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The Setting

• A∞ a C∗-algebra: quasi-local algebra
• αt a one-parameter group of automorphisms:

time evolution
• ω a KMS-state on A∞ for αt : thermal state
• A ⊂ A∞ a C∗-algebra: wedge algebra

GNS⇒ Ω ∈ Hω cyclic vector for A∞.
+ KMS⇒ Ω is standard for A∞.

Proposition
Under ‘loose assumptions’ Ω is standard for A.

Q: What is the modular theory of A w.r.t. Ω?
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Modular Theory: what?

Standard vector Ω ∈ H for VNA A ⊂ B(H):
(cyclic): AΩ = H, (separating): ∀A ∈ A : AΩ = 0⇒ A = 0

Construct modular objects:

S : AΩ → AΩ, AΩ 7→ A∗Ω

S = J∆
1
2 and ∆itA∆−it = A

Actually more abstract: H ⊂ H a closed real subspace is standard subspace if

(cyclic): H + iH = H, (separating): H ∩ iH = {0}
Construct modular objects:

S : H + iH → H + iH, h1 + ih2 7→ h1 − ih2

S = J∆
1
2 and ∆itH = H
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Modular Theory: why?

Many reasons!
• Thermal states: Gibbs state↔ KMS state↔ Modular theory
• Modular nuclearity: local degrees of freedom & split property
• Modular localization: constructing a QFT from representation theory.
• Structure of algebra: classification and relation to commutant
In general, modular theory is hard to calculate. However:

Theorem (Bisognano-Wichmann)
A(W ) and Ω of Wightman QFT ⇒ ∆it is given by Lorentz boost.
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What is already known?

The data that we have:

• ω a . . . state on A∞
• α : R2→ Aut(A∞)
• ω ◦ α(x⃗) = ω for x⃗ ∈ R2

• α(x⃗)(A) ⊂ A for x⃗ ∈ W

After GNS it becomes:

• Ω ∈ H cyclic for A∞
• u : R2→ U(H) preserving A∞
• u(x⃗)Ω = Ω
• u(x⃗)Au(−x⃗) ⊂ A for x⃗ ∈ W .

A∞ A
Vacuum Ω not standard ∆isU(x⃗)∆−is = U(Λ−2πsx⃗)
Thermal ∆it = u((−βt, 0)) ??
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Standard Pair

One can prove 2D vacuum using 1D vacuum case:

Theorem (Borchers/Florig)
H ⊂ H standard subspace, U : R→ U(H) positively generated, U(R≥0)H ⊂ H .
Then

∆is
HU(t)∆−is

H = U(e−2πst).

A pair (H, U) is called a standard pair. Note: ln ∆H and ln ∂U satisfy CCR relations.
Consider the inclusion U(1)H ⊂ H . We have

∆it
HU(1)H = U(e−2πt)∆it

HH = U(1)U(e−2πt − 1)H ⊂ U(1)H
for t ≤ 0.
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Line Picture

So: H ⊂ H standard subspace, U : R→ U(H) positively generated one-parameter
group, U(R≥0)H ⊂ H can be summarized as:

• H corresponds to right half line;
• U corresponds to right translation;
• ∆it

H corresponds to scaling.
Here we see geometrically: ∆it

HU(1)H ⊂ H for t ≤ 0.
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Halfsided Modular Inclusions

Definition
Halfsided Modular Inclusion: Inclusion H1 ⊂ H2 ⊂ H such that

∆−it
H2

H1 ⊂ H1 for t ≥ 0.

Theorem (Wiesbrock/Araki-Zsido)
Let H1 ⊂ H2 ⊂ H be a Halfsided Modular Inclusion. Then

∆−it
H2

∆it
H1 = U(1− e2πt)

defines a positively generated one-parameter group U : R→ U(H).
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Standard Pairs and HSMI’s

So there is a correspondence between standard
pairs and Half-sided Modular Inclusion:

(H, U) 7→ U(1)H ⊂ H

(H2, ∆
−if (t)
H2

∆
if (t)
H1

) ←[ H1 ⊂ H2

Q: Generalization to 2 Dimensions?
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Chiral example

(Modification of discussion in Borchers and Yngvasson (1999)) Consider:
• H ⊂ H∞ ⊂ H positive HSMI;
• K ⊂ K∞ ⊂ K negative HSMI.
From this we construct the following data:
• The inclusion H ⊗R K ⊂ H∞ ⊗R K∞ ⊂ H⊗C K;
• The representation u(x⃗) = ∆

−i(x0−x1)/2β
H∞

⊗∆
−i(x0+x1)/2β
K∞

But HSMI-Standard Pair correspondence: there is a positive energy representation
around!

