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1 Background

1.1 Abelian groups

In this section we assemble the necessary background on abelian groups. For an abelian group
A we denote by 0 the neutral element and by −a for the inverse of an element a ∈ A. For any
element a ∈ A and n ∈ Z we use the notation

n · a =



a+ . . .+ a︸ ︷︷ ︸
n×

n > 0

0 n = 0

(−a) + . . .+ (−a)︸ ︷︷ ︸
|n|×

n < 0.

We first recall the concepts of a generating set and a basis of an abelian group A. A generating
set is defined analogously to a a generating set for a vector space, but in terms of finite linear
combinations with coefficients in Z. The same holds for a basis, which is a defined as a linearly
independent generating set. However, unlike vector spaces, abelian groups do not need to have
bases. Abelian groups with bases have special properties and are called free abelian groups.

Definition 1.1.1: Let A be an abelian group.

1. The subgroup 〈M〉 generated by a subset M ⊂ A is 〈∅〉 = 0 and for M 6= ∅

〈M〉 = {n1 ·m1 + . . .+ nk ·mk | k ∈ N0,m1, ...,mk ∈M,n1, ..., nk ∈ Z}.

2. A generating set for A is a subset M ⊂ A with 〈M〉 = A.

3. A generating set M for A is called a basis for A, if for all m1, ...,mk ∈M and n1, ..., nk ∈ Z

n1 ·m1 + . . .+ nk ·mk = 0 ⇒ n1 = . . . = nk = 0.

Definition 1.1.2: An abelian group A is called

• finitely generated, if it is generated by a finite subset M ⊂ A,

• cyclic, if there is an element a ∈ A such that {a} generates A,

• free, if it has a basis.

Example 1.1.3:

1. The group Z is a free group with basis {1}. The subgroup generated by a subset
{n1, . . . , nk} ⊂ Z is gcd(n1, . . . , nk) · Z.

2. The groups Z/nZ are not free, as n · 1̄ = 1̄ + . . . + 1̄ = 0 with n 6= 0. The set {1̄} is a
generating set, but not a basis.

3. Every subgroup of a free abelian group is free.

4. The group (Q,+) is not finitely generated. For any finite set M = {q1, . . . , qk} of rational
numbers zj = pj/qj ∈ Q any Z-linear combination can be expressed as a fraction with
denominator q1 · · · qk and hence M cannot generate Q.
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5. The group (Q,+) is not free. Given fractions q1 = z1/n1 and q2 = z2/n2, with q1 6= q2,
z1, z2 ∈ Z \ {0} and n1, n2 ∈ N we have (z2n1) · q1 − (z1n2) · q2 = 0, with z2n1, z1n2 6= 0.
So a basis could contain at most one non-trivial fraction, in contradiction to 4.

Finitely generated abelian groups, in particular, finite abelian groups can be classified. They
are given as finite products of the group Z and the groups Z/nZ, where n is a power of a prime
number. If an abelian group is finite, only the latter are present.

Theorem 1.1.4 (classification of finitely generated abelian groups):
For any finitely generated abelian group A, there are unique n, k ∈ N0 and unique prime powers
pnii with pi prime and ni ∈ N such that

A ∼= Zn × Z/pn1
1 Z× . . .× Z/pnkk Z.

Corollary 1.1.5 (classification of finite abelian groups):
For every finite abelian group there is a unique k ∈ N0 and unique prime powers pnii such that

A ∼= Z/pn1
1 Z× . . .× Z/pnkk Z.

Elements of finite order in an abelian group A are an obstacle to A being a free group. Whenever
there is an element a ∈ A of finite order, we have n · a = 0 for some n ∈ N. Such an element
cannot be contained in a basis. Such elements form a subgroup of A, its torsion subgroup.

Definition 1.1.6: Let A be an abelian group.

1. The torsion subgroup of A is the subgroup of elements of finite order

Tor(A) = {a ∈ A | ∃n ∈ N with na = 0}.

2. For n ∈ N the n-torsion subgroup of A is the subgroup of elements of order n

Torn(A) = {a ∈ A | na = 0}.

3. The group A is called torsion free, if its torsion subgroup is trivial: Tor(A) = {0}.

Example 1.1.7:

1. Every free abelian group A is torsion free.

If M ⊂ A is a basis of A, any element of A is of the form a = n1m1 + . . . + nkmk with
mi ∈ M and ni ∈ Z. Then 0 = na = (nn1)m1 + . . . + (nnk)mk with n ∈ N implies
nn1 = . . . = nnk = 0 and n1 = . . . = nk = 0. So 0 is the only torsion element.

2. A finitely generated abelian group is free if and only of it is torsion free.

By Theorem 1.1.4 a finitely generated abelian group is isomorphic to a group
A ∼= Zn×Z/pn1

1 Z×. . .×Z/pnkk Z with the torsion subgroup Tor(A) = Z/pn1
1 Z×. . .×Z/pnkk Z.

It is torsion free, if and only if A ∼= Zn, which is equivalent to A free.

3. The abelian group (Q,+) is torsion free, but not free.

The identity nq = 0 for n ∈ N and q ∈ Q implies n = 0, so 0 is the only torsion element.
By Example 1.1.3. 5. the group (Q,+) is not free.
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There is an alternative description of a free group that does not require the concept of a basis.
It is based on the direct sum of abelian groups. The dual concept is the product of abelian
groups. Both constructions are characterised by a universal property, and they coincide for
finite families of abelian groups.

Definition 1.1.8: For a family (Ai)i∈I of abelian groups their direct sum and the direct
product are the abelian groups

⊕i∈I Ai = {(ai)i∈I | ai ∈ Ai ∀i ∈ I, ai = 0 for almost all i ∈ I}
Πi∈IAi = {(ai)i∈I | ai ∈ Ai ∀i ∈ I}.

with the addition (ai)i∈I + (bi)i∈I = (ai + bi)i∈I . The inclusion and projection maps are the
maps ιj : Aj → ⊕i∈IAi, a 7→ (δija)i∈I and πj : Πi∈IAi → A, (ai)i∈I 7→ aj.

Remark 1.1.9: For any finite family of abelian groups, their direct sum and their product
coincide. In this case, one often writes A1 × . . .× An instead of Πn

i=1Ai = ⊕ni=1Ai.

Proposition 1.1.10: Let (Ai)i∈I be a family of abelian groups.

1. The direct sum of abelian groups has the following universal property:

The inclusion maps ιj : Aj → ⊕i∈IAi, a 7→ (δija)i∈I are group homomorphisms. For every
family (fi)i∈I of group homomorphisms fi : Ai → B into an abelian group B, there is a
unique group homomorphism f : ⊕i∈IAi → B with f ◦ ιj = fj : Aj → B for all j ∈ I.

⊕i∈IAi
∃!f // B

Aj

ιj

cc

fj

??

2. The product of abelian groups has the following universal property:

The projection maps πj : Πi∈IAi → Aj, (ai)i∈I 7→ aj are group homomorphisms. For every
family (fi)i∈I of group homomorphisms fi : B → Ai from an abelian group B, there is a
unique group homomorphism f : B → Πi∈IAi with πj ◦ f = fj : B → Aj for all j ∈ I.

Πi∈IAi

πj
##

B
∃!foo

fj��
Aj

The concept of a direct sum allows one give an alternative definition of a free abelian group.
Given a basis of an abelian group, one can assign to each basis element a copy of the group
Z, which corresponds to taking multiples of this basis element. Finite Z-linear combinations of
the basis elements can then be realised by taking the direct sum of the associated copies of Z.

This allows one to associate to any set M a free group with basis M . Non-free groups may then
be constructed as factor groups of free groups, by specifying a generating set of the subgroup
that is quotiented out. This leads to the concept of a presentation of an abelian group with
generators and relations.
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Definition 1.1.11: Let A be an abelian group.

1. The free abelian group generated by a set M is the direct sum 〈M〉Z = ⊕m∈MZ.

2. If A ∼= 〈M〉Z/〈U〉 for a subset U ⊂ 〈M〉Z one writes A = 〈M | U〉 and speaks of a
presentation of A with generator set M and set of relations U .

Remark 1.1.12:

1. If A is a free abelian group with basis M , then A is isomorphic to 〈M〉Z = ⊕MZ with
the group isomorphism φ : A→ 〈M〉Z, Σm∈Mnmm 7→ (nm)m∈M .

2. The free abelian group generated by M has the following universal property:

For every map f : M → B into an abelian group B, there is a unique group homomor-
phism f ′ : 〈M〉Z → B with f ′ ◦ ιm(1) = f(m) for all m ∈M :

f ′ : 〈M〉Z → B, (nm)m∈M 7→ Σm∈Mnmf(m).

3. Presentations 〈M | U〉 of abelian groups have the following universal property:

For every map f : M → B into an abelian group B such that U ⊂ ker f ′, there is a
unique group homomorphism f ′′ : 〈M | U〉 → B with f ′′ ◦ π = f ′. This follows from the
universal property of the free group and the factor group.

If an abelian group A is presented with a finite set of generators M = {x1, . . . , xn} and a finite
set U = {r1, . . . , rk} one often omits the brackets and denotes the presentation by

A = 〈x1, . . . , xn | r1, . . . , rk〉 or A = 〈x1, . . . , xn | r1 = 0, . . . , rk = 0〉.

Example 1.1.13:

1. Every abelian group A has a presentation A = 〈A〉Z/ker (π) with

π : 〈A〉Z → A, (na)a∈A 7→ Σa∈Ana a.

2. The group Z/nZ has the presentation 〈x | nx = 0〉Z.

3. The abelian group A = Zn × Z/pn1
1 Z× . . .× Z/pnkk Z has the presentation

A = 〈x1, . . . , xn, y1, . . . , yk | pn1
1 y1 = 0, . . . , pnkk yk = 0〉.

1.2 Categories, functors, natural transformations

In this section we summarise the required background on categories, functors and natural
transformations. The concept of a category encodes many examples of mathematical structures
and structure preserving maps between them, but it goes beyond them and replaces structure
preserving maps by the more abstract notion of a morphism. The crucial features are that
morphisms have a fixed source and target, can be composed and can be identity morphisms.
This generalises the notions of domain and codomain of structure preserving maps, of their
composition and of the structure preserving identity maps.

8



Definition 1.2.1: A category C consists of:

• a class Ob C of objects,

• for each pair of objects X, Y ∈ Ob C a class HomC(X, Y ) of morphisms,

• for each triple of objects X, Y, Z a composition map

◦ : HomC(Y, Z)× HomC(X, Y )→ HomC(X,Z),

such that the following axioms are satisfied:

(C1) The classes HomC(X, Y ) of morphisms are pairwise disjoint,

(C2) The composition is associative: f ◦(g◦h) = (f ◦g)◦h for all morphisms h ∈ HomC(W,X),
g ∈ HomC(X, Y ), f ∈ HomC(Y, Z),

(C3) For every object X there is a morphism 1X ∈ HomC(X,X), the identity morphism
on X, with 1X ◦ f = f and g ◦ 1X = g for all f ∈ HomC(W,X), g ∈ HomC(X, Y ).

Instead of f ∈ HomC(X, Y ), we also write f : X → Y . The object X is called the source of f ,
and the object Y the target of f . A morphism f : X → X is called an endomorphism.

A morphism f : X → Y is called an isomorphism, if there is a morphism g : Y → X with
g ◦ f = 1X and f ◦ g = 1Y . In this case, we call the objects X and Y isomorphic.

Often, one requires that the morphisms between fixed objects form not only a class, but a set.
This is the case in essentially all familiar categories from algebra and topology. Nevertheless,
it is sometimes necessary to relax this condition. In contrast, requiring that the objects of a
category form a set is very restrictive and excludes many familiar and important categories.

Definition 1.2.2: A category C is called

• locally small, if HomC(X, Y ) is a set for all objects X, Y ∈ ObC,
• small, if it is locally small and ObC is a set.

The following examples of categories are all locally small, but none of them is small.

Example 1.2.3:

1. The category Set: objects are sets, morphisms are maps. The composition is the composi-
tion of maps, and identity morphisms are identity maps. Isomorphisms are bijective maps.

2. The category Top of topological spaces: objects are topological spaces, morphisms are
continuous maps, isomorphisms are homeomorphisms.

3. The category Top∗ of pointed topological spaces: Objects are pairs (X, x) of a
topological space X and a point x ∈ X, morphisms f : (X, x) → (Y, y) are continuous
maps f : X → Y with f(x) = y.

4. The category Top(2) of pairs of topological spaces: Objects are pairs (X,A) of
a topological space X and a subspace A ⊂ X, morphisms f : (X,A) → (Y,B) are
continuous maps f : X → Y with f(A) ⊂ B. Isomorphisms are homeomorphisms
f : X → Y with f(A) = B.
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5. Many examples of categories we will use in the following are categories of algebraic struc-
tures. This includes the following:

• the category VectF of vector spaces over a field F:
objects: vector spaces over F, morphisms: F-linear maps,

• the category VectfinF of finite dimensional vector spaces over a field F:
objects: finite-dimensional vector spaces over F, morphisms: F-linear maps,

• the category Grp of groups:
objects: groups, morphisms: group homomorphisms,

• the category Ab of abelian groups:
objects: abelian groups, morphisms: group homomorphisms,

• the category Ring of unital rings:
objects: unital rings, morphisms: unital ring homomorphisms,

• the category Field of fields:
objects: fields, morphisms: field homomorphisms,

• the category AlgF of algebras over a field F:
objects: algebras over F, morphisms: algebra homomorphisms,

• the categories R-Mod and Mod-R of left and right modules over a ring R:
objects: R-left or right modules, morphisms: R-left or right module homomorphisms.

• the category R-Mod-S of (R, S)-bimodules:
objects: (R, S)-bimodules, morphisms: (R, S)-bimodule homomorphisms.

In all of the categories in Example 1.2.3 the morphisms are maps. A category for which this is
the case is called a concrete category. A category that is not concrete is the category of sets
and relations in Exercise 2. Further examples of non-concrete categories arise from some of the
basic categorical concepts and constructions in the next example.

Example 1.2.4:

1. A small category C in which all morphisms are isomorphisms is called a groupoid.

2. A category with a single object is a monoid and a groupoid with a single object a group.

Group elements are identified with endomorphisms of the object, and the composition of
morphisms is the group multiplication.

More generally, for any object X in a groupoid C, the set EndC(X) = HomC(X,X) with
the composition ◦ : EndC(X)× EndC(X)→ EndC(X) is a group.

3. For every category C, there is an opposite category Cop, which has the same objects as
C, whose morphisms are given by HomCop(X, Y ) = HomC(Y,X) and in which the order
of the composition is reversed.

4. The cartesian product of categories C,D is the category C ×D with pairs (C,D) of ob-
jects in C and D as objects, with HomC×D((C,D), (C ′, D′)) = HomC(C,C

′)×HomD(D,D′)
and the composition of morphisms (h, k) ◦ (f, g) = (h ◦ f, k ◦ g).
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5. A subcategory of a category C is a category D, such that Ob(D) ⊂ Ob(C) is a
subclass, HomD(D,D′) ⊂ HomC(D,D

′) for all objects D,D′ in D and the composi-
tion of morphisms of D coincides with their composition in C. A subcategory D of
C is called a full subcategory if HomD(D,D′) = HomC(D,D

′) for all objects D,D′ in D.

6. Quotient categories: Let C be a category with an equivalence relation ∼X,Y on each
morphism set HomC(X, Y ) that is compatible with the composition of morphisms:
f ∼X,Y g and h ∼Y,Z k implies h ◦ f ∼X,Z k ◦ g.

Then one obtains a category C ′, the quotient category of C, with the same objects as
C and equivalence classes of morphisms in C as morphisms.

The composition of morphisms in C ′ is given by [h] ◦ [f ] = [h ◦ f ], and the identity mor-
phisms by [1X ]. Isomorphisms in C ′ are equivalence classes of morphisms f ∈ HomC(X, Y )
for which there exists a morphism g ∈ HomC(Y,X) with f ◦g ∼Y,Y 1Y and g ◦f ∼X,X 1X .

The construction in the last example plays an important role in classification problems, in
particular in topology. Classifying the objects of a category C usually means classifying them
up to isomorphism - giving a list of objects in C such that every object in C is isomorphic to
exactly one object in this list.

This is possible in some contexts - for instance for the category VectfinF of finite dimensional
vector spaces over F. In this case the list contains the vector spaces Fn with n ∈ N0. However, it
is often too difficult to solve this problem in full generality. In this case, it is sometimes simpler
to consider instead a quotient category C ′ and to attempt a partial classification.

If two objects are isomorphic in C, they are by definition isomorphic in C ′, as any isomorphism
f : X → Y with inverse g : Y → X yields [g] ◦ [f ] = [g ◦ f ] = [1X ] and [f ] ◦ [g] = [f ◦ g] = [1Y ].
However, the converse does not hold - the category C ′ yields a weaker classification than C.

To relate different categories, one must not only relate their objects but also their morphisms,
in a way that is compatible with source and target objects, the composition of morphisms and
the identity morphisms. This leads to the concept of a functor.

Definition 1.2.5: Let C,D be categories. A functor F : C → D consists of:

• an assignment of an object F (C) in D to every object C in C,
• for each pair of objects C,C ′ in C, a map

HomC(C,C
′)→ HomD(F (C), F (C ′)), f 7→ F (f),

that is compatible with the composition of morphisms and with the identity morphisms

F (g ◦ f) = F (g) ◦ F (f) ∀f ∈ HomC(C,C
′), g ∈ HomC(C

′, C ′′)

F (1C) = 1F (C) ∀C ∈ Ob C.

• A functor F : C → C is called an endofunctor.

• A functor F : Cop → D is sometimes called a contravariant functor from C to D.

• The composite of two functors F : B → C, G : C → D is the functor GF : B → D given
by the assignment B 7→ GF (B) for all objects B in B and the maps

HomB(B,B′)→ HomD(GF (B), GF (B′)), f 7→ G(F (f)).
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Example 1.2.6:

1. For any category C, the identity functor idC : C → C that assigns each object and
morphism in C to itself is an endofunctor of C.

2. The forgetful functor VectF → Ab assigns to each vector space the underlying abelian
group and to each linear map the associated group homomorphism. There are analogous
forgetful functors VectF → Set, Ring → Set, Grp → Set, Top→ Set that assign to each
vector space, ring, group, topological space the underlying set and to each morphism the
underlying map.

3. Vector space duals define a functor ∗ : VectF → VectopF that assigns to
• a vector space V its dual V ∗,
• a linear map f : V → W its adjoint f ∗ : W ∗ → V ∗, α 7→ α ◦ f .

4. A group G defines a category BG with a single object, the delooping of G, with
elements of G as morphisms, and with the multiplication of G as the composition.

• Functors F : BG → Set correspond to G-sets X = F (•) with the group action
� : G×X → X, g � x = F (g)(x).

• Functors F : BG → VectF correspond to representations of G over F, with the
representation space V = F (•) and ρ = F (g) : G→ AutFV .

5. Hom-functors: Let C be a category and C an object in C.
• The functor Hom(C,−) : C → Set assigns to
- an object C ′ the set HomC(C,C

′),
- a morphism f : C ′ → C ′′ the map Hom(C, f) : HomC(C,C

′)→ HomC(C,C
′′), g 7→ f ◦g.

• The functor Hom(−, C) : Cop → Set assigns to
- an object C ′ the set HomC(C

′, C),
- a morphism f : C ′ → C ′′ the map Hom(f, C) : HomC(C

′′, C)→ HomC(C
′, C), g 7→ g◦f .

6. The path component functor π0 : Top→ Set assigns to
• a topological space X the set π0(X) of its path components,
• a continuous map f : X → Y the map π0(f) : π0(X)→ π0(Y ), P (x) 7→ P (f(x)).

7. The fundamental group defines a functor π1 : Top∗ → Grp that assigns to
• a pointed topological space (x,X) its fundamental group π1(x,X),
• a morphism f : (x,X) → (y, Y ) of pointed topological spaces the group homomor-

phism π1(f) : π1(x,X)→ π1(y, Y ), [γ] 7→ [f ◦ γ].

8. Abelisation: The abelisation functor F : Grp→ Ab assigns to
• a group G the abelian group F (G) = G/[G,G], where [G,G] is the normal subgroup

generated by the set of all elements ghg−1h−1 for g, h ∈ G,
• a group homomorphism f : G → H the induced group homomorphism
F (f) : G/[G,G]→ H/[H,H], g + [G,G] 7→ f(g) + [H,H].

9. The discrete topology functor D : Set → Top and the indiscrete topology functor
I : Set→ Top assign to
• a set X the topological space X with the discrete (indiscrete) topology,
• a map f : X → Y the associated continuous map f : X → Y .

12



There is another structure that relates functors. As a functor F : C → D involves maps between
the sets HomC(C,C

′) and HomD(F (C), F (C ′)), a structure that relates functors F,G : C → D
must in particular relate the sets HomD(F (C), F (C ′)) and HomD(G(C), G(C ′)). The simplest
way to do this is to assign to each object C in C a morphism ηC : F (C) → G(C) in D. One
then requires compatibility with the images F (f) and G(f) for all morphisms f : C → C ′ in C.

Definition 1.2.7: A natural transformation η : F ⇒ G between functors F,G : C → D
is an assignment of a morphism ηC : F (C)→ G(C) in D to every object C in C such that the
following diagram commutes for all morphisms f : C → C ′ in C

F (C)

F (f)
��

ηC // G(C)

G(f)
��

F (C ′)
ηC′ // G(C ′).

A natural isomorphism is a natural transformation η : F ⇒ G, for which all morphisms
ηX : F (X)→ G(X) are isomorphisms. Two functors that are related by a natural isomorphism
are called naturally isomorphic.

Example 1.2.8:

1. For any functor F : C → D the identity natural transformation idF : F ⇒ F with
component morphisms (idF )X = 1F (X) : F (X)→ F (X) is a natural isomorphism.

2. Consider the functors id : VectF → VectF and ∗∗ : VectF → VectF. Then there is a canon-
ical natural transformation can : id ⇒ ∗∗, whose component morphisms ηV : V → V ∗∗

assign to a vector v ∈ V the unique vector v∗∗ ∈ V ∗∗ with v∗∗(α) = α(v) for all α ∈ V ∗.
It is a natural isomorphism if and only if V is finite-dimensional.

3. Consider the category CRing of commutative unital rings and unital ring homomorphisms
and the category Grp of groups and group homomorphisms.

Let F : CRing→ Grp the functor that assigns to
• a commutative unital ring k the group GLn(k) of invertible n× n-matrices in k,
• a unital ring homomorphism f : k → l the group homomorphism

GLn(f) : GLn(k)→ GLn(l), M = (mij)i,j=1,...,n 7→ f(M) = (f(mij))i,j=1,..,n.

Let G : CRing→ Grp be the functor that assigns to
• a commutative unital ring k the group G(k) = k× of units in k,
• a unital ring homomorphism f : k → l the induced group homomorphism

G(f) = f |k× : k× → l×.

The determinant defines a natural transformation det : F → G with component mor-
phisms detk : GLn(k) ⇒ k×, because the following diagram commutes for every unital
ring homomorphism f : k → l

GLn(k)

GLn(f)

��

detk // k×

f |k×
��

GLn(l)
detl // l×.

13



4. Let G be a group and BG its delooping. Then functors F : BG → Set are G-sets by
Example 1.2.6, 4. Natural transformations between them are G-equivariant maps.

