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Algebraic QFT

Mathematical objects (for AQFT in R2):
• Hilbert space H

• For ‘each’ O ⊂ R2 a von Neumann algebra A(O) ⊂ B(H) (collect them
as A∞)
• A representation U : R2 → U(H)
• A vector Ω ∈ H or a state ω on A∞

Satisfying conditions inspired by physical interpretation:
• A(O)sa: observables that are measurable in spacetime region O.
• U(x⃗): translation between reference frames
• ω: expected value for observables.
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Algebraic QFT

Mathematical objects: H Hilbert space,
A(O) ⊂ B(H) von Neumann Algebras,
U : R2 → U(H).

• O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2)
• O1 and O2 spacelike separated⇒A(O1)

and A(O2) commute.
• U(x⃗)A(O)U(x⃗)∗ = A(O + x⃗)

Where are the ‘fields’?
Classically: field is a value at each point in
spacetime.
Quantum: field is an observable at each
point in spacetime.
But these are usually singular/unbounded!
→ we ‘smear’ them
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Modular Theory

Let A ⊂ B(H) von Neumann Algebra, Ω ∈ H:

cyclic: AΩ = H, separating: AΩ = 0⇒ A = 0

Cyclic (resp. separating) for A is equivalent to separating (resp. cyclic) for
A′.

If Ω is standard for A (i.e. cyclic and separating) one defines

SA,Ω : AΩ → AΩ, AΩ 7→ A∗Ω

Looks innocent, is usually unbounded, with SA′,Ω = (SA,Ω)∗. Polar
decomposition (with abuse of notation)

SA,Ω = JA,Ω∆
1
2
A,Ω
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Modular Theory

These objects satisfy properties which a priori are not obvious at all:

∆itΩ = Ω, ∆itA∆−it = A, JAJ = A′

Example: matrix case
Let H := Mn(C) with ⟨A, B⟩ := tr(A∗B).
We take Ω = ρ

1
2 (from A 7→ tr(ρA))

Writing L[A] : B 7→ AB we have A := L[Mn(C)] ⊂ B(Mn(C)). Then
A′ = R[Mn(C)] (right multipliers).
The modular objects now are:

J(A) = A∗, ∆it(A) = ρitAρ−it

so that indeed

J∆
1
2(L[A]ρ

1
2) = J(ρ

1
2(Aρ

1
2)ρ−

1
2) = A∗ρ

1
2 = L[A]∗ρ

1
2
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How do they combine?

Theorem (Takesaki 1970)
Let (H,A(·), U, Ω) be a QFT. Then the state ⟨Ω, ·Ω⟩ on A(O) is at
“temperature” β w.r.t. the time evolution U((t, 0)) if and only if

∆it
A(O),Ω = U

((
−βt

2
, 0
))

Theorem (Borchers 1992)
Let (H,A(·), U, Ω) be a QFT, such that U is a positive energy
representation and Ω is a vacuum vector for U . Then

∆it
A(W ),ΩU(x⃗)∆−it

A(W ),Ω = U(Λ2πtx⃗)
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Summary: QFT & Mod. Th.

In Summary:
• QFT: von Neumann Algebras A(O) with inclusion and commutation

relations + unitary representation U of R2 + a state ω (sometimes
given by a vector Ω).

• Modular theory: von Neumann Algebra and a standard vector⇒ the
modular group ∆it and the modular conjugation J ‘for free’.
• We’re interested in the interaction between QFT and modular theory.
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Standard Pair

A simpler situation: suppose A ⊂ B(H) VNA, and U : R→ U(H) positively
generated. Geometrical assumption:

U(t)AU(−t) ⊂ A for t ≥ 0

The picture we have in mind:

Theorem (Borchers 1992)
If (A, U) as above, and Ω is standard for A and invariant for U , then

∆it
A,ΩU(s)∆−it

A,Ω = U(e−2πts)
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Halfsided Modular Inclusions

Let us now introduce subalgebras; A1 = U(1)AU(−1) is a natural one.

Then A1 satisfies a property only concerning the modular group:

∆it
A,ΩA1∆

−it
A,Ω = U(e−2πt)AU(−e−2πt) ⊂ U(1)AU(−1) = A1

for t ≤ 0.
This is special! We call A1 ⊂ A a half-sided modular inclusion (w.r.t. Ω).
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Std. Pairs and HSMIs

It is a totally non-obvious fact that all half-sided modular inclusions arise this
way (Wiesbrock 1993, Araki-Zsido 2004):A1 ⊂ A2

∣∣∣∣∣∣
Ω std. for A1
∆it
A,ΩA1∆

−it
A,Ω ⊂ A1

for all t ≤ 0

↔
U : R→ U(R)

∣∣∣∣∣∣
U pos. gen.
U(t)AU(−t) ⊂ A
for all t ≥ 0


A1 7→ ∆

if(t)
A1

∆
−if(t)
A

U(1)AU(−1) ← [ U

From the perspective of the half-sided modular inclusions, there is a hidden
geometry.
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Back to the wedge

Dimension higher: A VNA and
U : R2 → U(H) positive energy rep. s.t.

U(x⃗)AU(−x⃗) ⊂ A for x⃗ ∈ W

This is for example the case for A(W ) in a
vacuum QFT.

Theorem (Borchers 1992)
In the above situation we have

∆it
A,ΩU(x⃗)∆−it

A,Ω = U(Λ−2πtx⃗)

where Λs are the so called Lorentz boosts.
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The other direction?

We are working on the following question:

Open Question
When can we reconstruct U from A and A1
as in the 1-dimensional case?

The inclusion A1 ⊂ A is a no longer a HSMI;
but with an extra direction (corresponding to
spatial translations) we can recognize two
HSMI’s along the lightrays!
We’re currently investigating when the two
standard pair directions commute.
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Summary

• Algebraic Quantum Field Theory: net A(O), representation U(x⃗), and a
state ω.

• Modular Theory: from VNA A and standard vector Ω we get S, ∆it, J ;
usually very hard to calculate.
• Modular Theory shows up in AQFT (as well as in other places).
• There is a correspondence between standard pairs (VNA + pos. gen.

rep.) and half-sided modular inclusions (VNA + subVNA)
• We’re researching a generalization to higher dimensions.
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