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Unruh Effect in (Free) QFT: set up

Suppose we have some Free (Bosonic) field Theory
on R2: H1 is the one-particle space, H := F+(H1),
and

A := {exp(iϕ(f )) : f ∈ C∞
c (R2)} ⊂ B(H).

Additionally, we consider localized fields

A(W ) := {exp(iϕ(f )) : f ∈ C∞
c (W )} ⊂ A

We consider the free time evolution
αt(ϕ(x⃗)) = ϕ(x⃗ + (t, 0)), or αt(X) = eitHXe−itH .
The vacuum state Ω ∈ H is a ground state for H .
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Unruh Effect in (Free) QFT:
thermal state

• A KMS/thermal state ωβ at inverse temperature β
with respect to a time evolution σt means: for
A, B ∈ A, we have

ωβ(Aσt(B)) = ωβ(σt+iβ(B)A).

This is the proper generalization of Gibbs states.

• The Unruh effect can be formulated as follows
(Sewell 1982): on A(W ), the state A 7→ ⟨Ω, AΩ⟩
agrees with a thermal state ωβ which is in
equilibrium with respect to a different time
evolution σt.

• In this specific case, this new time evolution is
given by σt(ϕ(x⃗)) = ϕ(Λtx⃗) (the Lorentz boost).
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More general: Modular Theory

• Suppose A ⊂ B(H), and let Ω ∈ H be cyclic and separating (AΩ = H and
AΩ = 0 ⇒ A = 0).

• We define an (unbounded) anti-linear operator

S : AΩ → AΩ : AΩ 7→ A∗Ω.

and we set ∆ = S∗S.
• Let σt(A) := ∆itA∆−it. It turns out that σt(A) = A, so this defines a ‘time evolution’.

It turns out: A 7→ ⟨Ω, AΩ⟩ is KMS for σt! (but in general it won’t be clear what σt

actually looks like)
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Converse

• Now suppose we have a thermal vector Ωβ for A
with respect to a time evolution
σt(A) = eitHAe−itH . Can we (formally) do the
converse: find a time evolution αt such that Ωβ is
a ground state?

• As we saw before, probably cannot preserve the
algebra A, it will be “moving off to infinity” in finite
time. Also, the trivial representation does the job;
but with a wedge-like subalgebra we can
construct a nontrivial representation.

• Original question: what is the modular time
evolution in A(W )?
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Example: Free Chiral Theory

• An example calculated by Borchers and
Yngvason (1999): a 2-dimensional free chiral
theory, so A = AL ⊗ AR where AL and AR

consist of fields existing on the Left and Right light
ray.

• If we consider the thermal state at temperature β
then the evolution we get is given by

γ
(R)
t (xR) = β

2π
ln
(

e2πxR/β − t
)

γ
(L)
t (xL) = − β

2π
ln
(

e−2πxL/β + t
)
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Generalization

• We can generalize this further to the following
situation: let Ni ⊂ Mi ⊂ B(Hi) be Von Neumann
algebras with Ωi ∈ Hi standard for Ni and Mi

(i = 1, 2). In addition, assume that

σ
(1)
t (N1) ⊂ N1 and σ

(2)
−t (N2) ⊂ N2 for t ≥ 0

called Halfsided Modular Inclusion.

• In this situation, we have two unitary
one-parameter groups Ui on Hi with a positive
generator such that

U1(1)M1U1(1)∗ = N1 U2(−1)M2U2(−1)∗ = N2

• This means that x⃗ 7→ U1(x0 − x1) ⊗ U2(x0 + x1)
is a positive energy representation! Can we
generalize this further?
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