A natural transformation η : F ⇒ F ′ has a single component η• : F (•) → F ′(•). The
naturality condition states that η•(g � x) = g �′ η•(x) for all g ∈ G, x ∈ X.

Similarly, by Example 1.2.6, 4. functors F : BG → VectF are representations of G over
F, and natural transformations between them are homomorphisms of representations.

Remark 1.2.9:

1. For any small category C and category D, the functors F : C → D and natural transfor-
mations between them form a category, denoted Fun(C,D) or DC, the functor category.

The composite of natural transformations η : F ⇒ G and κ : G⇒ H is the natural trans-
formation κ◦η : F ⇒ H with component morphisms (κ◦η)X = κX ◦ηX : F (X)→ H(X)
and the identity morphisms are the identity natural transformations 1F = idF : F ⇒ F .

If C is a category that is not small, the functor category DC is defined analogously, but
it is no longer locally small.

2. Natural transformations can be composed with functors.

If F, F ′ : C → D are functors and η : F ⇒ F ′ a natural transformation, then for any
functor G : B → C one obtains a natural transformation ηG : FG⇒ F ′G with component
morphisms (ηG)B = ηG(B) : FG(B)→ F ′G(B). Similarly, any functor E : D → E defines
a natural transformation Eη : EF ⇒ EF ′ with (Eη)C = E(ηC) : EF (C)→ EF ′(C).

The notions of natural transformations and natural isomorphisms are particularly important
as they allow one to generalise the notion of an inverse map and of a bijection to functors. An
inverse of a functor F : C → D is by definition a functor G : D → C with GF = idC and
FG = idD, and an isomorphism of categories is a functor F : C → D with an inverse.

However, it turns out that there are very few examples of functors with an inverse. A more
useful generalisation is obtained by weakening this requirement. Instead of requiring FG = idD
and GF = idC, one requires only that these functors are naturally isomorphic to the identity
functors. This leads to the concept of an equivalence of categories.

Definition 1.2.10: A functor F : C → D is called an equivalence of categories if there is
a functor G : D → C and natural isomorphisms κ : GF ⇒ idC and η : FG⇒ idD. In this case,
the categories C and D are called equivalent.

Sometimes it is easier to use a more direct characterisation of an equivalences of categories
in terms of its behaviour on objects and morphisms. This is the categorical equivalent of the
statement that a map between sets is an isomorphism if and only if it is injective and surjective.
The proof of the following lemma makes use of the axiom of choice and can be found for instance
in [K], Chapter XI, Prop XI.1.5.

Lemma 1.2.11: A functor F : C → D is an equivalence of categories if and only if it is:

1. essentially surjective:
for every object D in D there is an object C of C such that D is isomorphic to F (C).

2. fully faithful:
all maps HomC(C,C

′)→ HomD(F (C), F (C ′)), f 7→ F (f) are bijections.
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Example 1.2.12:

1. The category VectfinF of finite-dimensional vector spaces over F is equivalent to the
category C, whose objects are non-negative integers n ∈ N0, whose morphisms f : n→ m
are m× n-matrices with entries in F and with the matrix multiplication as composition.

2. The category Setfin of finite sets is equivalent to the category Ordfin, whose objects are
finite ordinal numbers [n] = {0, 1, ..., n − 1} for all n ∈ N0 and whose morphisms
f : [m] → [n] are maps f : {0, 1, ...,m − 1} → {0, 1, ..., n − 1} with the composition of
maps as the composition of morphisms.

1.3 Products and Coproducts

Many concepts and constructions from algebra or topology can be generalised straightforwardly
to categories. This works, whenever it is possible to characterise them in terms of universal
properties involving only the morphisms in the category. In particular, there are concepts of
a categorical product and coproduct that generalise cartesian products and disjoint unions of
sets and products and sums of topological spaces.

Definition 1.3.1: Let C be a category and (Ci)i∈I a family of objects in C.
1. A product of the family (Ci)i∈I is an object Πi∈ICi in C together with a family of

morphisms πi : Πj∈ICj → Ci, such that for all families of morphisms fi : W → Ci there
is a unique morphism f : W → Πi∈ICi such that the diagram

W

fi ##

∃!f // Πj∈ICj

πi
��
Ci

(1)

commutes for all i ∈ I. This is called the universal property of the product.

2. A coproduct of the family (Ci)i∈I is an object qi∈ICi in C with a family (ιi)i∈I of
morphisms ιi : Ci → qj∈ICj, such that for every family (fi)i∈I of morphisms fi : Ci → Y
there is a unique morphism f : qi∈ICi → Y such that the diagram

Y qj∈ICj
∃!foo

Ci

ιi

OO

fi

cc (2)

commutes for all i ∈ I. This is called the universal property of the coproduct.

Remark 1.3.2: Products or coproducts do not necessarily exist for a given family of objects
(Ci)i∈I in a category C, but if they exist, they are unique up to unique isomorphism:

If (Πi∈ICi, (πi)i∈I) and (Π′i∈ICi, (π
′
i)i∈I) are two products for a family of objects (Ci)i∈I in C,

then there is a unique morphism π′ : Π′i∈ICi → Πi∈ICi with πi ◦ π′ = π′i for all i ∈ I, and this
morphism is an isomorphism.
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By the universal property of the product Πi∈ICi applied to the family fi := π′i : Π′i∈ICi → Ci,
there is a unique morphism π′ : Π′i∈ICi → Πi∈ICi such that πi ◦ π′ = π′i for all i ∈ I . Similarly,
the universal property of Π′i∈ICi implies that for the family of morphisms πi : Πi∈ICi → Ci
there is a unique morphism π : Πi∈ICi → Π′i∈ICi with π′i ◦ π = πi for all i ∈ I. It follows
that π′ ◦ π : Πi∈ICi → Πi∈ICi is a morphism with πi ◦ π ◦ π′ = π′i ◦ π = πi for all i ∈ I.
As the identity morphism on Πi∈ICi is another morphism with this property, the uniqueness
implies π′ ◦ π = 1Πi∈ICi . By the same argument one obtains π ◦ π′ = 1Π′i∈ICi

and hence π′ is an
isomorphism with inverse π.

Π′i∈ICi
π′ //

π′i %%

1Π′
i∈ICi

''
Πi∈ICi

πi

��

π // Π′i∈ICi

π′iyy
Ci.

Πi∈ICi
π //

πi
%%

1Πi∈ICi

''
Π′i∈ICi

π′i
��

π′ // Πi∈ICi

πi
yy

Ci.

Example 1.3.3:

1. The cartesian product of sets is a product in Set, and the disjoint union of sets is
a coproduct in Set. The product of topological spaces is a product in Top and the
topological sum is a coproduct in Top. They exist for all families of objects.

2. The direct sum of vector spaces is a coproduct and the direct product of vector spaces a
product in VectF.

⊕i∈IVi = {(vi)i∈I | vi ∈ Vi ∀i ∈ I, vi = 0 for almost all i ∈ I}
Πi∈IVi = {(vi)i∈I | vi ∈ Vi ∀i ∈ I},

with the addition (vi)i∈I+(v′i)i∈I = (vi+v
′
i)i∈I and scalar multiplication λ(vi)i∈I = (λvi)i∈I .

3. The direct sum of abelian groups is a coproduct in Ab and the product of abelian groups
a product in Ab. They are given by

⊕i∈IAi = {(ai)i∈I | ai ∈ Ai ∀i ∈ I, ai = 0 for almost all i ∈ I}
Πi∈IAi = {(ai)i∈I | ai ∈ Ai ∀i ∈ I},

with the group multiplication (ai)i∈I + (a′i)i∈I = (ai + a′i)i∈I .

4. The direct product of groups is a product in Grp and the free product of groups is a
coproduct in Grp. They exist for all families of groups.

In particular, we can consider categorical products and coproducts over empty index sets I. By
definition, a categorical product for an empty family of objects is an object T = Π∅ such that
for every object C in C there is a unique morphism tC : C → T . Similarly, a coproduct over
an empty index set I is an object I := q∅ in C such that for every object C in C, there is a
unique morphism iC : I → C. Such objects are called terminal and initial objects in C. Initial
and terminal objects need not exist in every category C, but if they exist they are unique up
to unique isomorphism by the universal property of the products and coproducts.

An object that is both, terminal and initial, is called a zero object or null object. If it exists,
it is unique up to unique isomorphism. It also gives rise to a distinguished morphism, the zero
morphism 0 = iC′ ◦ tC : C → C ′, between any two objects C,C ′ in C.
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Definition 1.3.4: Let C be a category. An object X in a category C is called:

1. A final or terminal object in C is an object T in C such that for every object C in C
there is a unique morphism tC : C → T .

2. A cofinal or initial object in C is an object I in C such that for every object C in C
there is a unique morphism iC : I → C,

3. A null object or zero object in C is an object 0 in C that is both final and initial: for
every object C in C there are a unique morphisms tC : C → 0 and iC : 0→ C.

4. If C has a zero object, then the morphism 0 = iC′ ◦ tC : C → 0→ C ′ is called the trivial
morphism or zero morphism from C to C ′.

Example 1.3.5:

1. The empty set is an initial object in Set and the empty topological space an initial object
in Top. Any set with one element is a final object in Set and any one point space a final
object in Top. The categories Set and Top do not have null objects.

2. The null vector space {0} is a null object in the category VectF.

3. The trivial group G = {e} is a null object in Grp and in Ab.

4. The ring Z is an initial object in the category Ring, since for every unital ring R, there
is exactly one ring homomorphism f : Z→ R, namely the one determined by f(0) = 0R
and f(1) = 1R. The zero ring R = {0} with 0 = 1 is a final object in Ring, but not an
initial one. The category Ring has no zero object.

5. The category Field does not have initial or final objects. As any ring homomorphism
f : F→ K between fields is injective, an initial object in Field would be a subfield of all
other fields, and every field would be a subfield of a final field. Either of them would imply
that each field has the same characteristic as an initial or final field, a contradiction.

17



2 Chain complexes

In this section, we introduce the essential algebraic tools of algebraic topology, chain complexes,
chain maps and chain homotopies. These concepts also play a fundamental role in algebra and
group theory. Their fundamental advantage is that they are Z-linear - they involve abelian
groups and group homomorphisms between them - and sufficiently complex to store enough
information about the topological spaces. Unlike homotopy groups, they are rather easy to
compute due to their Z-linearity.

2.1 Chain complexes, chain maps and chain homotopies

In this section, we consider chain complexes in the category Ab of abelian groups. Chain
complexes can be formulated in more generality in the categories of modules over unital rings
or even more generally in abelian categories.

Definition 2.1.1:

1. A chain complex X• consists of

• a family (Xn)n∈Z of abelian groups Xn,

• a family (dn)n∈Z of group homomorphisms dn : Xn → Xn−1, boundary operators,
such that dn−1 ◦ dn = 0 for all n ∈ Z.

It is denoted . . .
dn+2−−−→ Xn+1

dn+1−−−→ Xn
dn−→ Xn−1

dn−1−−−→ . . . .

• Elements of the group Xn are called n-chains.

• The subgroup of n-cycles is Zn(X•) = ker dn ⊂ Xn.

• The subgroup of n-boundaries is Bn(X•) = im dn+1 ⊂ Zn(X•).

2. A chain map f• : X• → X ′• is a family (fn)n∈Z of group homomorphisms fn : Xn → X ′n
such that d′n ◦ fn = fn−1 ◦ dn for all n ∈ Z.

. . .
dn+2// Xn+1

fn+1

��

dn+1 // Xn

fn
��

dn // Xn−1

fn−1

��

dn−1 // . . .

. . .
d′n+2// X ′n+1

d′n+1 // X ′n
d′n // X ′n−1

d′n−1 // . . .

Notation 2.1.2: It is standard to omit subsequences of trivial groups and morphisms between
them from chain complexes:

• 0→ Xm
dm−→ Xm−1

dm−1−−−→ ... stands for a chain complex with Xk = 0 for all k > m. Such
a chain complex is called bounded above. It is called negative if m = 0.

• ... dm+2−−−→ Xm+1
dm+1−−−→ Xm → 0 stands for a chain complex with Xk = 0 for all k < m.

Such a chain complex is called bounded below. It is called positive if m = 0.

• If Xk = 0 for all k < m and k > l > m, the chain complex is called bounded and denoted

0→ Xl
dl−→ Xl−1

dl−1−−→ ...
dm+2−−−→ Xm+1

dm+1−−−→ Xm → 0.
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Remark 2.1.3:

1. Chain complexes and chain maps between them form a category ChAb with the compo-
sition f• ◦ g• = (fn ◦ gn)n∈Z and the identity morphism idX• = (idXn)n∈Z.

2. The category ChAb has all products and coproducts. For a family (X i
•)i∈I of chain com-

plexes, their direct sum or coproduct and their product are given by

(⊕i∈IX i
•)n = ⊕i∈IX i

n (Πi∈IX
i
•)n = Πi∈IX

i
n

⊕i∈IX i
n

dn // ⊕i∈IX i
n−1

Xj
n

ιjn

OO

djn

// Xj
n−1

ιjn−1

OO
Πi∈IX

i
n

πjn
��

dn // Πi∈IX
i
n−1

πjn−1
��

Xj
n

djn

// Xj
n−1.

There is an analogous concept of a cochain complex with coboundary operators that raise the
degree instead of lowering it. This is usually emphasised by writing upper instead of lower
indices. Although chain complexes and cochain complexes can be transformed into each other
by renumbering the indices, cochain complexes are more natural in many applications, such as
functions and n-forms on manifolds.

Definition 2.1.4:

1. A cochain complex X• consists of

• a family (Xn)n∈Z of abelian groups Xn,
• a family (dn)n∈Z of group homomorphisms dn : Xn → Xn+1, the coboundary

operators, such that dn+1 ◦ dn = 0 for all n ∈ Z.

It is denoted . . .
dn−2

−−−→ Xn−1 dn−1

−−−→ Xn dn−→ Xn+1 dn+1

−−−→ . . . .

• Elements of the group Xn are called n-cochains.

• The subgroup of n-cocycles is Zn(X•) = ker dn ⊂ Xn.

• The subgroup of n-coboundaries is Bn(X•) = im dn−1 ⊂ Zn(X•).

2. A cochain map f • : X• → X ′• is a family (fn)n∈Z of R-linear maps fn : Xn → X ′n

such that d′n ◦ fn = fn+1 ◦ dn for all n ∈ Z.

. . . dn−2
// Xn−1

fn−1

��

dn−1
// Xn

fn

��

dn // Xn+1

fn+1

��

dn+1
// . . .

. . .
d′n−2
// X ′n−1

d′n−1
// X ′n

d′n
// X ′n+1

d′n+1
// . . .

The category of cochain complexes and cochain maps is denoted ChAb.

In the following we mostly restrict attention to chain complexes, since a cochain complex X•

can be transformed into a chain complex X ′• by setting X ′n = X−n and d′n = d−n : X ′n → X ′n−1

for all n ∈ Z. Nevertheless, sometimes it is necessary to consider both structures.

The essential feature of a chain complex X• is the condition dn−1 ◦ dn = 0 for its boundary
operators. It ensures that the abelian group Bn(X•) of n-boundaries is a subgroup of the abelian
group Zn(X•) of n-cycles. An analogous condition holds for n-coboundaries and n-cocycles

Bn(X•) = im dn+1 ⊂ ker dn = Zn(X•) Bn(X•) = im dn−1 ⊂ ker dn = Zn(X•).
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This allows one to consider the associated factor groups, the homologies of a chain complex or
cohomologies of a cochain complex.

Definition 2.1.5:

1. The nth homology of a chain complex X• is the factor group

Hn(X•) = Zn(X•)/Bn(X•).

2. The nth cohomology of a cochain complex X• is the factor group

Hn(X•) = Zn(X•)/Bn(X•).

A chain complex X• or cochain complex X• is called exact in Xn or Xn, if Hn(X•) = 0 or
Hn(X•) = 0, and exact, if it is exact in all Xn or Xn for n ∈ Z.

Remark 2.1.6: A chain complex X• is exact in Xn, if and only if ker dn−1 = im dn.

• a chain complex 0→ X0
d0−→ X−1 → . . . is exact in X0, if and only if d0 is injective,

• a chain complex · · · → X1
d1−→ X0 → 0 is exact in X0, if and only if d1 is surjective,

• a chain complex 0→ X1
d1−→ X0 → 0 is exact, if and only if d1 is an isomorphism.

Example 2.1.7:

1. For m ∈ Z the chain complex 0
d2−→ X1 = Z d1:z 7→mz−−−−−→ X0 = Z d0−→ 0 has homologies

H0(X•) = ker (d0)/im (d1) = Z/mZ and Hn(X•) = 0 for n 6= 0.

2. The chain complex X• = . . .
z̄ 7→2z̄−−−→ Z/4Z z̄ 7→2z̄−−−→ Z/4Z z̄ 7→2z̄−−−→ Z/4Z z̄ 7→2z̄−−−→ . . . has

homologies Hn(X•) = ker (z̄ 7→ 2z̄)/im (z̄ 7→ 2z̄) = {0̄, 2̄}/{0̄, 2̄} = 0 for all n ∈ Z.

3. The chain complex X• = . . .
0−→ Xn

0−→ Xn−1
0−→ Xn−2

0−→ Xn−3
0−→ . . . has homologies

Hn(X•) = ker (0)/im (0) = Xn for all n ∈ Z.

To see why the homologies of a chain complex are important and useful quantities, we investigate
their algebraic properties. By definition, the nth homology of a chain complex assigns to a chain
complex an abelian group. To be useful in practice, this assignment should define a functor from
the category ChAb of chain complexes and chain maps between them to the category Ab of
abelian groups. This ensures that isomorphic chain complexes have isomorphic homologies.

Proposition 2.1.8: The nth homologies and cohomologies define functors

Hn : ChAb → Ab Hn : ChAb → Ab

Proof:
We prove the claim for the homologies.

1. We define Hn on the chain maps:
Any chain map f• : X• → X ′• satisfies dn ◦ fn(x) = fn−1 ◦ dn(x) = 0 for all x ∈ Zn(X•) and
hence fn(Zn(X•)) ⊂ Zn(X ′•). Likewise, for any n-boundary x = dn+1(y) ∈ Bn(X•), we have
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fn(x) = fn ◦ dn+1(y) = dn+1 ◦ fn+1(y) = dn+1(fn+1(y)) and hence fn(Bn(X•)) ⊂ Bn(X ′•). By
the universal property of the factor group, this defines a group homomorphism

Hn(f•) : Hn(X•)→ Hn(X ′•), [x] 7→ [fn(x)].

2. We show that Hn respects the composition of morphisms:
For chain maps f• : X• → X ′• and g• : X ′• → X ′′• and all n-cycles x ∈ Zn(X•) we have

Hn(g• ◦ f•)([x]) = [gn ◦ fn(x)] = Hn(g•)([fn(x)]) = Hn(g•) ◦Hn(f•)([x]).

3. We show that Hn respects identity morphisms: for all chain complexes X• and x ∈ Zn(X•)

Hn(idX•)([x]) = [idXn(x)] = [x] = idHn(X•)([x]).

2

The essential feature of chain complexes and chain maps that makes them so useful in topology
is that there is another layer of structure beyond chain maps, namely chain homotopies be-
tween chain maps. Chain homotopies can be viewed as the counterpart of homotopies between
continuous maps in topology. Recall that a homotopy between continuous maps f, g : X → X ′

with the same topological spaces as sources and targets is a continuous map h : [0, 1]×X → X ′

such that h(0, x) = f(x) and h(1, x) = g(x) for all x ∈ X. Equivalently, one can impose the
condition that the following diagram of topological spaces and continuous maps commutes for
the inclusions ιj : X → [0, 1]×X, x 7→ (j, x)

X ι0 //

f $$

[0, 1]×X
h
��

Xι1oo

g
zz

X ′.

Definition 2.1.9:

1. A chain homotopy h• : f• ⇒ f ′• from a chain map f• : X• → X ′• to a chain map
f ′• : X• → X ′• is a family (hn)n∈Z of group homomorphisms hn : Xn → X ′n+1 with

f ′n − fn = hn−1 ◦ dn + d′n+1 ◦ hn ∀n ∈ Z. (3)

If there is a chain homotopy h• : f• ⇒ f ′•, then f• und f ′• are called chain homotopic,
and one writes f• ∼ f ′•.

2. A chain map f• : X• → X ′• is called a chain homotopy equivalence if there is a chain
map g : X ′• → X• with g• ◦ f• ∼ 1X• and f• ◦ g• ∼ 1X′• . In this case the chain complexes
X• und X ′• are called chain homotopy equivalent, and one writes X• ' X ′•.

Remark 2.1.10:

1. For given chain complexes X•, X
′
• the chain maps f• : X• → X ′• and chain homotopies

between them form a groupoid.

The composite of two chain homotopies h : f• ⇒ f ′• and h′• : f ′• ⇒ f ′′• is the chain
homotopy h′• ◦ h• = (hn + h′n)n∈Z : f• ⇒ f ′′• . The identity morphisms are trivial chain
homotopies 1f• = (0)n∈Z, and the inverse of h• : f• ⇒ f ′• is h−1

• = (−hn)n∈Z : f ′• ⇒ f•.
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2. For all chain complexes X•, X
′
• being chain homotopic is an equivalence relation on the

set HomChAb
(X•, X

′
•) of chain maps from X• to X ′•. It is compatible with the composition

of morphisms:

For all chain maps f•, f
′
• : X• → X ′• and g•, g

′
• : X ′• → X ′′• and chain homotopies

h• : f• ⇒ f ′• and h′• : g• ⇒ g′•, the family of morphisms k• = (gn+1 ◦ hn + h′n ◦ f ′n)n∈Z is a
chain homotopy k• : g• ◦ f• ⇒ g′• ◦ f ′• since

g′n ◦ f ′n − gn ◦ fn = (g′n − gn) ◦ f ′n + gn ◦ (f ′n − fn)

= (h′n−1 ◦ d′n + d′′n+1 ◦ h′n) ◦ f ′n + gn ◦ (hn−1 ◦ dn + d′n+1 ◦ hn)

= (gn ◦ hn−1 + h′n−1 ◦ f ′n−1) ◦ dn + d′′n+1 ◦ (gn+1 ◦ hn + h′n ◦ f ′n)

= kn−1 ◦ dn + d′′n+1 ◦ kn.

3. We obtain a category KChAb, the homotopy category of chain complexes, whose ob-
jects are chain complexes and whose morphisms are chain homotopy classes of chain maps.
The isomorphisms in KChAb are chain homotopy classes of chain homotopy equivalences.

Remark 2.1.10 shows that chain homotopies have nice algebraic properties. However, the rather
technical Definition 2.1.9 makes it difficult to view chain homotopies as a counterpart of topolog-
ical homotopies. In particular, a homotopy h : f ⇒ g between continuous maps f, g : X → X ′ is
itself a continuous map h : [0, 1]×X → X ′. This is not directly apparent for chain homotopies.
However, one can show that for chain maps f•, g• : X• → X ′• chain homotopies from f• to g•
are in fact chain maps from a chain complex X ′′• that replaces the space [0, 1]×X to X ′•.

Remark 2.1.11: Let X•, X
′
• be chain complexes and X ′′• the chain complex with

X ′′n = Xn⊕Xn⊕Xn−1, d′′n : X ′′n → X ′′n−1, (x, x′, x′′) 7→ (dn(x)+x′′, dn(x′)−x′′,−dn−1(x′′)).

