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Probability distributions

We start with a finite space X = {1, 2, . . . , d} and a probability distribution P : X → R.
We are interested in understanding P n on Xn, where

P n(x⃗) = P (x1)P (x2) · · ·P (xn).

It is very natural to associate the following probability distribution to x⃗:

EDn[x⃗](i) := 1
n

n∑
k=1

δi,xk
= |{k : xk = i}|

n
.

This is the empirical distribution associated to x⃗. Intuitively, we would expect to see an
outcome whose empirical distribution is ‘close to’ the true probability distribution. But why
exactly? And what does ‘close to’ mean?
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Repeated measurement & ED

The crucial observation is the following:

P n(x⃗) = P (x1)P (x2) · · ·P (xn) =
d∏
i=1

P (i)nEDn[x⃗](i) =

(
d∏
i=1

P (i)EDn[x⃗](i)

)n

Note:
• The probability of x⃗ occurring depends only on its empirical distribution.
• If we have a sequence of possible outcomes x⃗n ∈ Xn with ‘similar’ empirical

distributions, then the likelihood P n(x⃗n) will decay exponentially, with its exponential
factor given by a function of the empirical distribution.
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Entropy! And Relative Entropy!

We note:

P n(x⃗) =
d∏
i=1

P (i)nEDn[x⃗](i) =
d∏
i=1

(
P (i)

EDn[x⃗](i)

)nEDn[x⃗](i)
EDn[x⃗](i)nEDn[x⃗](i)

We can write this as follows:

Proposition
Let X be a finite set and P : X → R a probability distribution. Then we have

P n(x⃗) := exp (−n(S(EDn[x⃗], P ) + S(EDn[x⃗])))

What happens if P n(x⃗) = 0?
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Types and Type classes

It is at this point very natural to group all possible outcomes by their empirical
distributions.

Definition
An probability distribution P : X → R is called an n-type if there is a x⃗ ∈ Xn so that
P = EDn[x⃗]. It is called a type if it is an n-type for some n ∈ N.
The type class associated to the n-type P is the set

Tn(P ) := {x⃗ ∈ Xn | P = EDn[x⃗]}

Note that for any type P = EDn[x⃗] and probability distribution Q we have

Qn(Tn(P )) :=
∑

y⃗∈Tn(P )

Qn(y⃗) = |Tn(P )|Qn(x⃗)
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The Method of Types

• The element in Xn that has the highest likelihood of occurring with respect to P n is
obviously x⃗ = (i, i, i, . . . , i), where i ∈ X is an element for which P is maximal.
However, unless P is a delta distribution, we never see such a result. Why?

• Answer: Because the probability of that outcome occurring drops exponentially, and
there is only 1 element with that empirical distribution!

• So the more interesting question is: which types are very likely to occur? And how
likely are they? The answer to this question (and applications of this answer) is called
the Method of Types.
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To summarize:
• The empirical distribution of an outcome determines its likelihood of occurring;
• The entropy and relative entropy naturally show up as decay rates for the

probability;
• The method of types is the method of using the knowledge of which types are likely

to occur to prove results.
• Specifically, we have

P n(x⃗) =
d∏
i

P (i)nEDn[x⃗](i) = e−n(S(EDn[x⃗])+S(EDn[x⃗],P ))

for

S(P ) = −
d∑
i=1

P (i) lnP (i),

S(P,Q) =
d∑
i=1

P (i) lnP (i) − P (i) lnQ(i).
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Necessary relations

The method of types relies on the following observations:
• Qn(Tn(P )) = e−nS(P,Q)P n(Tn(P )) for all probability distributions Q and n-types P ;
• P n(Tn(Q)) ≤ P n(Tn(P )) for all types n-types P and Q;
• |EDn[Xn]| ≤ (n + 1)d;
•

⋃
Q∈EDn[Xn]

Tn(Q) = Xn;

FAU I. Koot RE and the QMoT June 1 2023 10/28



Probability asymptotics

Proposition
Let P be an n-type and Q a probability distribution on X . Then

1
(n + 1)d

e−nS(P,Q) ≤ Qn(Tn(P )) ≤ e−nS(P,Q).

Proof.
Note that

1 =
∑

Q∈EDn[Xn]

P n(Tn(Q)) ≤ (n + 1)dP (Tn(P )).

