq 0 \end{cases} \end{cases} \\ \mathcal{A}_1 \quad \mapsto \quad \mathcal{\Delta}_{\mathcal{A}_1}^{if(t)} \mathcal{\Delta}_{\mathcal{A}}^{-if(t)} \\ U(1) \mathcal{A} U(-1) \quad \leftarrow U \end{cases}$$

From the perspective of the half-sided modular inclusions, there is a *hidden* geometry.

Back to the wedge

Dimension higher: \mathcal{A} VNA and $U : \mathbb{R}^2 \to \mathcal{U}(\mathcal{H})$ **positive energy** rep. s.t. $U(\vec{x})\mathcal{A}U(-\vec{x}) \subset \mathcal{A}$ for $\vec{x} \in W$

This is for example the case for $\mathcal{A}(W)$ in a vacuum QFT.

RSME 2025 I. Koot Modular theory in AQFT

Back to the wedge

Dimension higher: \mathcal{A} VNA and $U : \mathbb{R}^2 \to \mathcal{U}(\mathcal{H})$ positive energy rep. s.t.

 $U(\vec{x})\mathcal{A}U(-\vec{x})\subset \mathcal{A} \quad \text{for } \vec{x}\in W$

This is for example the case for $\mathcal{A}(W)$ in a vacuum QFT.

Theorem (Borchers 1992)

In the above situation we have

$$\Delta^{it}_{\mathcal{A},\Omega}U(\vec{x})\Delta^{-it}_{\mathcal{A},\Omega} = U(\Lambda_{-2\pi t}\vec{x})$$

where Λ_s are the so called **Lorentz boosts**.

The other direction?

We are working on the following question:

Open Question

When can we reconstruct U from \mathcal{A} and \mathcal{A}_1 as in the 1-dimensional case?

The inclusion $A_1 \subset A$ is a no longer a HSMI; but with an **extra** direction (corresponding to spatial translations) we can recognize two HSMI's along the lightrays! We're currently investigating when the two

standard pair directions commute.

• Algebraic Quantum Field Theory: net $\mathcal{A}(\mathcal{O})$, representation $U(\vec{x})$, and a state ω .

- Algebraic Quantum Field Theory: net $\mathcal{A}(\mathcal{O}),$ representation $U(\vec{x}),$ and a state $\omega.$
- Modular Theory: from VNA \mathcal{A} and standard vector Ω we get S, Δ^{it} , J; usually very hard to calculate.

- Algebraic Quantum Field Theory: net $\mathcal{A}(\mathcal{O})$, representation $U(\vec{x})$, and a state ω .
- Modular Theory: from VNA \mathcal{A} and standard vector Ω we get S, Δ^{it} , J; usually very hard to calculate.
- Modular Theory shows up in AQFT (as well as in other places).

- Algebraic Quantum Field Theory: net $\mathcal{A}(\mathcal{O})$, representation $U(\vec{x})$, and a state ω .
- Modular Theory: from VNA \mathcal{A} and standard vector Ω we get S, Δ^{it} , J; usually very hard to calculate.
- Modular Theory shows up in AQFT (as well as in other places).
- There is a correspondence between standard pairs (VNA + pos. gen. rep.) and half-sided modular inclusions (VNA + subVNA)

- Algebraic Quantum Field Theory: net $\mathcal{A}(\mathcal{O})$, representation $U(\vec{x})$, and a state ω .
- Modular Theory: from VNA \mathcal{A} and standard vector Ω we get S, Δ^{it} , J; usually very hard to calculate.
- Modular Theory shows up in AQFT (as well as in other places).
- There is a correspondence between standard pairs (VNA + pos. gen. rep.) and half-sided modular inclusions (VNA + subVNA)
- We're researching a generalization to higher dimensions.

Friedrich-Alexander-Universität Erlangen-Nürnberg

Modular theory in Algebraic Quantum Field Theory Half-sided Modular Inclusions, Standard Pairs and beyond

lan Koot

RSME Congress of Young Researchers 2025 January 16, 2025