The inclusions ι0n : Xn → X ′′n, x 7→ (x, 0, 0) and ι1n : Xn → X ′′n, x 7→ (0, x, 0) define chain maps
ι0•, ι

1
• : X• → X ′′• . Chain homotopies h• : f• ⇒ g• between chain maps f•, g• : X• → X ′• are in

bijection with chain maps k• : X ′′• → X ′• such that k• ◦ ι0• = f• and k• ◦ ι1• = g•.

X•

f•   

ι0• // X ′′•

k•
��

X•
ι1•oo

g•~~
X ′•

There are two reasons that homotopies are so useful in topology. The first is that they are often
easy to visualise and behave rather intuitively. The second is that essential quantities that char-
acterise a topological space such as the number of path components and its homotopy groups
are isomorphic, whenever the spaces are homotopy equivalent. This is a consequence of the
fact that homotopic maps between topological spaces induce the same group homomorphisms
between their homotopy groups.

An analogous statement holds for chain maps between chain complexes and chain homotopies
between them. Chain homotopic chain maps induce the same group homomorphisms between
the homologies. As a consequence, the homologies of a chain complex depend only on its chain
homotopy equivalence class.
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Proposition 2.1.12:

1. Chain homotopic chain maps in Ab induce the same maps on the homologies:
if f• ∼ g• then Hn(f•) = Hn(g•) for all n ∈ Z.

2. The nth homology induces a functor Hn : KChAb → Ab for all n ∈ Z.

3. Chain homotopy equivalences induce isomorphisms on the homologies:
if X• ' X ′•, then Hn(X•) ∼= Hn(X ′•) for all n ∈ Z.

Proof:
1. To prove the first claim, let f•, g• : X• → X ′• be chain maps and h• : f• ⇒ g• a chain
homotopy. Then we have for all x ∈ Zn(X•)

Hn(f•)([x])−Hn(g•)([x]) = [fn(x)− gn(x)]
(3)
= [hn−1 ◦ dn(x) + d′n+1 ◦ hn(x)] = 0.

2. This follows directly from 1.

3. If f• : X• → X ′• and g• : X ′• → X• are chain maps with f• ◦ g• ∼ 1X′• and g• ◦ f• ∼ 1X• , then

Hn(f•) ◦Hn(g•) = Hn(f• ◦ g•) = Hn(idX′•) = idHn(X′•)

Hn(g•) ◦Hn(f•) = Hn(g• ◦ f•) = Hn(idX•) = idHn(X•).

This shows that Hn(f•) is an isomorphism with inverse Hn(f•)
−1 = Hn(g•). 2

2.2 The long exact homology sequence

In this section we introduce short exact sequences of chain complexes. Short exact sequences of
chain complexes can be viewed as triples of a chain complex X•, a subcomplex W• ⊂ X• and
the associated quotient complex X•/W•. They are the counterparts of subgroups and factor
groups for abelian groups. We will show that the homologies of the chain complexes in short
exact sequence form an exact chain complex, the long exact sequence of homologies.

Definition 2.2.1:

1. A long exact sequence in Ab is an exact chain complex.
2. A long exact sequence in ChAb is a sequence of chain complexes and chain maps

· · · f
k+2
•−−−→ Ak+1

•
fk+1
•−−−→ Ak•

fk•−→ Ak−1
•

fk−1
•−−−→ · · ·

such that for all n ∈ Z their components form a long exact sequence in Ab

· · · f
k+2
n−−−→ Ak+1

n

fk+1
n−−−→ Akn

fkn−→ Ak−1
n

fk−1
n−−−→ · · ·

3. A short exact sequence in Ab is an exact chain complex 0→ A
ι−→ B

π−→ C → 0.

4. A short exact sequence in ChAb is a sequence 0 → A•
ι•−→ B•

π•−→ C• → 0 of chain
complexes in Ab such that 0→ An

ιn−→ Bn
πn−→ Cn → 0 is exact for all n ∈ Z.

Short exact sequences are called short exact sequences, because they are the shortest exact
sequences that carry information that cannot be stated in a much simpler way. A chain complex
of the form 0 → X → 0 is exact if and only if X is the trivial group, and a chain complex of

the form 0 → X
f−→ Y → 0 is exact if and only if f is a group isomorphism. The information

contained in short exact sequences is less trivial. The following example shows that they are
related to factor groups.
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Remark 2.2.2:

1. The exactness of a short sequence 0→ A
ι−→ B

π−→ C → 0 in Ab is equivalent to:
(i) ι injective, (ii) π surjective, (iii) ker π = im ι.

2. An exact sequence 0 → A
ι−→ B

π−→ C → 0 in Ab corresponds to a triple (A,B,C) such
that A ⊂ B is a subgroup and C = B/A the associated factor group.

If A ⊂ B is a subgroup and C = B/A the associated factor group, then the injective
inclusion ι : A → B and the canonical surjection π : B → B/A satisfy im ι = ker π and
thus form a short exact sequence in Ab.

Conversely, in a short exact sequence injectivity of ι implies A ∼= im ι ⊂ B. Conditions
(ii) and (iii) imply C ∼= imπ ∼= B/kerπ ∼= B/im ι ∼= B/A.

3. Exactness of a sequence 0→ A•
ι•−→ B•

π•−→ C• → 0 is equivalent to (i) ιn injective, (ii) πn
surjective, (iii) ker πn = im ιn for all n ∈ Z.

We can visualise a long exact sequence in ChAb as a commuting diagram

. . .

dk+1
n+2��

. . .

dkn+2��

. . .

dk−1
n+2��

. . .
fk+2
n+1 // Ak+1

n+1

fk+1
n+1 //

dk+1
n+1
��

Akn+1

fkn+1 //

dkn+1

��

Ak−1
n+1

fk−1
n+1 //

dk−1
n+1
��

. . .

. . .
fk+2
n // Ak+1

n

fk+1
n //

dk+1
n
��

Akn
fkn //

dkn
��

Ak−1
n

fk−1
n //

dk−1
n
��

. . .

. . .
fk+2
n−1 // Ak+1

n−1

fk+1
n−1 //

dk+1
n−1

��

Akn−1

fkn−1 //

dkn−1

��

Ak−1
n−1

fk−1
n−1 //

dk−1
n−1

��

. . .

. . . . . . . . .

in which all columns are chain complexes and all rows exact chain complexes. The squares in
this diagram commute, because the maps fkn : Akn → Ak−1

n form chain maps fk• : Ak• → Ak−1
• . A

short exact sequence of chain complexes is given by an analogous diagram, in which the dots
at the left and right of the diagram are replaced by zeros.

We will now show that a short exact sequence of chain complexes generalises the concepts
of a subgroup and a factor group from the category Ab to ChAb. We start by introducing a
subcomplex of a chain complex.

Definition 2.2.3: A subcomplex A• ⊂ X• of a chain complex X• is a family (An)n∈Z of
subgroups An ⊂ Xn such that dn(An) ⊂ An−1 for all n ∈ Z.

The condition on a subcomplex ensures that the boundary operators dXn : Xn → Xn−1 restrict
to group homomorphisms dAn : An → An−1 with dAn−1 ◦ dAn = 0 for all n ∈ Z. This gives the
family of subgroups An ⊂ Xn the structure of a chain complex A•. By definition, its boundary
operators satisfy dXn ◦ in = in−1 ◦ dAn for the inclusions in : An → Xn. In other words, the
inclusions define a chain map i• : A• → X• with injective components.

It is then plausible to define an associated quotient complex by considering the factor groups
Xn/An and the canonical surjections πn : Xn → Xn/An that satisfy πn ◦ in = 0 for all n ∈ Z.
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The boundary operator of the quotient complex X•/A• should be induced by the universal

property of the quotient and thus be given by d
X/A
n : Xn/An → Xn−1/An−1, [x] 7→ [dn(x)].

We also expect that any chain map f• : X• → Y• that satisfies fn(An) ⊂ Bn for all n ∈ Z
and subcomplexes A• ⊂ X• and B• ⊂ Y• should induce chain maps fA• : A• → B• and
f ′• : X•/A• → Y•/B•. An analogous statement should hold for chain homotopies.

Proposition 2.2.4: Let X•, Y• be chain complexes.

1. A subcomplex A• ⊂ X• defines a quotient complex X•/A• and a short exact sequence

of chain complexes 0→ A•
i•−→ X•

π•−→ X•/A• → 0 given by the commuting diagrams

0 // An

dAn
��

in // Xn

dXn
��

πn // Xn/An

d
X/A
n
��

// 0

0 // An−1 in−1

// Xn−1 πn−1

// Xn−1/An−1
// 0.

(4)

2. If A• ⊂ X• and B• ⊂ Y• are subcomplexes and f• : X• → Y• is a chain map with
fn(An) ⊂ Bn for all n ∈ Z, then we obtain a commuting diagram in ChAb with exact rows

0 // A•

fA•
��

i• // X•
π• //

f•
��

X•/A•

f ′•
��

// 0

0 // B•
i′•

// Y•
π′•

// Y•/B• // 0.

(5)

3. Let A• ⊂ X• and B• ⊂ Y• be subcomplexes and f•, g• : X• → Y• chain maps with
fn(An) ⊂ Bn and gn(An) ⊂ Bn for all n ∈ Z. Then any chain homotopy h• : f• ⇒ g• with
hn(An) ⊂ Bn+1 for all n ∈ Z induces chain homotopies hA• : fA• ⇒ gA• and h′• : f ′• ⇒ g′•.

Proof:
1. As An ⊂ Xn is a subgroup and Xn/An the associated factor group, both rows of diagram
(4) are short exact sequences in Ab. The condition that A• ⊂ X• is a subcomplex implies
dXn ◦ in = in−1 ◦ dAn and hence the left square in (4) commutes.

We define d
X/A
n : Xn/An → Xn−1/An−1 in (4) and show that it satisfies d

X/A
n−1 ◦ d

X/A
n = 0 for all

n ∈ Z. As the left square in (4) commutes and both rows are exact, we have

πn−1 ◦ dXn ◦ in = πn−1 ◦ in−1 ◦ dAn = 0 ◦ dAn = 0 ⇒ kerπn = im in ⊂ ker (πn−1 ◦ dXn ).

The universal property of the quotient defines a homomorphism d
X/A
n : Xn/An → Xn−1/An−1

with d
X/A
n ◦ πn = πn−1 ◦ dXn . This states that the right square in (4) commutes and implies

d
X/A
n−1 ◦ dX/An ◦ πn = d

X/A
n−1 ◦ πn−1 ◦ dXn = πn−2 ◦ dXn−1 ◦ dXn = πn−2 ◦ 0 = 0.

With the surjectivity of πn we obtain d
X/A
n−1 ◦ d

X/A
n = 0 for all n ∈ Z. Thus, we have a quotient

complex X•/A•. The inclusions in and canonical surjections πn define chain maps i• : A• → X•
and π• : X• → X•/A•, because diagram (4) commutes.

2. If f• : X• → Y• is a chain map with fn(An) ⊂ Bn for all n ∈ Z, its components restrict to
group homomorphisms fAn : An → Bn with i′n ◦ fAn = fn ◦ in for the inclusions in : An → Xn
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and i′n : Bn → Yn. The left square in the following diagram with exact rows commutes

0 // An

fAn
��

in // Xn
πn //

fn
��

Xn/An

f ′n
��

// 0

0 // Bn
i′n

// Yn
π′n

// Yn/Bn
// 0.

We define the group homomorphism f ′ : Xn/An → Yn/Bn via the universal property of the
quotient. By exactness of the rows and because the left square commutes, we have

π′n ◦ fn ◦ in = π′n ◦ i′n ◦ fAn = 0 ◦ fAn = 0 ⇒ kerπn = im in ⊂ ker (π′n ◦ fn).

The universal property of the quotient gives a unique homomorphism f ′n : Xn/An → Yn/Bn

with f ′n ◦ πn = π′n ◦ fn. We show that these maps define a chain map f ′• : X•/A• → Y•/B•:

dY/Bn ◦f ′n◦πn = dY/Bn ◦π′n◦fn = π′n−1◦dYn ◦fn = π′n−1◦fn−1◦dXn = f ′n−1◦πn−1◦dXn = f ′n−1◦dX/An ◦πn.

By surjectivity of πn this implies d
Y/B
n ◦ f ′n = f ′n−1 ◦ d

X/A
n for all n ∈ Z.

3. As hn(An) ⊂ Bn+1, the components hn : Xn → Yn+1 of the chain homotopy h• define group
homomorphisms hAn : An → Bn+1 with i′n+1 ◦ hAn = hn ◦ in for all n ∈ Z. This implies

i′n ◦ (dBn+1 ◦ hAn + hAn−1 ◦ dAn ) = dYn+1 ◦ i′n+1 ◦ hAn + hn−1 ◦ in−1 ◦ dAn
= (dYn+1 ◦ hn + hn−1 ◦ dXn ) ◦ in = (gn − fn) ◦ in = i′n ◦ (gAn − fAn ),

and by injectivity of i′n it follows that this defines a chain homotopy hA• : fA• ⇒ gA• .

We also have the identities

π′n+1 ◦ hn ◦ in = π′n+1 ◦ i′n+1 ◦ hAn = 0 ◦ hAn = 0 ⇒ kerπn = im in ⊂ ker (π′n+1 ◦ hn).

The universal property of the quotient yields a unique homomorphism h′n : Xn/An → Yn+1/Bn+1

with h′n ◦ πn = π′n+1 ◦ hn. We show that the maps hn define a chain homotopy from f ′ to g′:

(d
Y/B
n+1 ◦ h′n + h′n−1 ◦ dX/An ) ◦ πn = d

Y/B
n+1 ◦ π′n+1 ◦ hn + h′n−1 ◦ πn−1 ◦ dXn

= π′n ◦ (dYn+1 ◦ hn + hn−1 ◦ dXn ) = π′n ◦ (gn − fn) = (g′n − f ′n) ◦ πn.

Surjectivity of πn implies that the morphisms h′n define a chain homotopy h′• : f ′• ⇒ g′•. 2

We now investigate the relation between the homologies of chain complexes in a short exact
sequence 0 → A•

ι•−→ B•
π•−→ C• → 0. A first naive guess would be that that these homologies

also form short exact sequences. This would amount to the identities Hn(C•) = Hn(B•)/Hn(A•)
for all n ∈ Z. The following example shows that this first guess is wrong and that the relation
between the homologies must be more complicated than simply a quotient.
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Example 2.2.5: We consider the short exact sequence 0 → A•
ι•−→ B•

π•−→ C• → 0 of chain
complexes given by the following commuting diagram with exact rows

A• B• C•

0

dA2
��

0

dB2
��

0

dC2
��

0 // A1 = 0
ι1 //

dA1
��

B1 = Z π1=id //

dB1 :z 7→(z,z)
��

C1 = Z //

dC1 :z 7→0
��

0

0 // A0 = Z ι0:z 7→(z,z) //

dA0
��

B0 = Z⊕ Z π0:(z1,z2) 7→z2−z1//

dB0
��

C0 = Z //

dC0
��

0

0 0 0

Then we have

Hn(A•) = 0, Hn(B•) = 0, Hn(C•) = 0 n ≥ 2 or n < 0

H1(A•) = ker dA1 = 0, H1(B•) = ker dB1 = 0, H1(C•) = ker dC1 = Z
H0(A•) = ker dA0 = Z, H0(B•) = ker dB0 /im dB1

∼= Z, H0(C•) = ker dC0 = Z.

Clearly, H1(C•) = Z 6∼= 0 = H1(B•)/H1(A•).

This example shows that the relation between the homologies of chain complexes in a short
exact sequence is more complicated than apparent at first sight. We will now clarify this relation.
Our first ingredient is the connecting homomorphism. It relates the nth homology of the last
chain complex in a short exact sequence to the (n− 1)st homology of the first chain complex.
Despite its awkward definition, it is conceptual and natural with respect to chain maps.

Proposition 2.2.6 (connecting homomorphism):

Let 0→ A•
ι•−→ B•

π•−→ C• → 0 a short exact sequence of chain complexes. Then there are group
homomorphisms

∂n : Hn(C•)→ Hn−1(A•), [c] 7→ [a] ∃b ∈ Bn : πn(b) = c and dn(b) = ιn−1(a)

for all n ∈ Z, the connecting homomorphisms such that for all commuting diagrams

0 // A•

α•
��

ι• // B•

β•
��

π• // C•

γ•
��

// 0

0 // A′•
ι′• // B′•

π′• // C ′• // 0

(6)

of chain complexes with exact rows, we have Hn−1(α•) ◦ ∂n = ∂′n ◦Hn(γ•)

Hn(C•)

Hn(γ•)
��

∂n // Hn−1(A•)

Hn−1(α•)
��

Hn(C ′•) ∂′n

// Hn−1(A′•).
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Proof:
Let c ∈ Zn(C•). Then by surjectivity of πn there is an b ∈ Bn with πn(b) = c. Because π• is a
chain map and c ∈ Zn(C•), this implies πn−1 ◦ dn(b) = dn ◦ πn(b) = dn(c) = 0. This shows that
dn(b) ∈ ker (πn−1) = im (ιn−1), and there is an a ∈ An−1 with ιn−1(a) = dn(b). By injectivity of
ιn−1, this element a ∈ An−1 is unique. We have ιn−1 ◦ dn−1(a) = dn−1 ◦ ιn(a) = dn−1 ◦ dn(b) = 0.
By injectivity of ιn−1, this implies dn−1(a) = 0 and hence a ∈ Zn−1(A•).

0 // An

dn
��

ιn // b ∈ Bn

dn
��

πn // c ∈ Cn
dn
��

// 0

0 // a ∈ An−1 ιn−1

// dn(b) ∈ Bn−1 πn−1

// Cn−1
// 0

We aim to define

∂n[c] = [a], where c = πn(b), ιn−1(a) = dn(b) for some b ∈ Bn. (7)

1. We show that this is well-defined: (i) it does not depend on the choice of b and (ii) it depends
only on the homology class of c.

(i) Let b′ ∈ Bn another element with πn(b′) = c and a′ ∈ An−1 with ιn−1(a′) = dn(b′). Then
b′ − b ∈ ker (πn) = im (ιn), so there is an a′′ ∈ An with b′ − b = ιn(a′′). This implies

ιn−1(a′ − a) = dn(b′ − b) = dn ◦ ιn(a′′) = ιn−1 ◦ dn(a′′) ⇒ a′ − a = dn(a′′) ⇒ [a] = [a′].

(ii) Let c′ = c + dn+1(c′′). By surjectivity of πn+1 there is a b′′ ∈ Bn+1 with πn+1(b′′) = c′′.
Because π• is a chain map, this implies πn ◦ dn+1(b′′) = dn+1 ◦ πn+1(b′′) = dn+1(c′′). We set
b′ = b+dn+1(b′′) and obtain πn(b′) = πn(b+dn+1(b′′)) = c+dn+1(c′′) = c′ as well as dn(b′) = dn(b).
Thus ιn−1(a) = dn(b) = dn(b′).

2. We show that ∂n : Hn(C•)→ Hn−1(A•) is a group homomorphism:

Let c, c′ ∈ Zn(C•) with πn(b) = c, πn(b′) = c′ and ιn−1(a) = dn(b), ιn−1(a′) = dn(b′). Then we
have ∂n[c] = a and ∂n[c′] = [a′]. As ιn and πn are group homomorphisms, we have

πn(b+ b′) = πn(b) + πn(b′) = c+ c′ ιn−1(a+ a′) = ιn−1(a) + ιn−1(a′) = b+ b′.

This implies ∂n[c+ c′] = [a+ a′] = [a] + [a′] = ∂n[c] + ∂n[c′].

3. We prove the naturality of ∂n:

Let c ∈ Zn(C•), b ∈ Bn with πn(b) = c and dn(b) = ιn−1(a). Then we have

Hn−1(α•) ◦ ∂n[c] = Hn−1(α•)[a] = [αn−1(a)].

Because diagram (6) commutes, we have π′n ◦ βn(b) = γn ◦ πn(b) = γn(c) and because β• is a
chain map d′n ◦ βn(b) = βn−1 ◦ dn(b) = βn−1 ◦ ιn−1(a) = ι′n−1 ◦ αn−1(a). This implies

∂′n ◦Hn−1(γ•)[c] = ∂′n[γn(c)] = [αn−1(a)] = Hn−1(α•) ◦ ∂n[c]. 2

The connecting homomorphisms allow us to organise the homologies of a short exact sequence
0 → A•

ι•−→ B•
π•−→ C• → 0 into a long sequence, whose terms are related by the group

homomorphisms Hn(ι•) : Hn(A•) → Hn(B•) and Hn(π•) : Hn(B•) → Hn(C•) and by the
connecting homomorphisms ∂n : Hn(C•)→ Hn−1(A•). It turns out that this sequence is exact.
The naturality of the connecting homomorphisms and the fact that the homologies are functors
Hn : ChAb → Ab ensure that this exact sequence is compatible with triples of chain maps.
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Proposition 2.2.7 (long exact homology sequence):

1. Any short exact sequence 0 → A•
ι•−→ B•

π•−→ C• → 0 of chain complexes defines a long
exact homology sequence

. . .
∂n+1−−−→ Hn(A•)

Hn(ι•)−−−−→ Hn(B•)
Hn(π•)−−−−→ Hn(C•)

∂n−→ Hn−1(A•)
Hn−1(ι•)−−−−−→ Hn−1(B•)

Hn(π•)−−−−→ . . .

2. Any commuting diagram of chain complexes with exact rows

0 // A•

α•
��

ι• // B•

β•
��

π• // C•

γ•
��

// 0

0 // A′• ι′•

// B′• π′•

// C ′• // 0

defines a commuting diagram

. . .
Hn+1(π•)// Hn+1(C•)

∂n+1 //

Hn+1(γ•)
��

Hn(A•)
Hn(ι•)//

Hn(α•)
��

Hn(B•)
Hn(π•)//

Hn(β•)
��

Hn(C•)
∂n //

Hn(γ•)
��

Hn−1(A•)
Hn−1(ι•)//

Hn−1(α•)
��

. . .

. . .
Hn+1(π′•)

// Hn+1(C ′•) ∂′n+1

// Hn(A′•)Hn(ι′•)
// Hn(B′•)Hn(π′•)

// Hn(C ′•) ∂′n

// Hn−1(A′•)Hn−1(ι′•)
// . . .

Proof:
1.(a) We show exactness in Hn(B•):
For all a ∈ Zn(A•) we have Hn(π•) ◦Hn(ι•)[a] = Hn(π•)[ιn(a)] = [πn ◦ ιn(a)] = 0 by exactness
of the sequence. This implies Hn(π•)◦Hn(ι•)[a] = [πn ◦ ιn(a)] = [0] and imHn(ι•) ⊂ kerHn(π•).

Let now b ∈ Zn(B•) with Hn(π•)[b] = [πn(b)] = 0. Then there is a c′ ∈ Cn+1 such that
πn(b) = dn+1(c′) and by surjectivity of πn+1 a b′ ∈ Bn+1 with πn+1(b′) = c′. We then have
πn(b− dn+1(b′)) = πn(b)− πn ◦ dn+1(b′) = dn+1(c′)− dn+1 ◦ πn+1(b′) = dn+1(c′)− dn+1(c′) = 0.
This gives b − dn+1(b′) ∈ kerπn, and by exactness of the sequence there is an a ∈ An with
ιn(a) = b − dn+1(b′). This implies ιn−1 ◦ dn(a) = dn ◦ ιn(a) = dn(b) − dn ◦ dn+1(b′) = 0,
because ι• is a chain map, and dn(a) = 0 by injectivity of ιn−1. Hence, a ∈ Zn(A•) with
Hn(ι•)[a] = [ιn(a)] = [b− dn+1(b′)] = [b], and this shows kerHn(π•) ⊂ imHn(ι•).