So
(n + 1)−d ≤ P n(Tn(P )) ≤ 1

and so the result follows.

So the decay rate of the probability of the type P occurring under the distribution Q is
equal to S(P,Q).
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Set Size Asymptotics

Consequently, we see that the size of the type class of P grows with exponential rate
S(P ):

Corollary
Let P be an n-type. Then

1
(n + 1)d

enS(P ) ≤ |Tn(P )| ≤ enS(P ).

Proof.
If x⃗ ∈ |Tn(P )|, then P n(Tn(P )) = |Tn(P )|P (x⃗) = |Tn(P )|e−nS(P ). So the result follows
from

(n + 1)−d ≤ P n(Tn(P )) ≤ 1.

Note that this is for example also a really easy way to show that S(P ) ≤ ln d for types P ,
because |Tn(P )| ≤ |Xn| = dn and

S(P ) ≤ d ln(n + 1)
n

+ ln(d) → ln(d)
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Sanov’s Theorem

As an immediate application, we can prove Sanov’s theorem:

Theorem
Let E ⊆ Pr(X), and P ∈ Pr(X). Then

P n(E) :=
∑

Q∈E∩EDn[Xn]

P n(Tn(Q)) ≤ (n + 1)d sup
Q∈E

(
e−nS(Q,P )

)

It is proven by simply bounding all the terms.
The Theorem shows us that if E is at least some ε > 0 removed from P in terms of
relative entropy, then the probability of E occurring decays exponentially, and the
exponent is given by the entropy distance. We therefore define for all P ∈ Pr(X) the
‘entropy typical subsets’

An,ε(P ) := {x⃗ ∈ Xn | S(EDn[x⃗], P ) < ε}
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Chernoff-Stein Lemma

In order to better compare to the noncommutative setting, where no analogue of the
empirical distribution exists (yet), we prove a strengthening of Sanov’s theorem:

Theorem (Chernoff-Stein Lemma)
Let P,Q ∈ Pr(X) and let Bn ⊆ Xn be a sequence of subsets such that
limn→∞ P (Bn) = 1. Then we have

lim inf
n→∞

−1
n

lnQ(Bn) ≥ S(P,Q)

Furthermore, there is a sequence that achieves this rate (independent of Q).

The idea is that typical sequences of sets for P (i.e. sequences Bn ⊆ Xn such that
P n(Bn) → 1) must have increasingly large intersections with the entropy typical subsets
An,ε(P ), and those only decay as e−nS(P,Q).
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To summarize:
• For P an n-type and Q a probability distribution, we now know that

1
(n + 1)d

e−nS(P,Q) ≤ Qn(Tn(P ))≤ e−nS(P,Q)

1
(n + 1)d

enS(P ) ≤ |Tn(P )| ≤ enS(P )

Compare this also to the expression Qn(x⃗) = exp(−n(S(P ) + S(P,Q)) (for
P = EDn[x⃗]); a part of the probability is compensated by the size of the type class, a
part is not.

• By Sanov’s theorem, we see that the sets

An,ε(P ) := {x⃗ ∈ Xn | S(EDn[x⃗], P ) < ε}

with vectors of types we are likely to see under P become exponentially likely.
• The Chernoff-Stein Lemma tells us that for a P -typical sequence of sets Bn ⊂ Xn

(i.e. such that limn→∞ P n(Bn) = 1), the Q-probability cannot fall off faster than
exponentially with rate S(P,Q).
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Noncommutative Probability
Theory

In our research we are interested in the noncommutative analogue of Probability Theory
and Information Theory; this translation is made as follows.
• To each finite space (or measure space) X we can associate the von Neumann

Algebra L∞(X).
• To each probability distribution P ∈ Pr(X) (or probability measure) we can associate

the state (= positive and unital linear functional) EP given by the expectation value.
• Events A (= measurable subsets of X) correspond to the projections in L∞(X) given

by the characteristic functions χA. In particular, in the finite case, we can recover
P (i) = EP [χ{i}].

