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The Setting =AU

e A, a (C*-algebra: quasi-local algebra
® o, a one-parameter group of automorphisms:

time evolution
® o a KMS-state on A, for o; : thermal state

e A C A, aC*algebra: wedge algebra

| | | _ GNS = (2 € H,, cyclic vector for A.
T N ° + KMS = (2 is standard for A.

Under ‘loose assumptions’ {2 is standard for A.

Q: What is the modular theory of A w.r.t. {27
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Modular Theory: what? EAU

Standard vector {2 € H for VNA A C B(H):
(cyclic): AQ = H, (separating): VAc A: AR =0=A=0
Construct modular objects:
S A — A, AN — AT
S=JA7 and A'AATIE = 4
Actually more abstract: H C H a closed real subspace is standard subspace if
(cyclic): H +1H = H, (separating): H NiH = {0}
Construct modular objects:
S:H+1H— H+11H, hi+ihy— hy—1ho
S=JA? and Al'H=H
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Modular Theory: why? EAU

Many reasons!

® Thermal states: Gibbs state <+ KMS state <+ Modular theory

® Modular nuclearity: local degrees of freedom & split property

® Modular localization: constructing a QF T from representation theory.
® Structure of algebra: classification and relation to commutant

In general, modular theory is hard to calculate. However:

Theorem (Bisognano-Wichmann)

A(W) and 2 of Wightman QFT = A’ is given by Lorentz boost.
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What is already known? EAU

The data that we have: After GNS it becomes:
® wa...stateon A e () € H cyclic for A
° o : R? — Aut(Ay) ey : R — U(H) preserving A
® woa(l)=wfor? € R ® u(T)f)={
* o(7)(A) C Aforz e W ® u(X)Au(—7) C Aforz e W.
Ao A
Vacuum (2 not standard | A"U(Z)A™" = U(A_o7s7)
Thermal | A" = u((—ft,0)) ?7
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What is already known? EAU

The data that we have: As standard subspace:

® wa...state on A, | |
o o R2 Aut(A) ® H C H,, C H std. subsp. inclusion

ey : R* — U(H) preserving Hy

® 2\ — = 2
wo o(F) =wior ¥ € R o w(r)H C Hforz e W

o a(F)(A) C Aforze W

Ao A
Vacuum| 2 notstandard | A"U(Z)A™" = U(A_orsT)
Thermal | AY = u((—p3t,0)) ?7
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Standard Pair EAU

One can prove 2D vacuum using 1D vacuum case:

Theorem (Borchers/Florig)

H C H standard subspace, U : R — U(H) positively generated, U(R>q)H C H.
Then

LU AL = Ule *™¢).

A pair (H,U) is called a standard pair. Note: In Ay and In OU satisfy CCR relations.
Consider the inclusion U(1)H C H. We have

AYUWH =U(e ™AL H = U1 U (e *™ -~ 1)H c U H
fort < 0.
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Line Picture EAU

So: H C H standard subspace, U : R — U(H) positively generated one-parameter
group, U(R>q)H C H can be summarized as:

® /1 corresponds to right half line;
® [/ corresponds to right translation;

e A corresponds to scaling.
Here we see geometrically: AY,U(1)H C H fort < 0.
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Halfsided Modular Inclusions

Definition
Halfsided Modular Inclusion: Inclusion H{ C Hy C H such that

A;]Z;Hl C Hy fort > 0.

Theorem (Wiesbrock/Araki-Zsido)
Let H{ C Ho C H be a Halfsided Modular Inclusion. Then

AZAY =U(1— ™)

defines a positively generated one-parameter group U : R — U(H).

H,

H,
&
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Standard Pairs and HSMI’s EAU

So there is a correspondence between standard
pairs and Half-sided Modular Inclusion:
(H,U) —~ U()HCH

(HQ, A];;f(t)ﬂgl(t)) — HyC H>

Q: Generalization to 2 Dimensions?

-10 5
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3. Generalization to 2 Dimensions



Chiral example EAU

(Modification of discussion in Borchers and Yngvasson (1999)) Consider:
®  C Hy C H positive HSMI;

e X C K, C K negative HSMI.

From this we construct the following data:

® The inclusion H Qr K C H QR K., CH Rc KC:
* The representation u(Z) = A\~ @ om0t/

But HSMI-Standard Pair correspondence: there is a positive energy representation
around!
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The new R representation FAU
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A change of perspective EAU
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A change of perspective EAU
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Lightray-shifted spaces EAU

How do we find such a U in general?
e HCH, CH

oy :R? — U(H) with u((¢,0)) = A"

® u(¥)Hy = Hy, forall ¥ € R?

® w(ZX)H C Hforall# e W

There are hidden HSMI’s around! We construct

Hp = \[ u((t,=t)) H C Hox
t>0

Hy = \/u((—t, —1)H C Hoo
t>0
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4. Wedge-Modular Inclusions
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Wedge-Modular Inclusions

Definition
Let H C Hyo C H be an inclusion of standard subspaces, u : R — U(H) a strongly

continuous one-parameter group such that

® u(x)Hy = Hy (S0 we extend u with A, )
o y(¥)H C Hfori e W

e HiNHrp=H.

“Theorem”™
The Uy and Up from the HSMI's H; C H and Hp C H commute.
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Wedge-Modular Inclusions

“Theorem™
Let H C Hoo C H withu : R — U(H) a Wedge-Modular Inclusion. Then there exists

a positive energy representation U R — U (‘H ) defined by
: it A12t A —it
U(2sinh(27t),0) = A A7H AHZO

U(0,2(cosh(27t) — 1)) = A“f ATIAT AY

We then have
1
Ay Ul

F)AG = ALU@) AL = U(A_gm?)
u(s)U(Z)u

(—s) = Ul
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A nontrivial example EAU

For the proof, we shift perspective to Hp and Hj, in particular Up and Uy..
Example: Take (Uy, Hy) irreducible standard pair, i.e.

e H = L*(R,d\)

°nAy= M[)\]

® In ol = i
Then we construct

.H:H6®HQCH®H

o UL(t) = Up(t) © 1

® Ur(t) = exp(itx|—cq(In Ag) @ OUy) = X|—cq(In Ag) @ Up(t) + X|—c,ge(ln Ap) @ 1
Because Uy(1)H N x[_ q(In Ag)H = {0}, one has

HiNHp=U;(-1)HNUpg(1) = U()(—l)H, ® Ug(1)H
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Conclusion

¢ \Wedge Modular Inclusions are a generalization of Halfsided Modular Inclusions
that model a wedge in a thermal equilibrium.

® |t seems that, similar to Halfsided Modular Inclusions, the global modular objects
and those of the wedge are related by a positive energy representation (but one

that can be extended to include scaling)
® By focusing on the ‘lightray spaces’, one can construct interesting inclusions of

standard subspaces.
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