1.(b) We show exactness in Hn−1(A•):
Let a ∈ Zn−1(A•) and [c] ∈ Hn(C•) with ∂n[c] = [a]. Then there is a b ∈ Bn with πn(b) = c
and ιn−1(a) = dn(b). This implies Hn−1(ι•)[a] = [ιn−1(a)] = [dn(b)] = 0. Hence, we have
im ∂n ⊂ kerHn−1(ι•).

Conversely, let [a] ∈ kerHn−1(ι•). Then there is a b ∈ Bn with ιn−1(a) = dn(b). With the
definition of the connection homomorphism, this implies ∂n[πn(b)] = [a] and [a] ∈ ∂nHn(C•).
Thus we have kerHn−1(ι•) ⊂ im ∂n.

1.(c) We show exactness in Hn(C•):
Because π• is a chain map, we have dn ◦ πn(b) = πn−1 ◦ dn(b) = 0 = ιn−1(0) for all b ∈ Zn(B•).
This implies ∂n ◦Hn(π•)[b] = ∂n[πn(b)] = [0] and imHn(π•) ⊂ ker ∂n.

Conversely, let c ∈ Zn(C•) with ∂n[c] = 0. Then by definition of the connecting homomorphism
there is a b ∈ Bn and an a ∈ An with πn(b) = c and dn(b) = ιn−1 ◦ dn(a) = dn ◦ ιn(a). This
implies dn(b − ιn(a)) = 0 and hence b − ιn(a) ∈ Zn(B•). By exactness of the sequence we also
have πn(b− ιn(a)) = πn(b)− πn ◦ ιn(a) = πn(b) = c. This shows that [c] ∈ imHn(π•), because
Hn(π•)[b− ιn(a)] = [πn(b− ιn(a))] = [c], and that ker ∂n ⊂ imHn(π•).
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2. The diagram of chain complexes and chain maps defines two long exact sequences of ho-
mologies and group homomorphisms on the vertical arrows between them. All squares in the
diagram of homologies that do not involve the connecting homomorphisms commute by func-
toriality of the homologies and because the associated squares of chain complexes commute.
The squares involving the connecting homomorphisms commute by Proposition 2.2.6. 2

Example 2.2.8: Consider the short exact sequence 0 → A•
ι•−→ B•

π•−→ C• → 0 of chain
complexes from Example 2.2.5 given by the following commuting diagram with exact rows

A• B• C•

0

dA2
��

0

dB2
��

0

dC2
��

0 // A1 = 0
ι1 //

dA1
��

B1 = Z π1=id //

dB1 :z 7→(z,z)
��

C1 = Z //

dC1 :z 7→0
��

0

0 // A0 = Z ι0:z 7→(z,z) //

dA0
��

B0 = Z⊕ Z π0:(z1,z2) 7→z2−z1//

dB0
��

C0 = Z //

dC0
��

0

0 0 0

From Example 2.2.5 it follows that there can be only one non-trivial connecting homomorphism,
namely ∂1 : H1(C•) → H0(A•). We have Z1(C•) = ker dC1 = Z and for any c ∈ Z1(C•) = Z
we have c = π1(b) and ι0(a) = dn(b) for some b ∈ B1 and a ∈ A0 if and only if b = c and
ι0(a) = (a, a) = (c, c) = dB1 (b). This implies a = c and

∂1 = id : Z→ Z.

Using the results from Example 2.2.5 we find the long exact homology sequence

0 // H1(A•)
H1(ι•)// H1(B•)

H1(π•)// H1(C•)
∂1 // H0(A•)

H0(ι•)// H0(B•)
H0(π•)// H0(C•) // 0

0 // 0 // 0
0

// Z
id

// Z
0

// Z
id

// Z // 0

where the last two labelled arrows in the bottom row are already determined uniquely by ∂1

and the requirement that the sequence is exact. They can also be computed directly from the
commuting diagram that defines the chain complexes.
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3 Singular homology

In this section, we associate to every topological space a chain complex, its singular chain
complex, and to each continuous map a chain map, the singular map. We will also show that
homotopies between continuous maps give rise to chain homotopies and hence do not affect the
homologies of these chain complexes. This leads to functors Hn : Top→ Ab that are constant
on homotopy classes of continuous maps and hence descend to functors Hn : KTop → Ab
from the homotopy category of topological spaces. We will then investigate its behaviour with
respect to subspaces and quotients.

In the following we focus on chain complexes in the category Z-Mod = Ab of abelian groups
and group homomorphisms between them. Chain complexes with coefficients in other abelian
groups are considered in Section 5.

3.1 The singular chain complex

The idea of singular homology is to probe a topological space X by considering continuous maps
f : ∆n → X from certain standard spaces, the standard simplexes ∆n. They are examples of
affine simplexes, convex hulls of discrete sets of point in Rn.

Recall that an affine subspace A of an F-vector space V with associated subspace VA ⊂ V is a
subset A ⊂ V such that a′ − a ∈ VA for all a, a′ ∈ A. This implies Σn

i=0λiai ∈ A for all ai ∈ A
and λi ∈ F with λ0 + . . .+ λn = 1. Such an expression is called an affine linear combination.

An affine map f : A → B between non-empty affine subspaces A,B ⊂ V is a map that
induces a linear map f : VA → VB. This implies that f respects affine linear combinations:
f(Σn

i=0λiai) = Σn
i=0λif(ai) for all ai ∈ A and λi ∈ F with λ0 + . . .+ λn = 1.

Definition 3.1.1:

1. An affine m-simplex ∆ ⊂ Rn is the convex hull of m+ 1 points v0, ..., vm ∈ Rn

∆ = conv{v0, ..., vm} = {Σm
i=0tivi | 0 ≤ ti ≤ 1,Σm

i=0ti = 1}.

It is called degenerate, if the vectors v1 − v0, . . . , vm − v0 are linearly dependent.

2. The k-simplexes conv {vi0 , . . . , vik} for subsets {vi0 , . . . , vik} ⊂ {v0, . . . , vn} are called the
k-faces of ∆, the 0-faces are called vertices and the 1-faces edges.

3. An ordered m-simplex is an affine m-simplex with an ordering of its vertices. We write
[v0, ..., vm] for ∆ = conv{v0, ..., vm} with ordering v0 < v1 < ... < vm.

The advantage of working with affine simplexes is that all of their k-faces are again affine
simplexes. They are obtained by omitting an arbitrary subset of vertices from the simplex. Thus,
affine simplexes are simple building blocks for topological spaces that exist in any dimension
and can be reduced to specifying points. If we are just interested in affine simplexes up to
invertible affine maps, we can restrict attention to a set of non-degenerate standard simplexes
that are given by the origin and a standard basis of Rn. The ordering of the standard basis
equips them with an ordering.
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Definition 3.1.2: Let (e1, ..., en) be the standard basis of Rn and e0 := 0 ∈ Rn.

1. The standard n-simplex is the ordered n-simplex

∆n = [e0, ..., en] = {(t1, . . . , tn) ∈ Rn | 0 ≤ ti ≤ 1,Σn
i=1ti ≤ 1}.

2. For n ∈ N and i ∈ {0, ..., n} the ith face map fni : ∆n−1 → ∆n is the affine map with

fni (ej) =

{
ej j < i

ej+1 j ≥ i.
(8)

More precisely, we should say that the face maps are the restrictions to ∆n−1 and corestrictions
to ∆n of the affine linear map fni : Rn−1 → Rn given by (8). As this is too cumbersome, we
will also use the term affine map for their restrictions to non-degenerate affine simplexes and
corestrictions to their images.

Note in particular that an affine map f : Rn → Rm sends the standard n-simplex ∆n to a
possibly degenerate ordered n-simplex σ = [v0, . . . , vn] ⊂ Rm with vk = f(ek). As the affine
map f is determined by the images of the vertices in ∆n, we write f : ∆n → σ, ei 7→ vi or
f = [v0, . . . , vn] and do not distinguish affine maps f : Rn → Rm and affine simplexes in Rm.

In particular, this identifies the face map fni : ∆n−1 → ∆n with the affine (n − 1)-simplex
fni = [e0, . . . , ei−1, ei+1, . . . , en] ⊂ Rn, which is the face opposite ei in ∆n. This motivates the
name face map. In coordinates it is given by

fni : ∆n−1 → ∆n, (t1, . . . , tn−1) 7→ (t1, . . . , ti−1, 0, ti, . . . , tn).

The ordering of an affine m-simplex is pictured by drawing an arrow on each edge that points
from its vertex of lower order to its vertex of higher order. Note that the face maps respect the
ordering of vertices in the standard n-simplexes. They omit vertices, but do not change their
order. Hence, the ordering of the vertices in the (n − 1)-face fni (∆n−1) ⊂ ∆n induced by the
ordering of ∆n−1 coincides with the one induced by the ordering of ∆n.

x1

10

∆0

x1

x2

10

1

x1

x2

x3

1

1

1

∆1 ∆2 ∆3

The standard n-simplexes for n = 0, 1, 2, 3.

To describe faces of dimension < n− 1 in standard n-simplexes we can consider composites of
face maps. We then need to keep track of the relations between such composites. One can show
that all relations between different composites of face maps are consequences of the relations
in the following lemma.
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Lemma 3.1.3: The face maps satisfy the relations

fni ◦ fn−1
j = fnj ◦ fn−1

i−1 0 ≤ j < i ≤ n. (9)

Proof. We have for 0 ≤ j < i ≤ n and 0 ≤ k < n− 1

fni ◦ fn−1
j (ek) =

{
fni (ek) 0 ≤ k < j

fni (ek+1) j ≤ k < n− 1
=


ek 0 ≤ k < j

ek+1 j ≤ k < i

ek+2 i ≤ k < n− 1

fnj ◦ fn−1
i−1 (ek) =

{
f jn(ek) 0 ≤ k < i− 1

fnj (ek+1) i ≤ k < n− 1
=


ek 0 ≤ k < j

ek+1 j ≤ k < i

ek+2 i ≤ k < n− 1.

In a general topological space X there is no notion of an affine n-simplex. However, we can still
consider continuous maps σ : ∆n → X. Such continuous maps are called singular n-simplexes,
because we impose no injectivity conditions. All continuous maps are admissible, even the most
singular ones that send the entire standard n-simplex to a point.

As we wish to work in a linear setting, we not only consider singular simplexes, but also
finite formal linear combinations of singular simplexes with integer coefficients. Such linear
combinations are called singular n-chains. They are realised as elements of the free abelian
group generated by the set of singular simplexes in X.

Definition 3.1.4: Let X be a topological space.

1. A singular n-simplex in X is a continuous map σ : ∆n → X.

2. Elements of the free abelian group Sn(X) = 〈HomTop(∆n, X)〉Z generated by the set of
singular n-simplexes in X are called singular n-chains in X.

As the singular n-simplexes form a basis of the abelian group Sn(X), any group homomorphism
φ : Sn(X)→ A into an abelian group A is determined by the images of the singular n-simplexes.
We therefore write f : Sn(X)→ A, σ 7→ f(σ) without further comments in the following.

We now associate to each topological space a chain complex S•(X) consisting of the abelian
groups Sn(X) of singular n-chains in X. A boundary operator must assign to each singular
n-chain a singular (n− 1)-chain in X. Given the available structures, it seems plausible to send
singular n-simplexes σ : ∆n → X to their composites with face maps σ ◦ fni : ∆n−1 → X. To
obtain a boundary operator, we then take the alternating sum of these composites for all face
maps fni : ∆n−1 → ∆n.

In order to be useful, such an assignment of chain complexes to topological spaces must also
assign a chain map between them to each continuous map f : X → Y , in such a way that
this is compatible with the composition of continuous maps and with the identity maps. The
most obvious way to define such a map is to map each singular n-simplex σ : ∆n → X to the
composite f ◦ σ : ∆n → Y .
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Proposition 3.1.5: There is a functor S• : Top → ChAb, the singular chain complex
functor, that assigns

• to a topological space X the chain complex S•(X) with abelian groups Sn(X) and

dn : Sn(X)→ Sn−1(X), σ 7→ Σn
i=0(−1)iσ ◦ fni for n > 0.

• to a continuous map f : X → X ′ the chain map S•(f) : S•(X)→ S•(X
′) given by

Sn(f) : Sn(X)→ Sn(X ′), σ 7→ f ◦ σ.

Proof:
1. We show that S•(X) is a chain complex: for all singular n-simplexes σ : ∆n → X we have

dn−1 ◦ dn(σ) =
n−1∑
j=0

n∑
i=0

(−1)i+jσ ◦ fni ◦ fn−1
j

=
n∑
i=0

i−1∑
j=0

(−1)i+jσ ◦ fni ◦ fn−1
j +

n∑
i=0

n−1∑
j=i

(−1)i+jσ ◦ fni ◦ fn−1
j

(9)
=

n∑
i=0

i−1∑
j=0

(−1)i+jσ ◦ fnj ◦ fn−1
i−1 +

n∑
i=0

n−1∑
j=i

(−1)i+jσ ◦ fni ◦ fn−1
j

=
n−1∑
j=0

n−1∑
i=j

(−1)i+j+1σ ◦ fnj ◦ fn−1
i +

n−1∑
i=0

n−1∑
j=i

(−1)i+jσ ◦ fni ◦ fn−1
j = 0.

2. We show that S•(f) is a chain map: for all singular n-simplexes σ : ∆n → X we have

dn ◦ Sn(f)(σ) = dn(f ◦ σ) =
n∑
i=0

(−1)if ◦ σ ◦ fni = Sn−1(f) ◦ dn(σ).

3. We show that S• respects the composition of morphisms: for all continuous maps f : X → X ′

and g : X ′ → X ′′ and all singular n-simplexes σ : ∆n → X we have

Sn(g) ◦ Sn(f)(σ) = g ◦ f ◦ σ = Sn(g ◦ f)(σ).

4. We show that S• respects identity morphisms: for all singular n-simplexes σ : ∆n → X

Sn(idX)(σ) = idX ◦ σ = σ.

2

The signs of the singular boundary operators have a geometrical interpretation and can be
visualised for n = 1, 2, 3. For a 1-simplex σ : ∆1 → X the sign in front of the term σ ◦ f 1

i is +1
if the arrow on the ordered 1-simplex ∆1 = [e0, e1] points towards ei and −1 if it points away
from ei. For a 2-simplex σ : ∆2 → X the sign of the term σ ◦ f 2

i is given by the orientation
of ∆2. If we orient ∆2 = [e0, e1, e2] according to the ordering of the vertices from the vertex of
lowest to the vertex of highest order, as indicated by the blue arrow, then the sign is +1 if the
arrow on the 1-simplex f 2

i (∆1) is oriented parallel to this and −1 if it is oriented against it.
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x1

1

+

0

−
x1

x2

10

1

+

− +

For a 3-simplex σ : ∆3 → X the sign in front of the term σ ◦ f 3
i is given by the right hand rule.

If one equips each 2-face of ∆3 with the orientation defined above and the fingers of the right
hand follow this orientation, then the sign is +1 if the thumb of the right hand points out of
∆3 and −1 if it points inside ∆3.

x1

x2

x3

x1

x2

x3

+

x1

x2

x3

−

x1

x2

x3

+

x1

x2

x3

−

The boundary operator is called boundary operator, because it assigns to a singular n-simplex
σ : ∆n → X the alternating sum of the singular (n− 1)-simplexes σ ◦ fni : ∆n−1 → X that are
the restrictions of σ to the (n−1)-faces of ∆n. Together, these (n−1)-faces form the boundary
∂∆n of ∆n ⊂ Rn.

The signs in front of the terms σ ◦ fni ensure that applying the boundary operator twice gives
zero. This has a geometrical interpretation. Each (n − 2)-face f of ∆n is contained in the
boundary of exactly two (n− 1)-faces. In one of them f is oriented parallel to the orientation
of the (n − 1)-face, in the other against it. Hence, the two contributions have opposite signs
and cancel. This encodes the fact that the boundary of the boundary of ∆n is empty: one has
∂∆n = ∪ni=0f

n
i (∆n−1) and ∂(∂∆n) = 0.
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Composing the functor S• : Top → ChAb from Proposition 3.1.5 with the homology functor
Hn : ChAb → Ab from Proposition 2.1.8 yields for all n ∈ N0 functors HnS• : Top → Ab,
the singular homology functors. They assign to each topological space an abelian group, the
singular homology group.

Definition 3.1.6:
The nth singular homology functor is the functor HnS• : Top→ Ab that assigns to

• a topological space X the abelian group Hn(X) := HnS•(X),
• a continuous map f : X → Y the homomorphism Hn(f) := HnS•(f) : Hn(X)→ Hn(Y ).

The abelian group Hn(X) is called the nth singular homology group of X.

The homology groups of a topological space X have several advantages over its singular chain
complex S•(X). The first is that they are much more manageable and smaller than the groups
Sn(X) of n-chains. The latter have a huge basis consisting of all singular n-simplexes inX, which
is not even countable for most relevant examples of topological spaces. In contrast, the homology
groups are finitely generated for many relevant examples. This will become apparent in Example
3.1.10 and Theorem 3.1.11 below. We start with some simple and structural examples.

Example 3.1.7: For the empty topological space ∅ there are no n-simplexes for any n ∈ N0.
Thus we have Sn(∅) = 0 for all n ∈ N0 and Hn(∅) = 0 for all n ∈ N0.

Example 3.1.8: The one point space • has a single n-simplex σn : ∆n → • for each n ∈ N0

and hence Sn(•) = 〈σ〉Z ∼= Z for all n ∈ N0. Its boundary operator is given by

dn(σn) =
n∑
i=0

(−1)iσn ◦ fni =
n∑
i=0

(−1)iσn−1 =

{
σn−1 n even

0 n odd.

Its singular chain complex is S•(•) = . . .
0−→ Z id−→ Z 0−→ Z id−→ Z 0−→ Z→ 0. Its homologies are

Hn(X) =

{
Z/0 = Z n = 0

0 n 6= 0

A more structural result that can be obtained directly from the definition of the singular
homologies are the homologies of sums of topological spaces. The proof of this claim is left as
an exercise (Exercise 18).

Proposition 3.1.9: Let X = qi∈IXi be a topological sum. Then the inclusions ιi : Xi → X
induce isomorphisms

In : ⊕i∈IHn(Xi)
∼−→ Hn(X) n ∈ N0.

We will now determine the zeroth and first homology groups for more general topological spaces
X. Both of them have a geometric interpretation and encode relevant topological information.
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Example 3.1.10: Let X be a topological space. Then

H0(X) =
〈X〉Z

〈σ(1)− σ(0) | σ : [0, 1]→ X continuous〉Z
∼=
⊕
π0(X)

Z

where π0(X) is the set of path components of X.

Proof:
As ∆0 = {0} all maps σ : ∆0 → X are continuous, and they are in bijection with points of X.
Continuous maps σ : ∆1 → X are simply paths in X. This gives

S0(X) = 〈X〉Z d0 : S0(X)→ {0}, x 7→ 0

S1(X) = 〈σ : [0, 1]→ X continuous〉Z d1 : S1(X)→ S0(X), σ 7→ σ(1)− σ(0).

We obtain Z0(X) = S0(X) and B0(X) = 〈σ(1) − σ(0) | σ : [0, 1] → X continuous〉Z. Hence,
two 0-cycles x, y ∈ X are related by a 0-boundary if and only if there is a continuous map
σ : [0, 1] → X with σ(0) = x and σ(1) = y, i. e. a path from x to y. Hence x, y ∈ X are
identified if and only if they are in the same path component of X.

By selecting a point xP in each path component P ∈ π0(X), we can rewrite any Z-linear
combination v = Σn

i=1zixi of points xi ∈ X uniquely as v = Σn
i=1zixPi +

∑n
i=1 zi(xi−xPi), where

xPi represents the path component of xi. This defines an isomorphism H0(X) ∼= ⊕π0(X)Z. 2

As the 0th homology group H0(X) of a topological space X is given by its set π0(X) of path
components, one expects that the first homology group H1(X) of a path connected topological
space X should be related to its fundamental group π1(X). A 1-chain on X is a Z-linear
combination of paths σ : [0, 1] → X. The identity d1(σ) = σ(1) − σ(0) implies that a singular
1-simplex σ : [0, 1]→ X is a 1-cycle if and only if the path σ : [0, 1]→ X is closed: σ(0) = σ(1).
One expects homotopies between paths with the same endpoints to be related to 2-simplexes.

However, there is an essential difference between the fundamental group π1(X) and the first
homology group H1(X) of a path connected topological space X. The group multiplication
of π1(X) is induced by the concatenation of paths and in general not abelian, whereas the
composition of 1-cycles is given by the addition in the abelian group Zn(X). For a collection
of paths based at a point x ∈ X their product in the fundamental group π1(X) keeps track of
the order in which the paths are composed. The sum of their homology classes in H1(X) only
takes into account how often each path in the collection is traversed and in which direction.

We now show that for a path connected topological space X the first homology group H1(X)
is the abelisation of the fundamental group π1(X). For this, recall that the commutator sub-
group [G,G] of a group G is the normal subgroup of G generated by the group commutators
[g, h] = ghg−1h−1 of all elements g, h ∈ G. The factor group G/[G,G] is abelian by construction
and called the abelisation Ab(G) of G . One can show that abelisation is characterised by a
universal property and defines a functor Ab : Grp → Ab from the category Grp of groups to
the category Ab of abelian groups (Exercise 3).

Theorem 3.1.11: Let X be a path connected topological space and x ∈ X.

1. The map φ :π1(x,X)→H1(X), [γ]π1 7→ [γ]H1 is a group homomorphism.

2. It induces an isomorphism φ :Ab π1(x,X)→H1(X), the Huréwicz isomorphism.
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Proof:
1. We show that φ : π1(x,X)→ H1(X), [γ]π1 7→ [γ]H1 is well-defined.

Note first that any path γ : [0, 1] → X with γ(0) = γ(1) is a singular 1-cycle, as ∆1 = [0, 1]
and d1(γ) = γ ◦ f 1

0 − γ ◦ f 1
1 = γ(1)− γ(0) = 0.

It remains to show that homotopic paths are related by a 1-boundary. Let γ1, γ2 : [0, 1] → X
be paths with γi(0) = γi(1) = x and h : [0, 1]× [0, 1]→ X a homotopy of paths from γ1 to γ2.
Then we have h(0, t) = γ1(t), h(1, t) = γ2(t) and h(s, 0) = h(s, 1) = x for all t, s ∈ [0, 1]. From
the homotopy h we construct a map σ : ∆2 → X defined by

σ(s, t) = h( t
s+t
, s+ t) for (s, t) 6= (0, 0), σ(0, 0) = x.

This map is continuous, because h : [0, 1] × [0, 1] → X is continuous with h(s, 0) = x for all
s ∈ [0, 1]. By applying the boundary operator, we obtain d2(σ) = σ ◦ f 2

0 − σ ◦ f 2
1 + σ ◦ f 2

2 with

σ ◦ f 2
0 (t) = σ(1− t, t) = x, σ ◦ f 2

1 (t) = σ(0, t) = γ2(t), σ ◦ f 2
2 (t) = σ(t, 0) = γ1(t).