U(x⃗) = UH

(
x0 − x1

2β

)
⊗ UK

(
x0 + x1

2β

)
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The new R2 representation
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A change of perspective
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A change of perspective

⇒
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Lightray-shifted spaces

How do we find such a U in general?
• H ⊂ H∞ ⊂ H
• u : R2→ U(H) with u((t, 0)) = ∆−it

H
• u(x⃗)H∞ = H∞ for all x⃗ ∈ R2

• u(x⃗)H ⊂ H for all x⃗ ∈ W

There are hidden HSMI’s around! We construct

HR :=
∨
t≥0

u((t,−t))H ⊂ H∞

HL :=
∨
t≥0

u((−t,−t))H ⊂ H∞
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Wedge-Modular Inclusions

Definition
Let H ⊂ H∞ ⊂ H be an inclusion of standard subspaces, u : R→ U(H) a strongly
continuous one-parameter group such that
• u(x)H∞ = H∞ (so we extend u with ∆it

H∞
)

• u(x⃗)H ⊂ H for x⃗ ∈ W
• HL ∩HR = H .

“Theorem”
The UL and UR from the HSMI’s HL ⊂ H and HR ⊂ H commute.

FAU I. Koot Thermal Field theories and WMI’s November 8, 2024 20/24



Wedge-Modular Inclusions

“Theorem”
Let H ⊂ H∞ ⊂ H with u : R→ U(H) a Wedge-Modular Inclusion. Then there exists
a positive energy representation U : R2→ U(H) defined by

U(2 sinh(2πt), 0) = ∆−it
H∞

∆i2t
H ∆−it

H∞
U(0, 2(cosh(2πt)− 1)) = ∆it

H∞
∆−it

H
∆−it

H∞
∆it

H

We then have

∆it
H∞

U(x⃗)∆−it
H∞

= ∆it
HU(x⃗)∆−it

H
= U(Λ−2πtx⃗)

u(s)U(x⃗)u(−s) = U(e−2πsx⃗)
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A nontrivial example

For the proof, we shift perspective to HR and HL, in particular UR and UL.
Example: Take (U0, H0) irreducible standard pair, i.e.
• H = L2(R, dλ)
• ln ∆0 = M [λ]
• ln ∂U0 = i d

dλ
Then we construct
• H = H ′0 ⊗H0 ⊂ H⊗H
• UL(t) = U0(t)⊗ 1
• UR(t) = exp(itχ[−c,c](ln ∆0)⊗ ∂U0) = χ[−c,c](ln ∆0)⊗ U0(t) + χ[−c,c]c(ln ∆0)⊗ 1
Because U0(1)H ∩ χ[−c,c](ln ∆0)H = {0}, one has

HL ∩HR = UL(−1)H ∩ UR(1) = U0(−1)H ′ ⊗ U0(1)H
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Conclusion

• Wedge Modular Inclusions are a generalization of Halfsided Modular Inclusions
that model a wedge in a thermal equilibrium.
• It seems that, similar to Halfsided Modular Inclusions, the global modular objects

and those of the wedge are related by a positive energy representation (but one
that can be extended to include scaling)
• By focusing on the ‘lightray spaces’, one can construct interesting inclusions of

standard subspaces.

FAU I. Koot Thermal Field theories and WMI’s November 8, 2024 23/24



Thermal Field theories and
Wedge-Modular Inclusions
LQP49, Erlangen

Ian Koot

Friedrich-Alexander-Universität Erlangen-Nürnberg November 8, 2024


	The Setting
	Standard Pairs and HSMI's
	Generalization to 2 Dimensions
	Wedge-Modular Inclusions