So we consider von Neumann algebras A with states ω = tr[Dω·] ∈ S(A). Furthermore,
we have the noncommutative analogues

S(ω) = −tr[Dω lnDω]
S(ω, ψ) − tr[Dω lnDω −Dω lnDψ]
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What doesn’t work

There is no generally accepted noncommutative equivalent to the method of types. This
starts with the lack of a definition of an empirical distribution and of a type class. The
empirical distribution associates a state to a measurement outcome. This means that in
this noncommutative case, we are looking for a map

EDn : P(A⊗n) ⊃ Pn → S(A).

And a set of projections Tn(ω) for ω ∈ EDn[Pn].
We can use our ‘dictionary’ to translate properties that the classical concepts satisfy:
• (EDn[p])⊗n(p) = e−nS(EDn[p]).
• ω⊗n(p) = (EDn[p])⊗n(p)e−nS(EDn[p],ω).
• EDn[p] maximizes the expression ω 7→ ω⊗n(p).
• . . .

However, many of these properties cannot be realized, are ambiguous or contradict each
other.
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What does work

As mentioned before, we have a good definition for relative entropy. Even though the
empirical distribution and type classes do not have an equivalent, the Chernoff-Stein
Lemma does hold:

Theorem
Let A be finite dimensional, and ϕ, ψ ∈ S(A). Then every sequence of projections
pn ∈ P(A⊗n) that satisfies limn→∞ ψ⊗n(pn) = 1 also satisfies

lim
n→∞

−1
n

ln(ϕ(pn)) ≤ S(ψ, ϕ).

Furthermore, there is a sequence pn that achieves this rate (this depends on ϕ and ψ).

This was proven in [Bjelakovic2005] based on results from [Hiai1991].
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How not to prove the
Noncommutative C.-S. Lemma
We cannot prove this by using empirical distributions and the method of types, because
those don’t exist in this setting. The following example highlights some difficulties:
Let A = B(H) (with dim(H) < ∞). Let ωv(A) := ⟨v, Av⟩. Then S(ωw, ωv) = ∞ if v and
w are linearly independent.
Clearly, the projection |w⊗n⟩ ⟨w⊗n| is typical for ωw: in a technical sense (since
(ωw)⊗n(|w⊗n⟩ ⟨w⊗n|) = 1 for all n), but also conceptually. However,

ω⊗n
v (|w⊗n⟩ ⟨w⊗n|) = |⟨v, w⟩|2n

does not reach the decay rate of ∞ if ⟨v, w⟩ ≠ 0. What does reach the decay rate is the
projection onto

Wn := 1√
Cn

(
v⊥ ⊗ w ⊗ . . .⊗ w + w ⊗ v⊥ ⊗ . . .⊗ w + . . . + w ⊗ w ⊗ . . .⊗ v⊥)

with the normalization Cn := n(1 + (n− 1)|⟨w, v⊥⟩|2). It is typical:

⟨w⊗n, |Wn⟩ ⟨Wn|w⊗n⟩ = n2|⟨w, v⊥⟩|2

Cn
→

{
0 if ⟨w, v⊥⟩ = 0
1 else

and also ⟨v⊗n, |Wn⟩ ⟨Wn| v⊗n⟩ = 0.
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How to prove the Noncommutative
C.-S. Lemma

Instead, it turns out we can actually reduce to the commutative case. This is because
there exists a commutative subalgebra Dl such that

S(ψ⊗l, φ⊗l) − S(ψ⊗l|Dl
, φ⊗l|Dl

) ≤ |H| ln(l + 1)

The algebra Dl is the one generated by the spectral projections of Dφ⊗l = D⊗l
φ ; these are

precisely the projections
T φl (Q) :=

∨
x⃗∈Tl(Q)

(pφ)⊗x⃗

where Dϕ =
∑

k λkp
φ
k und (pφ)⊗x⃗ = pφx1

⊗ pφx2
⊗ · · · ⊗ pφxl

.
One can then use the commutative results on Dl, together with the fact that S(ψ⊗l, φ⊗l)
to arrive at the desired result.
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Summary

To summarize:
• Even though there exist notions of noncommutative entropy and relative entropy,

there exist no generally accepted notion of the method of types in the
noncommutative setting. One of the more fundamental problems seems to be that
projections can be ‘typical’ in a lot of different ways.

• However, there does exist a noncommutative version of the Chernoff-Stein Lemma,
which can be used to give an operational meaning to the relative entropy. Specifically:
the relative entropy S(ψ, φ) is the most extreme fall off in φ-probability that we can
get for projections that are still typical for ψ.