Hence, σ sends the face [e1, e2] of ∆2 to x, the face [e0, e2] to im (γ2) and the face [e0, e1] to
im (γ1). We have d2(σ) = γx − γ2 + γ1 with the constant 1-cycle γx : [0, 1]→ X, t 7→ x.

x1

x2

σ

γ2

γ1

x

As γx is a boundary γx = d2(ρx) of the constant 2-simplex ρx : ∆2 → X, (s, t) 7→ x, we have
0 = [γx]H1 = [d2(σ)]H1 + [γ2]H1 − [γ1]H1 = [γ2]H1 − [γ1]H1 . This shows that [γ]H1 depends only
on the homotopy class of γ and φ is well-defined.

2. We show that φ : π1(x,X)→ H1(X), [γ]π1 7→ [γ]H1 is a group homomorphism.

Let γ1, γ2 : [0, 1]→ X be paths with γi(0) = γi(1) = x. By composing their concatenation

γ2 ? γ1 : [0, 1]→ X, t 7→

{
γ1(2t) t ∈ [0, 1

2
]

γ2(2t− 1) t ∈ [1
2
, 1

with the affine map g : ∆2 → [0, 1], (s, t) 7→ 1
2
s+ t, we obtain a 2-simplex

σ = (γ2 ? γ1) ◦ g : ∆2 → X, (s, t) 7→ (γ2 ? γ1)( s
2

+ t)

that satisfies

σ ◦ f 2
0 (t) = σ(1− t, t) = γ2 ? γ1(1

2
+ t

2
) = γ2(t)

σ ◦ f 2
1 (t) = σ(0, t) = γ2 ? γ1(t)

σ ◦ f 2
2 (t) = σ(t, 0) = γ2 ? γ1(g(t, 0)) = γ2 ? γ1( t

2
) = γ1(t).

⇒ d2(σ) = γ1 + γ2 − γ2 ? γ1.
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This implies

φ([γ1]π1) + φ([γ2]π1) = [γ1]H1 + [γ2]H1 = [γ2 ? γ1]H1 = φ([γ2 ? γ1]π1) = φ([γ2]π1 · [γ1]π1).

As H1(X) is abelian, this induces a group homomorphism φ : Abπ1(x,X)→ H1(X).

3. We show that φ : Abπ1(x,X)→ H1(X) is a group isomorphism by constructing its inverse.
We choose for every point y ∈ X a path γy : [0, 1]→ X with γy(0) = y, γy(1) = x and define

K : S1(X)→ Ab π1(x,X), σ 7→ [γσ(1) ? σ ? γσ(0)]Ab(π1)

for singular 1-simplexes σ : [0, 1] → X. As S1(X) is the free abelian group generated by the
singular 1-simplexes, this defines a group homomorphism.

γσ(0)

γσ(1)

σ

x
σ(1)

σ(0)

To show that K : S1(X) → Abπ1(x,X) induces a group homomorphism K : H1(X) →
Abπ1(x,X), we show that K(d2(ω)) = 0 for every singular 2-simplex ω : ∆2 → X:

K(d2ω) = K(ω ◦ f 2
0 − ω ◦ f 2

1 + ω ◦ f 2
2 ) = K(ω ◦ f 2

0 )−K(ω ◦ f 2
1 ) +K(ω ◦ f 2

2 )

= [γω(0,1) ? (ω ◦ f 2
0 ) ? γω(1,0)]Ab(π1) − [γω(0,1) ? (ω ◦ f 2

1 ) ? γω(0,0)]Ab(π1)

+ [γω(1,0) ? (ω ◦ f 2
2 ) ? γω(0,0)]Ab(π1)

= [γω(0,0) ? (ω ◦ f 2
1 ) ? γω(0,1) ? γω(0,1) ? (ω ◦ f 2

0 ) ? γω(1,0) ? γω(1,0) ? (ω ◦ f 2
2 ) ? γω(0,0)]Ab(π1)

= [γω(0,0) ? (ω ◦ f 2
1 ) ? (ω ◦ f 2

0 ) ? (ω ◦ f 2
2 ) ? γω(0,0)]Ab(π1) = [γ]Ab(π1),

where γ : [0, 1] → X is a loop with base point x that circles the boundary ∂ω(∆2) ⊂ X
counterclockwise and we suppress the bracketing in the concatenation of paths. As γ is null
homotopic, we have K(d2ω) = [γ]Ab(π1) = 0. This implies B1(X) ⊂ kerK, and K induces a
group homomorphism K : H1(X)→ Abπ1(x,X).

x1

x2

ω
x

γω(1,0)

γω(0,0)

γω(0,1)

ω(0, 0)
ω(1, 0)

ω(0, 1)

We show that K : H1(X) → Abπ1(x,X) is the inverse of φ : Abπ1(x,X) → H1(X). For any
path δ : [0, 1]→ X with δ(0) = δ(1) = x we have

K ◦ φ [δ]Ab(π1) = [γx ? δ ? γx]Ab(π1) = [γx]Ab(π1) − [γx]Ab(π1) + [δ]Ab(π1) = [δ]Ab(π1).

A linear combination x = Σn
i=0ziσi ∈ S1(X) of paths σi : [0, 1] → X is a 1-cycle if and only if

Σn
i=0zi(σi(1)− σi(0)) = 0. We then obtain

φ ◦K [x]H1 = Σn
i=0zi[γ

σi(1) ? σi ? γ
σi(0)]H1 = Σn

i=0zi
(
[γσi(1)]H1 − [γσi(0)]H1 + [σi]H1

)
= Σn

i=0zi[σi]H1 = [x]H1 .
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Hence K = Ab(φ)−1 and φ : Abπ1(x,X)→ H1(X) is a group isomorphism. 2

If the fundamental group of a path connected topological space is known, we can use the
Huréwicz isomorphism to compute its first homology group. In particular, if the fundamental
group is abelian, the abelisation has no effect and the first homology group is H1(X) = π1(X)

Example 3.1.12:

1. Every simply connected and path connected topological space has a trivial fundamental
group π1(X) = {1} and hence a trivial first homology group H1(X) = 0.

2. The circle S1 has fundamental group and first homology group π1(S1) = H1(S1) = Z.

3. The torus T has fundamental group and first homology group π1(T ) = H1(T ) = Z× Z.

4. Projective space RP2 has π1(RP2) = H1(RP2) = Z/2Z.

5. The Klein bottle K has fundamental group π1(K) = Z ? Z/2Z and H1(K) = Z× Z/2Z
6. The fundamental group of an oriented surface Σ of genus g ≥ 0 has the presentation

π1(Σ) = 〈a1, b1, . . . , ag, bg | [bg, ag] · · · [b1, a1] = 1〉.

Its first homology group is H1(Σ) = Z×2g.

Remark 3.1.13: There are analogues of this statement for higher homology and homotopy
groups, the Huréwicz theorem:

1. For any path connected topological space X and point x ∈ X there are group homomor-
phisms φn : πn(X)→ Hn(X) for all n ≥ 2.

2. If X is (n − 1)-connected, that is non-empty and path-connected with πk(x,X) = {1}
for 1 ≤ k ≤ n− 1, then φn is a group isomorphism.

Note that abelisation is not required for n ≥ 2, as the homotopy groups πn(X) are then abelian.

3.2 Homotopy invariance

In this section we will derive the second advantage that the singular homologies of a topological
space have over its singular chain complex. In contrast to the singular chain complex they
are homotopy invariants. Concretely, this means that homotopic maps induce the same maps
between the singular homologies. As a consequence, homotopy equivalent topological spaces
have isomorphic singular homologies. This makes them more easy to compute, because one can
replace a given topological space by a homotopy equivalent one for which the homologies are
simpler to compute. For instance, the homologies of any contractible topological space can be
computed from the 1 point-space.

As the singular homology functor is the compositeHnS• : Top→ Ab, it is intuitive how to derive
this result. We show that a homotopy h : [0, 1]×X → Y from f : X → Y to g : X → Y induces
a chain homotopy h• : f• ⇒ g• with components hn : Sn(X) → Sn+1(Y ). As the singular n-
simplexes σ : ∆n → X form a basis of Sn(X), we need to define them by their action on singular
n-simplexes. Given a singular n-simplex σ : ∆n → X and a homotopy h : [0, 1]×X → Y , the
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simplest way to construct a singular (n + 1)-simplex in Y is by constructing an affine linear
map T : ∆n−1 → [0, 1]×∆n and considering the following composite

∆n+1 T−→ [0, 1]×∆n id×σ−−−→ [0, 1]×X h−→ Y. (10)

The affine linear map T : ∆n+1 → [0, 1]×∆n should take the (n+ 2) vertices of ∆n+1 to some
of the 2(n+ 1) vertices in the prism [0, 1]×∆n, some some on the top face {1}×∆n and some
on the bottom face {0} ×∆n. This is achieved by the prim maps.

Definition 3.2.1: The prism maps are the affine linear maps

T jn : ∆n+1 → [0, 1]×∆n, T jn(ek) =

{
(0, ek) 0 ≤ k ≤ j ≤ n

(1, ek−1) 0 ≤ j < k ≤ n+ 1.

The prism maps decompose the prism [0, 1]×∆n into (n+1) different (n+1)-simplexes T jn(∆n+1)
for j = 0, . . . , n. In coordinates, they read

T jn : ∆n+1 → [0, 1]×∆n, (t1, ..., tn+1) 7→ (t1, ..., tj−1, tj + tj+1, tj+2, ..., tn+1, tj+1 + ...+ tn+1).

x1

x2

x1

x2

x3

The prism maps T jn for n = 1, 2.

To prove later that our strategy yields indeed a chain homotopy, we need to investigate its
interaction with the boundary operator. This requires taking composites of the prism maps
with face maps and establishing the relations between such composites.

Lemma 3.2.2: The prism maps satisfy the relations

T jn ◦ fn+1
i = (id[0,1] × fni ) ◦ T j−1

n−1 ∀j > i (11)

T jn ◦ fn+1
i = (id[0,1] × fni−1) ◦ T jn−1 ∀j < i− 1

T in ◦ fn+1
i = T i−1

n ◦ fn+1
i ∀i ∈ {1, ..., n}

T 0
n ◦ fn+1

0 = i1, T nn ◦ fn+1
n+1 = i0,

where it : ∆n → [0, 1] × ∆n, x 7→ (t, x) is the inclusion map and fn+1
j : ∆n → ∆n+1 the face

map from Definition 3.1.2.
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Proof:
This follows by direct computations with the definition of the prism operators and the face
maps.
• case 1: For j > i we have

T jn ◦ fn+1
i (ek) =

{
T jn(ek) 0 ≤ k < i

T jn(ek+1) i ≤ k ≤ n
=


(0, ek) 0 ≤ k < i

(0, ek+1) i ≤ k < j

(1, ek) j ≤ k ≤ n

(id[0,1] × fni ) ◦ T j−1
n−1(ek) =

{
(0, fni (ek)) 0 ≤ k < j

(1, fni (ek−1)) j ≤ k ≤ n
=


(0, ek) 0 ≤ k < i

(0, ek+1) i ≤ k < j

(1, ek) j ≤ k ≤ n.

• case 2: for j < i− 1 we have

T jn ◦ fn+1
i (ek) =

{
T jn(ek) 0 ≤ k < i

T jn(ek+1) i ≤ k ≤ n
=


(0, ek) 0 ≤ k ≤ j

(1, ek−1) j < k < i

(1, ek) i ≤ k ≤ n

(id[0,1] × fni−1) ◦ T jn−1(ek) =

{
(0, fni−1(ek)) 0 ≤ k ≤ j

(1, fni−1(ek−1)) j < k ≤ n
=


(0, ek) 0 ≤ k ≤ j

(1, ek−1) j < k < i

(1, ek) i ≤ k ≤ n.

• case 3: for i ∈ {1, . . . , n} we have

T in ◦ fn+1
i (ek) =

{
T in(ek) 0 ≤ k < i

T in(ek+1) i ≤ k ≤ n
=


(0, ek) 0 ≤ k < i

(0, ek−1) k = i

(1, ek) i < k ≤ n

T i−1
n ◦ fn+1

i (ek) =

{
T i−1
n (ek) 0 ≤ k < i

T i−1
n (ek+1) i ≤ k ≤ n

=


(0, ek) 0 ≤ k < i

(0, ek−1) k = i

(1, ek) i < k ≤ n.

• case 4: For all k ∈ {0, . . . , n} we have

T 0
n ◦ fn+1

0 (ek) = T 0
n(ek+1) = (1, ek) T nn ◦ fn+1

n+1 (ek) = T nn (ek) = (0, ek).

2

With these preliminaries we can now construct chain homotopies from a given homotopy h :
[0, 1] × X → Y . The act on a singular n-simplex σ : ∆n → X as outlined in (10). In analogy
to the definition of the boundary operator, we take an alternating sum over the different prism
maps.

Proposition 3.2.3:

1. A homotopy h : [0, 1]×X → Y from f : X → Y to g : X → Y induces a chain homotopy
S•(h) : S•(f)⇒ S•(g).

2. If f ∼ g : X → Y are homotopic, then Hn(f) = Hn(g) : Hn(X)→ Hn(Y ).
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3. Any homotopy equivalence f : X → Y induces an isomorphism Hn(f) : Hn(X)
∼−→ Hn(Y ).

Proof:
1. Given a homotopy h : [0, 1]×X → Y from f : X → Y to g : X → Y , we define the associated
chain homotopy by specifying its components

Sn(h) : Sn(X)→ Sn+1(Y ), σ 7→
n∑
j=0

(−1)j h ◦ (id[0,1] × σ) ◦ T jn (12)

The relations between the prism operators ensure that this is indeed a chain homotopy:

(dn+1 ◦ Sn(h) + Sn−1(h) ◦ dn)(σ)

=
n+1∑
i=0

n∑
j=0

(−1)i+jh ◦ (id[0,1] × σ) ◦ T jn ◦ fn+1
i +

n∑
i=0

n−1∑
j=0

(−1)i+jh ◦ (id[0,1] × σ) ◦ (id[0,1] × fni ) ◦ T jn−1

=
n+1∑
i=1

i−2∑
j=0

(−1)i+jh ◦ (id[0,1] × σ) ◦ (T jn ◦ fn+1
i − (id[0,1] × fni−1) ◦ T jn−1)

−
n+1∑
i=1

h ◦ (id[0,1] × σ) ◦ T i−1
n ◦ fn+1

i +
n∑
i=0

h ◦ (id[0,1] × σ) ◦ T in ◦ fn+1
i

+
n+1∑
i=0

n∑
j=i+1

(−1)i+jh ◦ (id[0,1] × σ) ◦ (T jn ◦ fn+1
i − (id[0,1] × fni ) ◦ T j−1

n−1)

(11)
= h ◦ (id[0,1] × σ) ◦ T 0

n ◦ fn+1
0 − h ◦ (id[0,1] × σ) ◦ T nn ◦ fn+1

n+1

(11)
= h ◦ (id[0,1] × σ) ◦ i1 − h ◦ (id[0,1] × σ) ◦ i0 = h(1,−) ◦ σ − h(0,−) ◦ σ = g ◦ σ − f ◦ σ
= (Sn(g)− Sn(f))(σ),

where we split the first sum into the cases j < i− 1, j = i− 1, j = i and j > i, the second sum
into the cases j < i and j ≥ i and shifted the indices i 7→ i + 1 and j 7→ j + 1 in the second
sum to combine the terms. This shows that S•(h) is indeed a chain homotopy.

2. If f and g are homotopic, then by 1. there is a chain homotopy S•(h) : S•(f) ⇒ S•(g). By
Proposition 2.1.12, this implies Hn(f) = HnS•(f) = HnS•(g) = Hn(g) for all n ∈ N0.

3. If f : X → Y is a homotopy equivalence, there is a map g : Y → X such that g ◦ f ∼ idX
and f ◦ g ∼ idY . This implies that S•(f) : S•(X)→ S•(Y ) is a chain homotopy equivalence, as
S•(g)◦S•(f) = S•(g ◦f) ∼ S•(idX) = idS•(X) and S•(f)◦S•(g) = S•(f ◦g) ∼ S•(idY ) = idS•(Y ).
By Proposition 2.1.12, 3. Hn(f) = HnS•(f) : HnS•(X)→ HnS•(Y ) is an isomorphism. 2

Corollary 3.2.4: If X is a contractible topological space we have

Hn(X) ∼= Hn(•) =

{
Z n = 0

0 n ∈ N.

3.3 Subspaces and relative homology

In this subsection and the following subsections, we develop tools to compute the homologies of
certain nice topological spaces systematically. In this section, we start by relating the homologies
of a topological space X to the homologies of its subspaces A ⊂ X.
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The inclusion ιA : A → X, a 7→ a for a subspace A ⊂ X is continuous by definition of the
subspace topology. It induces a chain map S•(ιA) : S•(A)→ S•(X) and a group homomorphism
Hn(ιA) : Hn(A) → Hn(X). However, this group homomorphism is in general not injective.
Consider for instance the inclusion ιS1 : S1 → D2 that realises the circle as the boundary of a
2-disc. Then we have H1(S1) = Z by Theorem 3.1.11 and H1(D2) = 0 by Corollary 3.2.4, as D2

is convex and hence contractible. The group homomorphism H1(ιS1) : Z→ 0 is not injective.

Thus, the relation between the homologies of a topological space X and a subspace A ⊂ X
takes a more complicated form. To investigate it, we consider pairs (X,A) of a topological
space X and a subspace A ⊂ X and organise them into a category Top(2). Its morphisms
are continuous maps that map the chosen subspaces into each other. Note also that we can
interpret a topological space X without a choice of subspace as a pair (X, ∅). For a continuous
map between such pairs the condition that subspaces are mapped into each other is void.

Definition 3.3.1: The category Top(2) has

• as objects pairs (X,A) of a topological space X and a subspace A ⊂ X,
• as morphisms f : (X,A)→ (Y,B) continuous maps f : X → Y with f(A) ⊂ B.

We denote by I : Top→ Top(2) the inclusion functor that sends

• a topological space X to the pair (X, ∅),
• a continuous map f : X → Y to the morphism f : (X, ∅)→ (Y, ∅).

We will also need a proper notion of homotopy for morphisms f : (X,A) → (Y,B) in Top(2)
that should reduce to the ordinary notion of homotopy for morphisms f : (X, ∅) → (Y, ∅). A
sensible condition is that a homotopy h : [0, 1]×X → Y between f, f ′ : (X,A)→ (Y,B) should
satisfy h([0, 1]× A) ⊂ B. Note that this is a weaker condition than a homotopy relative to A,
as it is not guaranteed that the restrictions of f and f ′ to A coincide.

Definition 3.3.2:

1. Two morphisms f, g : (X,A) → (Y,B) in Top(2) are called homotopic, f ∼(X,A) g if
there is a homotopy h : [0, 1]×X → Y from f to g with h([0, 1]× A) ⊂ B.

2. A morphism f : (X,A)→ (Y,B) in Top(2) is called a homotopy equivalence, if there
is a morphism g : (Y,B)→ (X,A) such that g ◦ f ∼(X,A) 1(X,A) and f ◦ g ∼(Y,B) 1(Y,B).

Remark 3.3.3:

1. Homotopic is an equivalence relation on the morphism sets in Top(2) that is compatible
with the composition of morphisms:
if f ∼(X,A) f

′ : (X,A)→ (Y,B) and g ∼(Y,B) g
′ : (Y,B)→ (Z,C) then g ◦ f ∼(X,A) g

′ ◦ f ′.

2. We obtain a homotopy category KTop(2) with the same objects as Top(2), whose mor-
phisms are homotopy classes of morphisms in Top(2). Isomorphisms in KTop(2) are ho-
motopy equivalences in Top(2).

We will now assign to each object (X,A) of Top(2) a chain complex and to each morphism
f : (X,A) → (Y,B) a chain map. This should define a functor from Top(2) into ChAb that
reduces to the functor from Proposition 3.1.5 for pairs of the form (X, ∅) and morphisms
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f : (X, ∅) → (Y, ∅) between them. In other words, we require that its composite with the
inclusion functor I from Definition 3.3.1 coincides with S•.

The key observation is that for any subspace A ⊂ X the inclusion ιA : A→ X is continuous and
hence defines a chain map S•(ιA) : S•(A) → S•(X) with injective components. This identifies
the singular chain complex of the subspace with a subcomplex S•(A) ⊂ S•(X).

We can therefore consider the associated quotient complex S•(X)/S•(A) from Proposition 2.2.4.
This amounts to identifying two n-chains in Sn(X), whenever they differ by an n-chain in Sn(A).
As Sn(∅) = 0 for all n ∈ N0 by Example 3.1.7, this yields the usual singular chain complex
S•(X) = S•(X)/S•(∅) for pairs (X, ∅).

Proposition 3.3.4:

1. There is a functor S
(2)
• : Top(2)→ ChAb, the relative chain complex functor, that

• assigns to (X,A) the chain complex S
(2)
• (X,A) with S

(2)
n (X,A) = Sn(X)/Sn(A) and

d(2)
n : Sn(X)/Sn(A)→ Sn−1(X)/Sn−1(A), [σ] 7→ [dn(σ)].

• to a morphism f : (X,A)→ (Y,B) the chain map S
(2)
• (f) : S

(2)
• (X,A)→ S

(2)
• (Y,B)

S(2)
n (f) : Sn(X)/Sn(A)→ Sn(Y )/Sn(B), [σ] 7→ [fn(σ)].

2. A homotopy h : [0, 1]×X → Y from f : (X,A)→ (Y,B) to g : (X,A)→ (Y,B) induces

a chain homotopy S
(2)
• (h) : S

(2)
• (f)⇒ S

(2)
• (g).

Proof:
1. The inclusion ιA : A → X defines a chain map S•(ιA) : S•(A) → S•(X) with components
in := Sn(ιA) : Sn(A)→ Sn(X), σ 7→ σ. Thus S•(A) ⊂ S•(X) is a subcomplex and S•(X)/S•(A)
the associated quotient complex from Proposition 2.2.4.

Any morphism f : (X,A) → (Y,B) defines a chain map S•(f) : S•(X) → S•(Y ) that satisfies
S•(f)|S•(A) = S•(f |A) : S•(A) → S•(B) by construction. By Proposition 2.2.4 this defines a

chain map S
(2)
• (f) : S•(X)/S•(A) → S•(Y )/S•(B). Compatibility of the functor with iden-

tity morphisms and with the composition of morphisms follows directly from the commuting
diagram (5) in Proposition 2.2.4 and the functoriality of S• : Top→ ChAb.

2. Let h : [0, 1]×X → Y be a homotopy from f : (X,A)→ (Y,B) to g : (X,A)→ (Y,B) with
h([0, 1]× A) ⊂ B. We consider the associated chain homotopy S•(h) : S•(f)⇒ S•(g) given by
formula (12) in the proof of Proposition 3.2.3. As h([0, 1]× A) ⊂ B, its components

Sn(h) : Sn(X)→ Sn+1(Y ), σ 7→ Σn
j=0(−1)j h ◦ (id[0,1] × σ) ◦ T jn

assign to a singular n-simplex σ : ∆n → A the singular (n+1)-simplex Sn(h)(σ) : ∆n+1 → B. It
follows that the maps Sn(h) of the chain homotopy restrict to maps Sn(h) : Sn(A)→ Sn+1(B).

By Proposition 2.2.4 this defines a chain homotopy S
(2)
• (h) : S

(2)
• (f)⇒ S

(2)
• (g). 2

Given the functor S
(2)
n : Top(2)→ ChAb we can now define the homologies of pairs of topological

spaces in analogy to Definition 3.1.6, by post-composing with the functor Hn : ChAb → Ab
from Proposition 2.1.8. As we already showed that homotopies between morphisms in Top(2)
define chain homotopies, we also directly obtain a counterpart of Proposition 3.2.3.

45



Definition 3.3.5: The relative homology functor HnS• : Top(2)→ Ab assigns to

• a pair (X,A) the homology Hn(X,A) = HnS
(2)
• (X,A),

• a morphism f : (X,A)→ (Y,B) the group homomorphism

Hn(f) = HnS•(f) : HnS
(2)
• (X,A)→ HnS

(2)
• (Y,B).

Corollary 3.3.6:

1. If f, g : (X,A) → (Y,B) are homotopic, then Hn(f) = Hn(g) : Hn(X,A) → Hn(X,B)
for all n ∈ N0.

2. Any homotopy equivalence f : (X,A) → (Y,B) in Top(2) induces an isomorphism
Hn(f) : Hn(X,A)

∼−→ Hn(X,B).

With the relative chain complex functor S
(2)
• : Top(2) → ChAb from Proposition 3.3.4, we

can now clarify how the homologies of a topological space X are related to the homologies
of a subspace A ⊂ X. They key observation is in Proposition 2.2.4. It is shown there that
subcomplexes and the associated quotients define a short exact sequence of chain complexes.
By Proposition 2.2.7 this gives a long exact sequence of homologies.

Theorem 3.3.7 (long exact sequence for relative homology):

1. Every pair (X,A) of topological spaces defines a long exact sequence of relative homologies

. . .
∂2−→ H1(A)

H1(i)−−−→ H1(X)
H1(π)−−−→ H1(X,A)

∂1−→ H0(A)
H0(i)−−−→ H0(X)

H0(π)−−−→ H0(X,A)→ 0

2. Every morphism f : (X,A)→ (Y,B) defines a chain map between long exact sequences

. . .
H1(i)// H1(X)

H1(fX)
��

H1(π)// H1(X,A)

H1(f)

��

∂1 // H0(A)
H0(i) //

H0(fA)
��

H0(X)
H0(π)//

H0(fX)
��

H0(X,A)

H0(f)

��

// 0

. . .
H1(i′)
// H1(Y )

H1(π′)
// H1(Y,B)

∂′1

// H0(B)
H0(i′)

// H0(Y )
H0(π′)

// H0(Y,B) // 0

(13)

Proof:
Note first that every subspace A ⊂ X defines two morphisms in Top(2)

(A, ∅) i:a7→a−−−→ (X, ∅) π:x 7→x−−−−→ (X,A). (14)

By Proposition 2.2.4 and 3.3.4, the functor S
(2)
• : Top(2) → ChAb sends them to the following

short exact sequence of chain complexes

0→ S•(A)
i•−→ S•(X)

π•−→ S•(X)/S•(A)→ 0.

Every morphism f : (X,A) → (Y,B) in Top(2) induces morphisms fA : (A, ∅) → (B, ∅) and
fX : (X, ∅)→ (Y, ∅) such that the following diagram in Top(2) commutes

(A, ∅) i //

fA

��

(X, ∅) π //

fX

��

(X,A)

f
��

(B, ∅)
i′
// (Y, ∅)

π′
// (Y,B)
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Applying the functor S
(2)
• : Top(2)→ ChAb yields a commuting diagram with exact rows

0 // S•(A)

S•(fA)

��

ι• // S•(X)

S•(fX)

��

π• // S
(2)
• (X,A)

S
(2)
• (f)
��

// 0

0 // S•(B)
ι′•

// S•(Y )
π′•

// S
(2)
• (Y,B) // 0

by Proposition 3.3.4 and Proposition 2.2.4. By Proposition 2.2.7 this defines the long exact
homology sequence and commuting diagram (13) with exact rows. 2

In view of the fact that the relative homologies are functors Hn : Top(2)→ Ab one might ask
what algebraic structure is given by the connecting homomorphisms. To clarify this, recall that
a pair (A,B) of topological spaces always defines three objects in Top(2) and two morphisms

between them, namely (A, ∅) i−→ (X, ∅) π−→ (X,A). Consequently, the associated homologies
define a triple of functors for each n ∈ N0, namely

• the functor H1
n : Top(2)→ Ab that assigns to (X,A) the homology Hn(A) = Hn(A, ∅),

• the functor H2
n : Top(2)→ Ab that assigns to (X,A) the homology Hn(X) = Hn(X, ∅),

• the functor H3
n : Top(2)→ Ab that assigns to (X,A) the relative homology Hn(X,A).

From this viewpoint, The connecting homomorphisms ∂n appear as a natural transformations
∂n : H3

n ⇒ H1
n−1. Their naturality is simply the statement that the squares in diagram (13)

that contain connecting homomorphisms commute.

Corollary 3.3.8: For all n ∈ N0 the connecting homomorphisms define natural transforma-
tions ∂n : H3

n ⇒ H1
n−1.

Theorem 3.3.7 is a useful tool to compute relative homologies. It works particularly well, if
the topological space X or its subspace A ⊂ X is contractible and for subspaces with special
properties, such as retracts or deformation retracts.

Example 3.3.9: Let X be a topological space and A ⊂ X a subspace with the long exact
homology sequence

. . .
∂n+2−−−→ Hn+1(A)

Hn+1(i)−−−−→ Hn+1(X)
Hn+1(π)−−−−−→ Hn+1(X,A)

∂n+1−−−→ Hn(A)
Hn(i)−−−→ Hn(X)

Hn(π)−−−→ . . .

• If X is contractible, then Hn(X) = 0 for all n ∈ N and im ∂n+1
∼= kerHn(ι) = Hn(A) and

ker ∂n+1
∼= imHn+1(π) = 0 for all n ∈ N0. This implies

Hn+1(X,A) ∼= Hn(A) n ∈ N.

• If A is contractible, then Hn(A) = 0 for all n ∈ N and H0(i) : H0(A)→ H0(X) is injective.
This implies imHn+1(π) ∼= ker ∂n+1 = Hn+1(X,A) and kerHn+1(π) = imHn+1(i) = 0 for
all n ∈ N0. It follows that

Hn(X) ∼= Hn(X,A) n ∈ N.

Example 3.3.10: For k, n ∈ N0 the relative homologies of the (k + 1)-disc Dk+1 and the
k-sphere Sk = ∂Dk+1 are given by

Hn(Dk+1, Sk) =


Hn−1(Sk) n ≥ 2, k ∈ N0

Z n = 1, k = 0

0 n = 1, k ∈ N or n = 0, k ∈ N0.
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Proof:
For n ≥ 2 and k ∈ N0 the claim follows from Example 3.3.9 for A = Sk = ∂Dk+1 ⊂ Dk+1 = X,
because the closed (k+ 1)-disc Dk+1 = {x ∈ Rk+1 | ||x|| ≤ 1} is convex and hence contractible.
For n = 1 and k ∈ N, the long exact homology sequence yields

. . .→ H1(Dk+1)︸ ︷︷ ︸
=0

→ H1(Dk+1, Sk)
f−→ H0(Sk)︸ ︷︷ ︸

∼=Z

id−→ H0(Dk+1)︸ ︷︷ ︸
∼=Z

g−→ H0(Dk+1, Sk)→ 0

Hence, f is injective with im f = ker id = 0 and g surjective with ker g = im id = Z, which
implies H1(Dk+1, Sk) = H0(Dk+1, Sk) = 0. For n = 1, k = 0, we have the exact sequence

. . .→ H1(D1)︸ ︷︷ ︸
=0

→ H1(D1, S0)
f−→ H0(S0)︸ ︷︷ ︸

∼=Z⊕Z

h:(z1,z2)7→z1+z2−−−−−−−−−→ H0(D1)︸ ︷︷ ︸
∼=Z

g−→ H0(D1, S0)→ 0.

It follows that f is injective with im f = kerh ∼= Z and g is surjective with ker g = imh ∼= Z,
which implies H1(D1, S0) = Z and H0(D1, S0) = 0. 2

Another application of Example 3.3.9 arises, when we consider a subspace A = {x} ⊂ X that
consists of a single point and hence is contractible by definition. In this case, we can also describe
the zeroth relative homology group more explicitly. The resulting relative homologies are called
reduced homologies. They are convenient, if one works with path connected topological spaces
and if one wants to omit the zeroth homology groups that contain no relevant information.

Example 3.3.11: Let ∅ 6= X a topological space and x ∈ X. For n ∈ N0 the reduced
homology groups of X are the homology groups

H̃n(X) = Hn(X, {x})

By Example 3.3.9 we have H̃n(X) ∼= Hn(X) for all n ∈ N. The zeroth reduced homology is
given by H̃0(X) = ker ε, where ε : H0(X) → Z with ε([x]) = 1 and ε([x′]) = 0 if x′ ∈ X is not
in the same path component as x. In particular, if X is path-connected, one has H̃0(X) = 0.

To treat further examples, we consider different notions of retracts and deformation retracts.
Recall that for a subspace A ⊂ X two maps f, g : X → Y are homotopic relative to A,
denoted f ∼A g, if f(a) = g(a) for all a ∈ A and there is a homotopy h : [0, 1]×X → Y with
h(t, a) = f(a) = g(a) for all a ∈ A and t ∈ [0, 1].

Definition 3.3.12: Let X be a topological space, A ⊂ X a subspace and ιA : A → X its
inclusion. Then A is called a

• weak retract of X, if there is a continuous map r : X → A, with r ◦ ιA ∼ idA,

• retract of X, if there is a continuous map r : X → A with r ◦ ιA = idA,

• deformation retract of X, if there is a continuous map r : X → A with r ◦ ιA = idA
and ιA ◦ r ∼ idX ,

• strong deformation retract of X, if there is a continuous map r : X → A with
r ◦ ιA = idA and ιA ◦ r ∼A idX .

The map r : X → A is called a retraction.
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Note that by definition any strong deformation retract is a deformation retract, any deformation
retract is a retract, and any retract is a weak retract. Also by definition, any deformation retract
is a homotopy equivalence. Some examples are the following.

Example 3.3.13:

1. For any topological space X and any point x ∈ X, the set {x} ⊂ X is a retract of X
with retraction r : X → {x}, x 7→ x. The subspace {x} ⊂ X is a deformation retract of
X, if and only if X is contractible.

2. Sn is a strong deformation retract of (Rn+1)× with the retraction and homotopy

r : (Rn+1)× → Sn, x 7→ x

||x||
h : [0, 1]× (Rn+1)× → (Rn+1)×, (t, x) 7→ tx+ (1− t) x

||x||
.

3. For any topological space X the space X × {0} ∼= X is a strong deformation retract of
the cylinder X × [0, 1] with the retraction and the homotopy

r : X × [0, 1]→ X, (x, t) 7→ (x, 0),

h : [0, 1]× (X × [0, 1])→ X × [0, 1], (t, x, s) 7→ (x, ts).

For retracts A ⊂ X the long exact homology sequence and the relative homologies take a
particularly simple form. Whenever a subspace A ⊂ X is a weak retract of X, the connecting
homomorphisms are trivial, and the long exact homology sequence splits into short exact se-
quences. The homology group Hn(X) is then the direct sum of the homology group Hn(A) and
the relative homology group Hn(X,A). If A is even a deformation retract of X, it follows that
all relative homology groups are trivial.

Proposition 3.3.14: If A ⊂ X is a weak retract of X, then for all n ∈ N0

Hn(X) ∼= Hn(A)⊕Hn(X,A).

Proof:
As A ⊂ X is a weak retract of X there is a retraction r : X → A with r ◦ ιA ∼ idA. This implies
Hn(r) ◦Hn(ιA) = Hn(r ◦ ιA) = Hn(idA) = idHn(A), and hence Hn(ιA) : Hn(A) → Hn(X) has a
left inverse and is injective. In the long exact homology sequence

. . .
∂n+2−−−→ Hn+1(A)

Hn+1(ιA)−−−−−→ Hn+1(X)
Hn+1(π)−−−−−→ Hn+1(X,A)

∂n+1−−−→ Hn(A)
Hn(ιA)−−−−→ Hn(X)

Hn(π)−−−→ . . .

this yields 0 = kerHn(ιA) = im ∂n+1 and ker ∂n+1 = imHn+1(π) = Hn+1(X,A) for all n ∈ N0.
The long exact homology sequence splits into short exact sequences

0→ Hn(A)
Hn(ιA)−−−−→ Hn(X)

Hn(π)−−−→ Hn(X,A)→ 0. (15)

As the injection Hn(ιA) has the left inverse Hn(r), the short exact sequence (15) splits by
Exercise 8 and Hn(X) ∼= Hn(A)⊕Hn(X,A) for all n ∈ N0. 2

Corollary 3.3.15: Let X be a topological space and A ⊂ X a deformation retract of X.
Then we have for all n ∈ N0

Hn(A) ∼= Hn(X) Hn(X,A) = 0.

Proof:
As A ⊂ X is a deformation retract, its inclusion ιA : A → X is a homotopy equivalence and
Hn(ιA) : Hn(A) → Hn(X) is an isomorphism by Proposition 3.2.3. As A ⊂ X is a retract, we
also have the short exact sequence (15). It implies kerHn(π) = imHn(ιA) = Hn(X). As Hn(π)
is surjective, it follows that Hn(X,A) = 0 for all n ∈ N0. 2
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3.4 Small simplexes and barycentric subdivision

A very useful tool in topology are open covers. An open cover of a topological space X is a
family (Ui)i∈I of open subsets Ui ⊂ X such that X = ∪i∈IUi. Open covers are often used to
define structures on topological spaces locally on the sets Ui, in such a way that they agree
on the overlaps Ui ∩ Uj of these open sets and then to obtain a global definition. This is a
standard procedure when dealing with manifolds. A similar procedure is also used to compute
fundamental groups of topological spaces with the Theorem of Seifert and van Kampen.

We want to apply similar techniques to compute homologies. For instance, we want to compute
the homologies of a topological space X as in the Theorem of Seifert and van Kampen by
choosing open subsets U1, U2 ⊂ X with U1 ∪ U2 = X. This requires that we adapt singular
n-simplexes σ : ∆n → X to a given open cover (Ui)i∈I of X. We need to replace them in a
controlled and systematic way by simplexes τ : ∆n → X whose image is contained in at least
one of the sets Ui.

The obvious idea how to achieve this is to use a systematic subdivision procedure that is
compatible with the boundary operators. As the latter are given by pre-composition with the
face maps, it seems sensible to first define this subdivision procedure for affine simplexes between
standard simplexes and then to transport it to the topological space X by applying the singular
n-simplexes σ : ∆n → X.

As this procedure should be systematic and compatible with all face maps, it needs to subdivide
an affine n-simplex σ : ∆n → ∆p together with all of its lower dimensional faces. This can be
achieved by adding for each k-face of σ a distinguished point, the barycentre that is obtained by
averaging over its vertices. The resulting procedure is called barycentric subdivision and defined
inductively.

We start by defining barycentric subdivision for affine simplexes between standard simplexes.
As in Section 3.1 we use the notation σ : ∆n → ∆p, ei 7→ vi or σ = [v0, . . . , vn] for an affine
linear map σ : ∆n → ∆p with σ(ei) = vi ∈ ∆p. The face maps fnj : ∆n−1 → ∆n from Definition
3.1.2 read fnj = [e0, . . . , êj, . . . , en], and the boundary of an affine simplex σ : ∆n → ∆p is

dn(σ) = [v1, . . . , vn]− [v0, v2, . . . , vn] + . . .+ (−1)n[v0, . . . , vn−1]

As the boundary dn(σ) for an affine n-simplex σ : ∆n → ∆p is a linear combination of affine
(n− 1)-simplexes, the affine n-chains form a subcomplex Saff

• (∆p) ⊂ S•(∆
p).

We first describe a procedure that adds an additional vertex v to an ordered affine n-simplex
σ : ∆n → ∆p. This is achieved via the cone maps. The name is motivated by the fact that this
additional vertex v can be viewed as the tip of a cone, whose base is the affine n-simplex σ. We
always choose the additional vertex v as the last vertex of the ordered affine simplex, but this
is simply a convention that is chosen differently in some references.

Definition 3.4.1: For v ∈ ∆p and n, p ∈ N0 the cone map Cv
n : Saff

n (∆p)→ Saff
n+1(∆p) is the

group homomorphism

Cv
n : Saff

n (∆p)→ Saff
n+1(∆p), [v0, . . . , vn] 7→ [v0, . . . , vn, v].

Intuitively, it is clear that the boundary of a cone over an n-simplex σ should consist of an
n-face opposite to v that corresponds to σ and a number of n-faces that contain v and an
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(n − 1)-face of σ. The latter are themselves cones with tip v over the (n − 1)-faces of σ. The
algebraic counterpart of this statement is the following lemma.

[v0, v1]
[v1, v2]

[v2, v]

[v0, v]

[v0, v2]
[v1, v]

v0

v1

v2

v

Cone [v0, v1, v2, v] over an affine 2-simplex [v0, v1, v2] with 2-faces
[v0, v1, v2], [v0, v1, v], [v0, v2, v], [v1, v2, v].

Lemma 3.4.2: The cone maps satisfy

1. d1 ◦Cv
0 (σ) = v − σ for all singular 0-simplexes σ : ∆0 → ∆p, where v : ∆0 → ∆p, e0 7→ v.

2. dn+1 ◦ Cv
n(σ)− Cv

n−1 ◦ dn(σ) = (−1)n+1σ for all affine simplexes σ : ∆n → ∆p and n ∈ N.

Proof:
1. For all 0-simplexes σ = [v0] : ∆0 → ∆p we have d1 ◦ Cv

0 (σ) = d1[v0, v] = [v]− [v0] = v − σ.

2. For all n-simplexes σ = [v0, . . . , vn] : ∆n → ∆p we have

dn+1 ◦ Cv
n(σ)− Cv

n−1 ◦ dn(σ) = dn+1[v0, . . . , vn, v]− Σn
j=0(−1)jCn−1

v [v0, . . . , v̂j, . . . , vn]

= Σn
j=0(−1)j[v0, . . . , v̂j, . . . , vn, v] + (−1)n+1[v0, . . . , vn]− Σn

j=0(−1)j[v0, . . . , v̂j, . . . , vn, v]

= (−1)n+1[v0, . . . , vn] = (−1)n+1σ.

2

We will now choose as the tip of a cone over an n-simplex σ = [v0, . . . , vn] : ∆n → ∆p a
special point, namely the barycentre b(σ) = 1

n+1
(v0 + . . . + vn). This has the advantage that

it is a canonical choice and always contained in the simplex. For a 1-simplex σ = [v0, v1] the
barycentre defines a subdivision into 1-simplexes [v0, b(σ)] and [v1, b(σ)].

For a 2-simplex σ = [v0, v1, v2], we apply this subdivision procedure to all 1-faces and add
an additional vertex in the middle that is the barycentre of σ. This subdivides σ into six 2-
simplexes, each of which contains the barycentre b(σ), one barycentre of a 1-face and one vertex
of σ. Likewise, for a 3-simplex σ = [v0, v1, v2, v3] we apply this procedure to all 2-faces and add
an additional vertex, the barycentre b(σ), in the middle. This subdivides σ into 24 simplexes,
each of which contains the barycentre b(σ), one barycentre of a 2-face, one barycentre of a 1-face
contained in the 2-face and one vertex of σ contained in the 1-face. We extend this procedure
inductively to higher-dimensional simplexes.
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Definition 3.4.3: Let p, n ∈ N0.

1. The barycentre of an affine n-simplex σ : ∆n → ∆p is b(σ) = 1
n+1

∑n
k=0 σ(ek).

2. The barycentric subdivision map Bn : Saff
n (∆p)→ Saff

n (∆p) is defined inductively by

B0 = idS0(∆p) Bn(σ) = (−1)nC
b(σ)
n−1 ◦Bn−1 ◦ dn(σ) for n ≥ 1, σ : ∆n → ∆p. (16)

Remark 3.4.4:

1. One can show with the inductive definition (Exercise 29) that for any affine-linear simplex
σ = [v0, . . . , vn] : ∆n → ∆p the barycentric subdivision is given by

Bn(σ)[e0, . . . , en] =
∑

π∈Sn+1

(−1)nsgn(π)[vπ0 , . . . , v
π
n] vπr =

1

r + 1

r∑
j=0

vπ(j)

Each affine n-simplex τ in Bn(σ) is of the form τ = [b(f0), b(f1), . . . , b(fn−1), b(fn)], where
b(fk) is the barycentre of a k-face fk of σ and f0 ⊂ f1 . . . ⊂ fn−1 ⊂ fn.

2. It follows from 1. that for each affine n-simplex σ : ∆n → ∆p we have

Bn(σ) = Sn(σ) ◦Bn(id∆n). (17)

The map Sn(σ) : Sn(∆n) → Sn(∆p), τ 7→ σ ◦ τ acts on an n-simplex τ of Bn(id∆n) by
transporting its vertices with σ.

Example 3.4.5: For affine 0, 1, 2-simplexes we have

B0[v0] = [v0]

B1[v0, v1] = [v0,
1
2
(v0 + v1)]− [v1,

1
2
(v0 + v1)]

B2[v0, v1, v2] = [v0,
1
2
(v0 + v1), 1

3
(v0 + v1 + v3)]− [v0,

1
2
(v0 + v2), 1

3
(v0 + v1 + v2)]

+ [v1,
1
2
(v1 + v2), 1

3
(v0 + v1 + v3)]− [v1,

1
2
(v0 + v1), 1

3
(v0 + v1 + v2)]

+ [v2,
1
2
(v0 + v2), 1

3
(v0 + v1 + v3)]− [v2,

1
2
(v1 + v2), 1

3
(v0 + v1 + v2)]

v0 1
2
(v0 + v1) v1

v0
v1

v2

1
2
(v0 + v2)

1
2
(v0 + v1)

1
2
(v1 + v2)
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Remark 3.4.4 and Example 3.4.5 show that barycentric subdivision gives a systematic way to
subdivide an affine n-simplex into smaller simplexes. In fact, we control the size of the simplexes
in the barycentric subdivision, if we know the size of the original affine simplex. As the standard
n-simplexes ∆n are compact subspaces of the metric spaces Rn, we can use the diameters of
the affine simplexes as a measure of their size.

Recall that for a subspace M ⊂ X of a metric space (X, d) the diameter of M is defined as
diamM = sup{d(x, y) | x, y ∈ M}. Recall also that for a compact subspace M ⊂ X this
supremum is attained: there are points p, q ∈M with diamM = d(p, q).

Lemma 3.4.6: Let σ : ∆n → ∆p be an affine simplex. Then every simplex τ : ∆n → ∆p in
the affine n-chain Bn(σ) has

diam τ(∆n) ≤ n

n+ 1
diamσ(∆n).

Proof:
We use induction over n. For n = 0 the claim holds trivially. Suppose it is shown for n ≤ k− 1,
let σ : ∆k → ∆p be an affine k-simplex and τ : ∆k → ∆p a k-simplex in Bk(σ). Then
τ(∆k) ⊂ σ(∆k) is compact as the image of the compact space ∆k under a continuous map, and
there are p, q ∈ τ(∆k) with diam τ(∆k) = ||p − q||. By Remark 3.4.4 either (i) there is a face
ρ = σ ◦ fki : ∆k−1 → ∆p of σ such that p, q ∈ ρ(∆k−1) or (ii) we can assume that q = b(σ).