• The crucial observation is that for large enough tensor powers, the noncommutative
relative entropy can be approximated by a commutative relative entropy.
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Outlook/Questions

Questions we are interested in, are for example:
• How should we interpret the reduction to the commutative subalgebra?
• Could one use the Chernoff-Stein characterization to give more intuitive proofs of the

known properties of relative entropy?
• For infinite dimensional algebras, a notion of relative entropy exists. Does the

Chernoff-Stein characterization still hold for that setting?
• If so, can we get a better understanding of for example mutual information and

entanglement entropy in the QFT setting?
• Modular theory plays a vital role in the definition of relative entropy in infinite

dimensions. Can we see this from such a Chernoff-Stein characterization? Can we
maybe even learn more about modular theory from this perspective?
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Weakly Typical vs. Entropy Typical

For the proof of the Chernoff-Stein Lemma, we need some more control over what
probability the individual elements in our typical sets have. We therefore define the
weakly typical sets

Aweak
n,ε (P,Q) := {x⃗ ∈ Xn|P n(x⃗)e−n(S(P,Q)+ε) ≤ Qn(x⃗) ≤ P n(x⃗)e−n(S(P,Q)−ε).}

Why this expression? We recall that if P = EDn[x⃗] we have the equality

Qn(x⃗) = P n(x⃗)e−nS(P,Q).

So one might expect that outcomes that have empirical distributions that are similar to P ,
will satisfy Qn(x⃗) ≈ P n(x⃗)e−nS(P,Q).
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Entropy Typical ⇒ Weakly Typical

Proposition
Let P,Q ∈ Pr(X). For every ε > 0 there is a ε′ > 0 such that An,ε(P ) ⊆ Aweak

n,ε′ (P,Q)
for all n ∈ N. Conversely, every small enough ε′ > 0, there is a ε > 0 such that
An,ε(P ) ⊆ Aweak

n,ε′ (P,Q) for every n ∈ N.

The proof relies on the following observation:

P n(x⃗)e−n(S(P,Q)−ε) < Qn(x⃗) ⇒ enε <
Qn(x⃗)

P n(x⃗)e−nS(P,Q) =
d∏
i=1

Q(i)nEDn[x⃗](i)

P (i)nEDn[x⃗](i) · P (i)nP (i)

Q(i)nP (i)

=
d∏
i=1

(
Q(i)
P (i)

)n(EDn[x⃗](i)−P (i))

and the fact that 1
2(∥EDn[x⃗] − P∥1)2 ≤ S(EDn[x⃗], P ).
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Proof of CS-Lemma

Let ε > 0. There is a δ > 0 such that An,δ(P1) ⊆ Aweak
n,ε (P1, P2). There is also an n ∈ N

such that P n
1 (Bn) > 1 − ε and P n

1 (An,δ(P1)) > 1 − ε.
Then P n

1 (Aweak
n,ε (P1, P2)) > 1 − ε, and therefore

P n
1 ((Bn ∩ Aweak

n,ε (P1, P2))c) = P n
1 ((Bn)c ∪ (Aweak

n,ε (P1, P2))c) < 2ε.

But

(1 − 2ε)e−n(S(P1,P2)+ε) ≤ P n
1 (Bn ∩ Aweak

n,ε (P1, P2))e−n(S(P1,P2)+ε)

≤ P n
2 (Bn ∩ Aweak

n,ε (P1, P2)) ≤ P n
2 (Bn)
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Summary of Commutative Part

• The method of types tells us that

1
(n + 1)d

e−nS(P,Q) ≤ Qn(Tn(P ))≤ e−nS(P,Q)

1
(n + 1)d

enS(P ) ≤ |Tn(P )| ≤ enS(P )

i.e. the entropy of P reflects the size of the type class of P , and the relative entropy
reflects the probability of the type class of P with respect to Q.

• This leads directly to Sanov’s theorem, which says that for large enough n the only
types that will likely occur are those with low relative entropy with respect to the
probability distribution under consideration.

• We can then translate that fact to the Chernoff-Stein Lemma: any sequence of sets
that becomes arbitrarily likely for P , cannot decay faster than e−nS(P,Q) in
Q-probability (and there is a sequence of sets that reaches this rate).
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