In case (i) we apply the induction hypothesis to the affine simplex ρ with ρ(∆k−1) ⊂ σ(∆k)

diam τ(∆k) = ||p− q|| ≤ k−1
k

diam ρ(∆k−1) ≤ k−1
k

diamσ(∆k) < k
k+1

diamσ(∆k).

For case (ii) note first that we can express any point p ∈ σ(∆k) as p = Σk
j=0λjσ(ej) with

λj ∈ [0, 1] and Σk
j=0λj = 1. This yields for any q ∈ σ(∆k)

||p− q|| = ||Σk
j=0λj(σ(ej)− q)|| ≤ Σk

j=0λj||σ(ej)− q|| ≤ maxj=0,...,k||σ(ej)− q||.

Setting q = b(σ) we then obtain

diam τ(∆k) = ||p− q|| = ||p− 1
k+1

Σk
i=0σ(ei)||

≤ maxj=0,...,k||σ(ej)− 1
k+1

Σk
i=0σ(ei)|| = maxj=0,...,k|| 1

k+1
Σk
i=0(σ(ej)− σ(ei))||

≤ 1
k+1

maxj=0,...,k

(
Σk
i=0||σ(ej)− σ(ei)||

)
= 1

k+1
maxj=0,...,k

(
Σk
i=0,i 6=j||σ(ej)− σ(ei)||

)
≤ k

k+1
diamσ(∆k).

2

We now define the barycentric subdivision for general singular n-simplexes σ : ∆n → X. As σ
is a continuous map, it induces a chain map S•(σ) : S•(∆

n) → S•(X). We can therefore first
apply the affine barycentric subdivision map Bn from Definition 3.4.3 to the affine n-simplex
id∆n : ∆n → ∆n and then transport the resulting simplexes τ to X by applying Sn(σ). This
sends each such simplex τ to σ ◦ τ : ∆n → X. Note in particular that for each affine simplex
σ : ∆n → ∆p this yields its barycentric division by Remark 3.4.4, 2.

Definition 3.4.7: Let X be a topological space.
The barycentric subdivision operator is the group homomorphism

BX
n : Sn(X)→ Sn(X), σ 7→ BX

n (σ) = Sn(σ) ◦Bn(id∆n).
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As we already clarified the geometric meaning of the barycentric subdivision operators, we
will now focus on their algebraic properties. As they are maps BX

n : Sn(X) → Sn(X), it is
natural to ask if they are chain maps. A they only subdivide simplexes and carry no additional
information, one might also suspect that they could be chain homotopic to the identity map.
Finally, as the abelian groups Sn(X) of n-chains are assigned to a topological space X by the
singular chain complex functor S• : Top→ ChAb from Proposition 3.1.5, one might ask how the
barycentric subdivision operators interact with the chain maps induced by continuous maps.
All of these questions are addressed by the following proposition.

Proposition 3.4.8: The barycentric subdivision operators define a natural transformation
B• : S• ⇒ S• that is naturally chain homotopic to idS• .

Proof:
1. We show that the group homomorphisms BX

n : Sn(X) → Sn(X) define a chain map
BX
• : S•(X)→ S•(X):

For this, we compute

dn ◦BX
n (σ) = dn ◦ Sn(σ) ◦Bn(id∆n) = Sn−1(σ) ◦ dn ◦Bn(id∆n)

BX
n−1 ◦ dn(σ) = BX

n−1(dn(σ)) = Sn−1(dn(σ)) ◦Bn−1(id∆n−1)
∗
= Σn

j=0(−1)jSn−1(σ ◦ fnj ) ◦Bn−1(id∆n−1)
∗∗
= Σn

j=0(−1)jSn−1(σ) ◦ Sn−1(fnj ) ◦Bn−1(id∆n−1)
∗∗∗
= Σn

j=0(−1)jSn−1(σ) ◦Bn−1(fnj )
∗
= Sn−1(σ) ◦Bn−1(dn(id∆n))

= Sn−1(σ) ◦Bn
n−1 ◦ dn(id∆n),

where we used in the first line that S•(σ) is a chain map, in * the definition of the boundary
operator, in ** the functoriality of S• and in *** Remark 3.4.4, 2.

It is therefore sufficient to prove that dn◦Bn = Bn−1◦dn for all n ∈ N0 for the affine barycentric
subdivision maps from Definition 3.4.3. We show this by induction over n, where we setBn−1 = 0
for n ≤ 0. For n = 0 we have d0 ◦B0 = d0 = 0.

Suppose we showed that dk ◦ Bk = Bk−1 ◦ dk−1 for k ≤ n − 1. Then we have for all affine
n-simplexes σ : ∆n → ∆p

dn ◦Bn(σ)
(16)
= (−1)ndn ◦ Cb(σ)

n−1 ◦Bn−1 ◦ dn(σ)
3.4.2
= Bn−1 ◦ dn(σ) + (−1)nC

b(σ)
n−2 ◦ dn−1 ◦Bn−1 ◦ dn(σ)

IH
= Bn−1 ◦ dn(σ) + (−1)nC

b(σ)
n−1 ◦Bn−2 ◦ dn−1 ◦ dn(σ) = Bn−1 ◦ dn(σ).

2. We define for each topological space X a chain homotopy hX• : idS•(X) ⇒ BX
• . We first define

group homomorphisms hn : Saff
n (∆p)→ Saff

n+1(∆p) inductively by

h0 : S0(∆p)→ S1(∆p), σ 7→ 0 (18)

hn : Sn(∆p)→ Sn+1(∆p), σ 7→ (−1)n+1Cb(σ)
n

(
Bn(σ)− σ − hn−1 ◦ dn(σ)

)
.

and then post-compose the resulting simplexes with singular simplexes σ : ∆n → X

hXn : Sn(X)→ Sn+1(X), σ 7→ Sn+1(σ) ◦ hn(id∆n). (19)
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To show that this defines a chain homotopy, note first that for all affine simplexes σ : ∆n → ∆p

hn(σ) = Sn+1(σ) ◦ hn(id∆n). (20)

This follows inductively from the definition of hn and the corresponding identities for the cone
map and the affine barycentric subdivision map in Remark 3.4.4, 2. With this we compute

dn+1 ◦ hXn (σ) = dn+1 ◦ Sn+1(σ) ◦ hn(id∆n) = Sn(σ) ◦ dn ◦ hn(id∆n) (21)

hXn−1 ◦ dn(σ) = Sn(dn(σ)) ◦ hn−1(id∆n−1)
∗
= Σn

j=0(−1)jSn(σ ◦ fnj ) ◦ hn−1(id∆n−1)

∗∗
= Σn

j=0(−1)jSn(σ) ◦ Sn(fnj ) ◦ hn−1(id∆n−1)
(20)
= Σn

j=0(−1)jSn(σ) ◦ hn−1(fnj )
∗
= Sn(σ) ◦ hn−1 ◦ dn(id∆n),

where we used in the first line that S•(σ) is a chain map, in * the definition of the boundary
operator and in ** the functoriality of S•. Adding the two terms in (21) yields

(dn+1 ◦ hXn + hXn−1 ◦ dn)(σ) + σ −BX
n (σ)

= Sn(σ) ◦ (dn ◦ hn(id∆n) + hn−1 ◦ dn(id∆n) + id∆n −Bn(id∆n)).

It is therefore sufficient to prove that (dn+1 ◦ hn + hn−1 ◦ dn)(σ) = Bn(σ) − σ for all affine
n-simplexes σ : ∆n → ∆p. This follows again by induction over n.

For n = 0 we have d1 ◦ h0 = 0 = σ − σ = B0(σ)− σ for all singular 0-simplexes σ : ∆0 → ∆p.
Suppose we showed that (dk+1 ◦ hk + hk−1 ◦ dk)(σ) = Bk(σ) − σ for all k ≤ n − 1 and affine
k-simplexes σ : ∆k → ∆p. Then we have for k = n and any affine n-simplex σ : ∆n → ∆p

dn+1 ◦ hn(σ) = (−1)n+1dn+1 ◦ Cb(σ)
n (Bn(σ)− σ − hn−1 ◦ dn(σ))

3.4.2
= Bn(σ)− σ − hn−1 ◦ dn(σ) + (−1)n+1C

b(σ)
n−1

(
dnBn(σ)− dn(σ)− dn ◦ hn−1(dn(σ))

)
∗
= Bn(σ)− σ − hn−1 ◦ dn(σ) + (−1)n+1C

b(σ)
n−1

(
Bn−1(dn(σ))− dn(σ)− dn ◦ hn−1(dn(σ))

)
IH
= Bn(σ)− σ − hn−1 ◦ dn(σ) + (−1)n+1C

b(σ)
n−1

(
hn−2 ◦ dn−1 ◦ dn(σ)

)
= Bn(σ)− σ − hn−1 ◦ dn(σ),

where we used in * that Bn is a chain map by 1. and in the last step that dn−1 ◦ dn = 0.

3. We now prove that the chain maps BX
• : S•(X) → S•(X) as well as the chain homotopies

hX• : idS•(X) ⇒ BX
• are natural in X.

Let f : X → Y be a continuous map. Then we have for all singular n-simplexes σ : ∆n → X

Sn(f) ◦BX
n (σ) = Sn(f) ◦ Sn(σ) ◦Bn(id∆n) = Sn(f ◦ σ) ◦Bn(id∆n) = BY

n (f ◦ σ) = BY
n ◦ Sn(f)(σ)

Sn+1(f) ◦ hXn (σ) = Sn+1(f ◦ σ) ◦ hn(id∆n) = hYn (f ◦ σ) = hYn ◦ Sn(f)(σ).

This shows that the following diagrams commute for all n ∈ N0

Sn(X)

Sn(f)
��

BXn // Sn(X)

Sn(f)

��
Sn(Y )

BYn

// Sn(Y )

Sn(X)

Sn(f)

��

hXn // Sn+1(X)

Sn+1(f)

��
Sn(Y )

hYn

// Sn+1(Y ).

2
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Remark 3.4.9: The naturality of BX
n implies for all n-simplexes σ : ∆n → X and all m ∈ N0

(BX
n )m(σ) = BX

n ◦ . . . ◦BX
n (σ) = Sn(σ) ◦Bm

n (id∆n) = Sn(σ) ◦Bn ◦ . . . ◦Bn(id∆n). (22)

Proof:
This follows by induction over m. For m = 0, 1 it holds by Definition 3.4.7. Suppose the claim
is shown for all m ≤ k. Then we have for every singular n-simplex σ : ∆n → X

(BX
n )k+1(σ) = BX

n ◦ (BX
n )k(σ)

IH
= BX

n ◦ Sn(σ) ◦Bk
n(id∆n)

nat
= Sn(σ) ◦Bn ◦Bk

n(id∆n)

= Sn(σ) ◦Bk+1
n (id∆n).

2

With the barycentric subdivision operator we can now adapt singular simplexes σ : ∆n → X
and, more generally, singular n-chains in a topological space X to a given open cover of X. In
particular, we replace n-cycles z ∈ Zn(X) by n-cycles z′ ∈ Zn(X) in which all n-simplexes have
their images in one of the open subsets of the cover. As the barycentric subdivision operator is
chain homotopic to the identity map, this does not affect their homologies.

Definition 3.4.10: Let X be a topological space and U = (Ui)i∈I an open cover of X.

1. An n-chain x =
∑k

j=0 ajσj ∈ Sn(X) is called U-small, if for every n-simplex σj : ∆n → X
in x there is a i ∈ I such that σj(∆

n) ⊂ Ui.

2. We denote by SUn (X) ⊂ Sn(X), by ZUn (X) ⊂ Zn(X) and by BUn (X) ⊂ Bn(X) the sub-
groups of U -small n-chains, n-cycles and n-boundaries.

Lemma 3.4.11: Let U = (Ui)i∈I be an open cover of a topological space X. Then for any
n-cycle z ∈ Zn(X) there is a U -small n-cycle z′ ∈ ZUn (X) with [z] = [z′] ∈ Hn(X).

Proof:
1. We show first that for each n-simplex σ : ∆n → X there is an r = r(σ) ∈ N0 such that
(BX

n )m(σ) = BX
n ◦ . . . ◦BX

n (σ) is U -small for every m ≥ r.

As σ is continuous the sets σ−1(Ui) for i ∈ I form an open cover of the compact metric space
∆n = σ−1(X). By Lebesgue’s lemma, there is an ε > 0 such that every subspace M ⊂ ∆n of
diamM < ε is contained in at least one of the sets σ−1(Ui).

By Lemma 3.4.6 there is an r > 0 such that diam τ(∆n) < ε for all n-simplexes τ in Bm
n (id∆n)

and m ≥ r. Hence, every such n-simplex τ is contained in at least one of the sets σ−1(Ui). With
Remark 3.4.9 this implies that for every n-simplex σ ◦ τ in (BX

n )m(σ) = Sn(σ) ◦ Bm
n (id∆n) we

have σ ◦ τ(∆n) ⊂ Ui for at least one of the sets Ui. Hence, (BX
n )m(σ) is U -small for all m ≥ r.

2. Let z = Σk
j=0ajσj ∈ Zn(X) with singular n-simplexes σj : ∆n → X. By 1. there is an

r ∈ N0 such that z′ = (BX
n )r(z) is U -small. By Proposition 3.4.8 BX

• : S•(X)→ S•(X) is chain
homotopic to idS•(X), and Proposition 2.1.12 implies Hn(BX

• ) = idHn(X) : Hn(X) → Hn(X)
for all n ∈ N0. This yields for the homology classes in Hn(X)

[z′] = [(BX
n )r(z)] = Hn(BX

n )r[z] = idrHn(X)[z] = [z].

2

We now consider chain complexes formed by U -small simplexes in a topological space X, a sub-
space A ⊂ X and the associated U -small relative chain complexes. The following observations
about U -small simplexes are immediate:
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• Because (σ ◦ fnj )(∆n−1) ⊂ σ(∆n) for any n-simplex σ : ∆n → X, the boundary dn(x) of
a U -small n-chain x is again U -small. Thus, the U -small n-chains form a subcomplex

SU• (X) ⊂ S•(X) jX• : SU• (X)→ S•(X).

• Because τ(∆n) ⊂ σ(∆n) for any n-simplex τ in the barycentric subdivision BX
n (σ) of an

n-simplex σ : ∆n → X, the barycentric subdivision BX
n (x) of a U -small n-chain x is again

U -small. Barycentric subdivision induces a chain map

BX
• : SU• (X)→ SU• (X) with BX

• ◦ jX• = jX• ◦BX
• .

• If A ⊂ X is a subspace, then U = (Ui ∩ A)i∈I is an open cover of A. This defines a
subcomplex and an inclusion

SU• (A) ⊂ S•(A) jA• : SU• (A)→ S•(A) with jX• ◦ S•(ιA) = S•(ιA) ◦ jA• ,

and the barycentric subdivision induces a chain map

BA
• : SU• (A)→ SU• (A) with BA

• ◦ jA• = jA• ◦BA
• , S•(ιA) ◦BA

• = BX
• ◦ S•(ιA).

• This defines a quotient complex and a chain map

j(X,A)
• : SU• (X)/SU• (A)→ S•(X)/S•(A)

such that the following diagram commutes

0 // S•(A)
S•(ιA) // S•(X)

π• // S•(X)/S•(A) // 0

0 // SU• (A)

jA•

OO

S•(ιA)
// SU• (X)

jX•

OO

π•
// SU• (X)/SU• (A)

j
(X,A)
•

OO

// 0

(23)

Definition 3.4.12: Let X be a topological space, A ⊂ X a subspace and U = (Ui)i∈I an open
cover of X. We denote by HUn (X), HUn (A) and HUn (X,A) the homologies of the chain complexes
SU• (X), SU• (A) and SU• (X,A) = SU• (X)/SU• (A).

We are now able to compare the homologies of the U -small chain complexes SU• (X), SU• (A) and
SU• (X,A) to the homologies of S•(X), S•(A) and S•(X,A).

Proposition 3.4.13: Let X be a topological space, A ⊂ X a subspace and U = (Ui)i∈I an
open cover of X. Then the inclusions of the U -small chain complexes induce isomorphisms

Hn(jX• ) : HUn (X)
∼−→ Hn(X) Hn(jA• ) : HUn (A)

∼−→ Hn(A) Hn(j(X,A)
• ) : HUn (X,A)

∼−→ Hn(X,A).

Proof:
1. The group homomorphism Hn(jX• ) assigns to the homology class [z]U ∈ HUn (X) of a U -small
n-cycle z ∈ ZUn (X) its homology class [z] ∈ Hn(X). It is surjective by Lemma 3.4.11. We show
that Hn(jX• ) is injective.
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Let z ∈ ZUn (X) with Hn(jX• )[z]U = [z] = 0. Then there is an (n + 1)-chain y ∈ Sn+1(X) with
z = dn+1(y). By Lemma 3.4.11. there is an r ∈ N0 such that y′ = (BX

n+1)r(y) is U -small. As BX
•

is a chain map that is chain homotopic to the identity, we then have

dn+1(y′) = dn+1 ◦ (BX
n+1)r(y) = (BX

n )r ◦ dn+1(y) = (BX
n )r(z).

⇒ 0 = [dn+1(y′)]U = [(BX
n )r(z)]U = Hn(BX

n )r[z]U = [z]U .

This shows that kerHn(jX• ) = 0 and Hn(jX• ) is an isomorphism. An analogous argument for
U ′ = (Ui ∩ A)i∈I shows that Hn(jA• ) is an isomorphism.

2. To prove the claim for the relative homologies, we consider the commuting diagram (23) of
chain complexes with exact rows. By Proposition 2.2.7 it defines a commuting diagram with
exact rows, in which all vertical arrows Hk(j

A
• ) and Hk(j

X
• ) are isomorphisms by 1.

. . .
∂n+1// Hn(A)

Hn(ιA)// Hn(X)
Hn(π•)// Hn(X,A)

∂n−1 // Hn−1(A)
Hn−1(ιA)// Hn−1(X)

Hn−1(π•)// . . .

. . .
∂Un+1

// HUn (A)
HUn (ιA)

//

Hn(jA• ) ∼=

OO

HUn (X)
HUn (π•)

//

Hn(jX• ) ∼=

OO

HUn (X,A)
∂Un−1

//

Hn(j
(X,A)
• )

OO

HUn−1(A)
HUn−1(ιA)

//

Hn−1(jA• ) ∼=

OO

HUn−1(X)
HUn−1(π•)

//

Hn−1(jX• ) ∼=

OO

. . .

With the 5-Lemma (Exercise 11) it follows that Hn(j
(X,A)
• ) is an isomorphism for all n ∈ N0. 2

3.5 Excision and the Mayer-Vietoris sequence

We will now apply the results about U -small n-chains from the last section to obtain tools for
computing homologies in terms of a cover. The first result is the excision theorem. It states
that the relative homologies Hn(X,A) with respect to a subspace A ⊂ X remain unchanged
when a subspace U ⊂ A with U ⊂ Å is removed from A and X.

Theorem 3.5.1 (excision):
Let (X,A) be a pair of topological spaces and U ⊂ A a subspace with U ⊂ Å. Then the
inclusion i : (X \ U,A \ U)→ (X,A) induces isomorphisms

Hn(i) : Hn(X \ U,A \ U)
∼−→ Hn(X,A).

Proof:
Because U ⊂ Å the sets Å and X \ U form an open cover U = {Å,X \ U} of X. All singular
simplexes in a U -small n-chain x ∈ SUn (X) have their images in Å ⊂ A or in X \ U ⊂ X \ U .
Thus, we can express SUn (X) as a (not necessarily direct) sum

SUn (X) = SUn (A) + SUn (X \ U).

By Noether’s isomorphism theorem we have for all n ∈ N0 a canonical isomorphisms

SUn (X,A)=
SUn (X)

SUn (A)
=
SUn (A)+SUn (X \ U)

SUn (A)
∼=

SUn (X \ U)

SUn (X \ U)∩SUn (A)
=
SUn (X \ U)

SUn (A \ U)
=SUn (X \ U,A \ U).

Explicitly, these isomorphisms are given by

φn : SUn (X \ U,A \ U)→ SUn (X,A), x+ SUn (A \ U) 7→ x+ SUn (A),
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which shows that they define an isomorphism of chain complexes

φ• : SU• (X \ U,A \ U)→ SU• (X,A).

and that we have a commuting diagram of chain complexes

SU• (X \ U,A \ U)

j
(X\U,A\U)
•

��

∼=
φ• // SU• (X,A)

j
(X,A)
•
��

S•(X \ U,A \ U)
S•(i)

// S•(X,A),

where j
(X,A)
• : SU• (X,A) → S•(X,A) and j

(X\U,A\U)
• : SU• (X \ U,A \ U) → S•(X \ U,A \ U)

denote the inclusions for the subcomplexes of U -small chains. Applying the homology functors
yields commuting diagrams

HUn (X \ U,A \ U)

∼=Hn(j
(X\U,A\U)
• )

��

∼=
Hn(φ•)// HUn (X,A)

Hn(j
(X,A)
• )∼=

��
Hn(X \ U,A \ U)

Hn(i)
// Hn(X,A),

in which the vertical arrows are isomorphisms by Proposition 3.4.13 and the top arrow is an
isomorphism, because φ• is an isomorphism of chain complexes. This shows that Hn(i) is an
isomorphism as well. 2

The excision theorem is very powerful, and we will use it many times in the following. As a first
application we address a question arising from the relative homologies in Section 3.3: Given a
topological space X and a subspace A ⊂ X, how are the relative homologies Hn(X,A) related
to the homologies of the quotient space X/A? This question is difficult to answer in general,
but has a simple and intuitive answer under mild assumptions on the pair (X,A).

Definition 3.5.2: A pair of topological spaces (X,A) is called a good pair, if there is a
subspace B ⊂ X with A ⊂ B̊ such that A is a strong deformation retract of B.

Suppose now that (X,A) is a good pair and recall that the quotient space X/A is obtained by
identifying points of X with the equivalence relation a ∼ a′ for all a, a′ ∈ A. The associated
canonical surjection p : X → X/A sends all points in A ⊂ X to a single point pA = p(A) ∈ X/A.

Proposition 3.5.3: If (X,A) is a good pair, then for all n ∈ N0 the relative homologies
coincide with the reduced homologies of the quotient X/A

Hn(X,A) ∼= H̃n(X/A) := Hn(X/A, {pA}).

Proof:
Let B ⊂ X such that A ⊂ B̊ and A is a strong deformation retract of B. Then we have the
following commuting diagram in Top(2)

(X,A)
j //

p′

��

(X,B)

p

��

(X \ A,B \ A)

p′′

��

ioo

(X/A, {pA})
j′ // (X/A,B/A) ((X/A) \ {pA}, (B/A) \ {pA}),i′oo

59



where the three morphisms on the vertical arrows are induced by the canonical surjection
p : X → X/A and its restriction to X \A, the morphisms j and j′ by the identity maps idX and
idX/A and the morphisms i and i′ by the inclusions ι : X \A→ X and ι′ : (X/A)\{pA} → X/A.

Applying the relative homology functor from Definition 3.3.5 yields the commuting diagram

Hn(X,A)
Hn(j) //

Hn(p′)
��

Hn(X,B)

Hn(p)
��

Hn(X \ A,B \ A)

Hn(p′′)
��

Hn(i)oo

Hn(X/A, {pA})
Hn(j′)// Hn(X/A,B/A) Hn((X/A) \ {pA}, (B/A) \ {pA}).

Hn(i′)oo

We claim that all arrows in this diagram are isomorphisms:

• The group homomorphism Hn(p′′) is an isomorphism, because p′′ is a homeomorphism.

• The group homomorphisms Hn(i) and Hn(i′) are isomorphisms by the excision axiom,
the latter, because A ⊂ B̊ implies {pA} ⊂ (B/A)◦.

• This implies that Hn(p) is an isomorphism as well.

• To show that Hn(j) is an isomorphism, apply Theorem 3.3.7 to the morphism of pairs
j : (X,A)→ (Y,B). This yields a commuting diagram with exact rows

. . . // Hn(A)

∼=
��

Hn(ι) // Hn(X)
Hn(π•)//

id
��

Hn(X,A)
∂n //

Hn(j)
��

Hn−1(A)
Hn−1(ι)//

∼=
��

Hn−1(X) //

id
��

. . .

. . . // Hn(B)
Hn(ι′)

// Hn(X)
Hn(π′•)

// Hn(X,B)
∂′n

// Hn−1(B)
Hn−1(ι′)

// Hn−1(X) // . . . ,

where the vertical arrows between Hk(A) and Hk(B) are isomorphisms, because A is
a strong deformation retract of B. The 5-Lemma (Exercise 11) implies that Hn(j) is
an isomorphism for n ∈ N. For n = 0 we have an analogous diagram, in which the
homologies in the last two columns are zero and obtain that H0(j) is an isomorphism.

• A retraction r : B → A and a homotopy h : [0, 1] × B → B from ιA ◦ r to idB with
h(t, a) = a for t ∈ [0, 1] and a ∈ A induce a retraction r′ : B/A → {pA} and homotopy
h′ : [0, 1]×B/A→ B/A from ι{pA} ◦ r′ to idB/A with h′(t, pA) = pA for all t ∈ [0, 1]. This
implies that {pA} is a strong deformation retract of B/A.

Applying Theorem 3.3.7 to the morphism of pairs j′ : (X/A, {pA}) → (X/A,B/A) and
using the 5-Lemma then shows that Hn(j′) is an isomorphism.

• As all other arrows are isomorphisms, Hn(p′) is an isomorphism as well.

Hence, we have Hn(X,A) ∼= Hn(X/A, {pA}) for all n ∈ N0. By Example 3.3.11 these are the
reduced homologies of X/A. 2

The next application of U -small n-chains can be viewed as the homological counterpart of
the theorem by Seifert and van Kampen. Recall from topology that given an open cover
U = {U1, U2} of a path connected topological space X such that U1, U2 and U1∩U2 are all path
connected, the fundamental group π1(X) is given as a quotient π1(X) = π1(U1) ? π1(U2)/N ,
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where ? denotes the free product of groups and N is a normal subgroup. The normal subgroup
N ⊂ π1(U1) ? π1(U2) is generated by the elements π1(i1)(λ) · π1(i2)(λ)−1 for λ ∈ π1(U1 ∩ U2).

If we apply the abelisation functor Ab : Grp → Ab and use the Huréwicz isomorphism from
Theorem 3.1.11 we obtain

H1(X) =
H1(U1)⊕H1(U2)

H1(U1 ∩ U2)
,

where the quotient is given by the map

H1(U1 ∩ U2)→ H1(U1)⊕H1(U2), [z] 7→ (H1(i1)[z],−H1(i2)[z]).

This suggests that the homologies should be related by a long exact sequence that can be
viewed as the homological counterpart of the theorem by Seifert and van Kampen.

Theorem 3.5.4 (Mayer-Vietoris sequence):
Let X be a topological space and U1, U2 ⊂ X open subsets with X = U1∪U2. Set U12 = U1∩U2

and denote by ik : U12 → Uk and jk : Uk → X the inclusions.

Then there is an exact sequence, the Mayer-Vietoris sequence

. . .
∂n+1−−−→ Hn(U12)

(Hn(i1),−Hn(i2))−−−−−−−−−−→ Hn(U1)⊕Hn(U2)
Hn(j1)+Hn(j2)−−−−−−−−−→ Hn(X)

∂n−→ Hn−1(U12)→ . . .

Proof:
The sets U1, U2 define an open cover U = {U1, U2} of X. Every U -small n-chain x ∈ SUn (X) is
a sum x = x1 + x2 of an n-chain x1 ∈ Sn(U1) and x2 ∈ Sn(U2). This implies that the maps

Sn(j1) + Sn(j2) : Sn(U1)⊕ Sn(U2)→ SUn (X)

are surjective. It follows that the chain maps

(S•(i1),−S•(i2)) : S•(U12)→ S•(U1)⊕ S•(U2) S•(j1) + S•(j2) : S•(U1)⊕ S•(U2)→ SU• (X)

define a short exact sequence of chain complexes

0→ S•(U12)
(S•(i1),−S•(i2))−−−−−−−−−→ S•(U1)⊕ S•(U2)

S•(j1)+S•(j2)−−−−−−−−→ SU• (X)→ 0.

Proposition 2.2.7 yields an associated long exact homology sequence

. . .→ HUn+1(X)
∂n+1−−−→ Hn(U12)

(Hn(i1),−Hn(i2))−−−−−−−−−−→ Hn(U1)⊕Hn(U2)
Hn(j1)+Hn(j2)−−−−−−−−−→ HUn (X)

∂n−→ Hn−1(U12)→ . . . .

By Proposition 3.4.13 we have an isomorphism Hn(jX• ) : HUn (X)
∼−→ Hn(X) for all n ∈ N0. 2

The Mayer-Vietoris sequence allows one to compute the homologies of a topological space by
covering it with two open subsets, which are usually chosen in such a way that their homologies
and the homologies of their intersection are known and as simple as possible. A similar procedure
also works for relative homologies. In this case, one wants to compute the relative homologies
Hn(X,A) by decomposing the subspace A as the union A = A1∪A2 of open subspaces A1, A2 ⊂
A for which the relative homologies are of a particularly simple form. This yields the relative
version of the Mayer-Vietoris sequence.
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Proposition 3.5.5 (relative Mayer-Vietoris sequence):
Let X be a topological space and A1, A2 ⊂ X subspaces that are open in A1 ∪ A2. Denote by
ik : (X,A1 ∩ A2)→ (X,Ak) and jk : (X,Ak)→ (X,A1 ∪ A2) the inclusions in Top(2).

Then there is an exact sequence, the relative Mayer-Vietoris sequence,

. . .
∂n+1−−−→ Hn(X,A1 ∩ A2)

(Hn(i1),−Hn(i2))−−−−−−−−−−→ Hn(X,A1)⊕Hn(X,A2)
Hn(j1)+Hn(j2)−−−−−−−−−→ Hn(X,A1 ∪ A2)

∂n−→ . . .

Proof:
The set U = {A1, A2} is an open cover of A1 ∪ A2. The inclusions ι′n : SUn (A1 ∪ A2) → Sn(X)
define chain maps ι′• : SU• (A1 ∪ A2) → S•(X) and π′• : S•(X) → S•(X)/SU• (A1 ∪ A2), a chain
map ψ• : S•(X)/SU• (A1∪A2)→ S•(X)/S•(A1∪A2) and a commuting diagram with exact rows

0 // SU• (A1 ∪ A2)
ι′• //

j
A1∪A2
•
��

S•(X)
π′• //

id
��

S•(X)/SU• (A1 ∪ A2) //

ψ•
��

0

0 // S•(A1 ∪ A2)
S•(ι)

// S•(X) π•
// S•(X)/S•(A1 ∪ A2) // 0.

Proposition 2.2.7 yields a commuting diagram

. . .→ HUn (A1 ∪ A2)
Hn(ι′•) //

Hn(j
A1∪A2
• )∼=

��

Hn(X)

id
��

Hn(π′•)// Hn(S•(X)/SU• (A1 ∪ A2))
∂n //

Hn(ψ•)

��

HUn−1(A1 ∪ A2)
Hn−1(ι′•)//

Hn−1(j
A1∪A2
• )∼=

��

Hn−1(X)→ . . .

id
��

. . .→ Hn(A1 ∪ A2)
Hn(ι) // Hn(X)

Hn(π•) // Hn(X,A1 ∪ A2)
∂n // Hn−1(A1 ∪ A2)

Hn−1(ι)// Hn−1(X)→ . . .

in which the arrows Hk(j
A1∪A2
• ) are isomorphisms by Proposition 3.4.13. With the 5-Lemma

(Exercise 11) it follows that Hk(ψ•) is an isomorphism for all k ∈ N0.

We show that we have a short exact sequence of chain complexes

0→ S•(X,A1 ∩ A2)
i•−→ S•(X,A1)⊕ S•(X,A2)

p•−→ S•(X)/SU• (A1 ∪ A2)→ 0 (24)

induced by the following diagram in which all columns and the first and second row are exact

0

��

0

��

0

��
0 // Sn(A1 ∩ A2)

x 7→(x,−x) //

Sn(ι12)

��

Sn(A1)⊕ Sn(A2)
(x,y)7→x+y //

(Sn(ι1),Sn(ι2))

��

SUn (A1 ∪ A2) //

ι′n
��

0

0 // Sn(X)
x 7→(x,−x) //

π12
n

��

Sn(X)⊕ Sn(X)
(x,y)7→x+y //

(π1
n,π

2
n)

��

Sn(X) //

π′n
��

0

0 // Sn(X,A1 ∩ A2)

��

in // Sn(X,A1)⊕ Sn(X,A2)

��

pn // Sn(X)/SUn (A1 ∪ A2)

��

// 0

0 0 0

The maps in and pn are induced by the requirement that the diagram commutes, and the
exactness of the last row follows by the 9-lemma (Exercise 12).
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The short exact sequence (24) induces a long exact homology sequence by Proposition 2.2.7.
With the isomorphism Hn(ψ•) : Hn(S•(X)/SU• (A1 ∪ A2))→ Hn(X,A1 ∪ A2) the claim follows

. . .
∂n+1−−−→ Hn(X,A1 ∩ A2)

Hn(i•)−−−−→ Hn(X,A1)⊕Hn(X,A2)
Hn(p•)−−−−→ Hn(S•(X)/SU• (A1 ∪ A2))︸ ︷︷ ︸

∼=Hn(X,A1∪A2)

∂n−→ . . .

2

We now illustrate the Mayer-Vietoris sequence with a number of examples. Its relative version
will play an important role in certain proofs later on. The simplest non-trivial homologies that
can be computed with the Mayer-Vietoris sequence are homologies of spheres.

Example 3.5.6 (homology groups of spheres):
We consider for k ∈ N the k-sphere Sk and the open subsets U± = Sk \ {∓ek+1}.

• Via the stereographic projection, the subspaces U± are homeomorphic to the k-disc Dk.
As Dk is contractible, this gives Hn(U±) = 0 for n ∈ N.

• Because U± is path connected we have H0(U±) = Z.

• The intersection U+ ∩ U− = Sk \ {ek+1,−ek+1} is homotopy equivalent to Sk−1. This
gives Hn(U+ ∩ U−) = Hn(Sk−1) for all n ∈ N0 and k ∈ N.

• H0(U+∩U−) = H0(Sk−1) ∼= Z for k ≥ 2 and H0(U+∩U−) = H0(Sk−1) ∼= Z⊕Z for k = 1,
as Sk−1 has a single path component for k ≥ 2 and two path components for k = 1.

1. For all n ≥ 2 and k ∈ N the exactness of the Mayer-Vietoris sequence implies that the
connecting homomorphism ∂n : Hn(Sk)

∼−→ Hn−1(Sk−1) is an isomorphism.

. . .→ Hn(Dk)⊕Hn(Dk)︸ ︷︷ ︸
=0

→ Hn(Sk)
∂n−→ Hn−1(Sk−1)→ Hn−1(Dk)⊕Hn−1(Dk)︸ ︷︷ ︸

=0

→ . . .

2. The end of the Mayer-Vietoris sequence for k ≥ 2 is given by

. . .→ H1(Dk)⊕H1(Dk)︸ ︷︷ ︸
=0

→ H1(Sk)
∂1−→ H0(Sk−1)︸ ︷︷ ︸

∼=Z

φ−→ H0(Dk)⊕H0(Dk)︸ ︷︷ ︸
∼=Z⊕Z

ψ−→ H0(Sk)︸ ︷︷ ︸
∼=Z

→ 0

with an injective connection homomorphism ∂1 : H1(Sk)→ H0(Sk−1) and the maps

φ : Z→ Z⊕ Z, z → (z,−z) ψ : Z⊕ Z→ Z, (z1, z2) 7→ z1 + z2.

As φ is injective, we have im ∂1 = kerφ = 0 and hence H1(Sk) ∼= im ∂1 = 0.

3. For k = 1 the end of the Mayer-Vietoris sequence is

. . .→ H1(Dk)⊕H1(Dk)︸ ︷︷ ︸
=0

→ H1(S1)
∂1−→ H0(S0)︸ ︷︷ ︸

∼=Z⊕Z

χ−→ H0(Dk)⊕H0(Dk)︸ ︷︷ ︸
∼=Z⊕Z

ψ−→ H0(Sk)︸ ︷︷ ︸
∼=Z

→ 0.

with an injective connecting homomorphism ∂1 : H1(S1) → H0(S0) and the map χ given by
χ : Z⊕Z→ Z⊕Z, (z1, z2) 7→ (z1 + z2,−(z1 + z2). As kerχ = {(z,−z) | z ∈ Z} ∼= Z, we obtain
H1(S1) ∼= im ∂1 = kerχ ∼= Z.

Combining these results and using the results from Example 3.3.10 yields

Hn(Sk) =


Z⊕ Z n = k = 0

Z n = k ∈ N or n = 0, k ∈ N
0 else.

Hn(Dk, Sk−1) =

{
Z n = k

0 n 6= k.
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Example 3.5.6 already demonstrates the usefulness of the Mayer-Vietoris sequence in the
computation of homologies. Another example that shows this is the wedge sum of pointed
topological spaces. The wedge sum of a family (Xi)i∈I of topological spaces Xi with cho-
sen basepoints xi ∈ Xi is obtained by taking their disjoint union qi∈IXi with the inclusions
ιj : Xj → qi∈IXi and then identifying all points ιj(xj) to a single point. It is thus given as a
quotient ∨i∈IXi = qi∈IXi/ ∼ and equipped with a canonical surjection π : qi∈IXi → ∨i∈IXi.

Definition 3.5.7: Let (Xi)i∈I be a family of topological spaces with basepoints xi ∈ Xi.
Their wedge sum is the quotient space

∨i∈IXi = (qi∈IXi) / ∼ ιi(xi) ∼ ιj(xj) ∀i, j ∈ I.

Remark 3.5.8:

1. The wedge sum has the following universal property (Exercise 34):

The maps ij = π ◦ ιj : Xj
ιj−→ qi∈IXi

π−→ ∨i∈IXi are continuous for all j ∈ I.

For every family (fi)i∈I of continuous maps fi : Xi → Y with fi(xi) = fj(xj) for all
i, j ∈ I there is a unique continuous map f : ∨i∈IXi → Y with f ◦ ij = fj for all j ∈ I.

2. The universal property of the wedge sum defines continuous projection maps

pj : ∨i∈IXi → Xj with pj ◦ ij = idXj and pj ◦ ik = xj : Xk → Xj, x 7→ xj for j 6= k.

Given a finite family of topological spaces Xi with basepoints xi ∈ Xi, we can compute the
homologies of their wedge sum via the Mayer-Vietoris sequence, as long as they satisfy a mild
regularity condition. This regularity condition states that every basepoint xi ∈ Xi must have
a neighbourhood xi ∈ Ui ⊂ Xi that deformation retracts to a point. Note that this condition
is always satisfied for subsets of Rn, where we can choose Ui = Bε(xi) for a sufficiently small
ε > 0 and then use the fact that Bε(xi) is convex to construct a retraction and a homotopy.

Proposition 3.5.9: Let X1, . . . , Xk be topological spaces with basepoints xi ∈ Xi. Suppose
that (Xi, xi) is well-pointed: every basepoint xi has a neighbourhood Ui ⊂ Xi such that {xi}
is a strong deformation retract of Ui. Then we have for all n ∈ N mutually inverse isomorphisms

(Hn(p1), . . . , Hn(pk)) : Hn(X1 ∨ . . . ∨Xn)
∼−→ Hn(X1)⊕ . . .⊕Hn(Xk)

Hn(i1) + . . .+Hn(ik) : Hn(X1)⊕ . . .⊕Hn(Xk)
∼−→ Hn(X1 ∨ . . . ∨Xk).

Proof:
The claim follows by induction over k. We prove the case k = 2. Let x1 ∈ U1 ⊂ X1 and
x2 ∈ U2 ⊂ X2 neighbourhoods such that {xi} is a deformation retract of Ui. Set V1 = X1 ∨ U2

and V2 = U1 ∨X2. Then we have X := X1 ∨X2 = V1 ∪ V2 and V12 := V1 ∩ V2 = U1 ∨ U2.

• The inclusions, retractions and homotopies for xi and Ui induce inclusions, retractions
and homotopies for U1 ∨ U2, which implies V1 ∩ V2 = U1 ∨ U2 ' •.
• The inclusions, retractions and homotopies for xi and Ui induce inclusions, retractions

and homotopies for V1 and V2, which implies V1 ' X1 and V2 ' X2.
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1. The Mayer-Vietoris sequence then gives for all n ≥ 2

. . .
∂n+1// Hn(V12) //

∼=
��

Hn(V1)⊕Hn(V2) //

∼=
��

Hn(X)

id
��

∂n // Hn−1(V12) //

∼=
��

. . .

. . .
∂n+1

// 0 // Hn(X1)⊕Hn(X2)
Hn(i1)+Hn(i2)

// Hn(X)
∂n

// 0 // . . .

and implies the group homomorphism Hn(i1) + Hn(i2) : Hn(X1) ⊕Hn(X2) → Hn(X1 ∨X2) is
an isomorphism. For n = 1 we obtain

. . .
∂n+1// H1(V12) //

∼=
��

H1(V1)⊕H1(V2) //

∼=
��

H1(X)

id
��

∂n // H0(V12) //

∼=
��

. . .

. . .
∂n+1

// 0 // H1(X1)⊕H1(X2)
H1(i1)+H1(i2)

// H1(X)
∂n

// Z
[p]7→([p],−[p])

// . . .

As H0(V12) = Z and the map H0(V12) → H0(V1) ⊕ H0(V2), [p] 7→ ([p],−[p]) is injective, it
follows that H1(i1) +H1(i2) is an isomorphism as well.

2. That (Hn(p1), Hn(p2)) : Hn(X) → Hn(X1) ⊕ Hn(X2) is inverse to Hn(i1) + Hn(i2) follows
directly from the definitions, which imply Hn(pj) ◦ Hn(ij) = Hn(idXj) = idHn(Xj) for j = 1, 2
and Hn(pj) ◦Hn(ik) = Hn(x 7→ xj) = 0 : Hn(Xk)→ Hn(Xj) for j 6= k. 2

3.6 Homologies of spheres: topological applications

In this section, we show how results on the homologies of spheres can be applied to topological
questions. We will first prove a number of elementary topological applications of Example 3.5.6.
Recall from Example 3.5.6 that the homologies of the n-spheres are given by

Hn(Sk) =


Z⊕ Z n = k = 0

Z n = k ∈ N or n = 0, k ∈ N
0 else.

As an immediate consequence, we have that for ≥ 1 the n-sphere Sn cannot be homotopy
equivalent to a point, as Hn(Sn) ∼= Z and Hn(•) = 0. As homotopy equivalent spaces have
isomorphic homology groups, it follows that Sn and • are not homotopy equivalent. For n = 0,
this follows already with elementary topology as S0 has two connected components and the one
point space • only one. Likewise, for m < n we have Hn(Sm) = 0 6∼= Z = Hn(Sn) and hence Sm

and Sn cannot be homotopy equivalent. This fact has interesting consequences.

Corollary 3.6.1:

1. The n-sphere Sn is not contractible for any n ∈ N0.
2. For n 6= m the n-spheres Sn and Sm are not homotopy equivalent.

Corollary 3.6.2: For n 6= m the spaces Rm and Rn are not homeomorphic.
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Proof:
A homeomorphism f : Rn → Rm induces a homeomorphism f : Rn \ {0} → Rm \ {f(0)}. As
Rn \ {0} ' Sn−1 and Rm \ {f(0)} ' Sm−1 this would imply that Sn−1 and Sm−1 are homotopy
equivalent, a contradiction to Corollary 3.6.1. 2

Corollary 3.6.3: The (n− 1)-sphere Sn−1 = ∂Dn is not a retract of Dn.

Proof:
For n = 1 this follows from the the fact that any continuous map r : D1 = [−1, 1]→ {1,−1} =
S0 is constant, as D1 is connected. This contradicts the condition r ◦ ι = idS0 . For n ≥ 2 let
ι : Sn−1 → Dn be the inclusion and suppose that there is a retraction r : Dn → Sn−1 with
r◦ ι = idSn−1 . Then we have the following commuting diagram, with the identity on the bottom
arrow and the other two arrows composing to the zero map - a contradiction

Hn−1(Dn) = 0
Hn−1(r)

))
Hn−1(Sn−1) ∼= Z

Hn−1(ι)
55

Hn−1(id)=id
// Hn−1(Sn−1) ∼= Z.

2

Corollary 3.6.4 (Brouwer’s fixed point theorem):
For n ∈ N any continuous map f : Dn → Dn has a fixed point.

Proof:
For n = 1, the claim follows from the midpoint theorem. The continuous map g : D1 → R,
x 7→ f(x)− x satisfies g(−1) ≥ 0 and g(1) ≤ 0, which implies that there is an x ∈ [−1, 1] with
g(x) = 0, a fixed point of f .

gx

r(x)

x

f(x)

Suppose n ≥ 2 and f : Dn → Dn is continuous without a fixed point. Then for all x ∈ Dn

there is a unique straight line gx through x and f(x). By assigning to x ∈ Dn the intersection
point of gx with ∂Dn = Sn−1 that is closer to x than to f(x), we obtain a continuous map
r : Dn → Sn−1 with r ◦ ι = idSn−1 for the inclusion ι : Sn−1 → Dn. Thus, g is a retraction from
Dn to Sn−1, in contradiction to Corollary 3.6.3. 2

Further interesting topological applications arise, when we consider continuous maps between
n-spheres. By Definition 3.1.6 any continuous map f : Sn → Sn induces a group homomorphism
Hn(f) : Hn(Sn) → Hn(Sn) . As Hn(Sn) ∼= Z, we can fix an isomorphism φ : Hn(Sn) → Z and
assign to a continuous map f : Sn → Sn the group homomorphism φ ◦Hn(f) ◦ φ−1 : Z→ Z. It
is a basic fact from algebra that any group homomorphism α : Z→ Z is of the form α : Z→ Z,
z 7→ m · z for some integer m ∈ Z.
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Definition 3.6.5:
For n ∈ N the mapping degree of a continuous map f : Sn → Sn is the number deg(f) ∈ Z
defined by the following commuting diagram for any group isomorphism φ : Hn(Sn)→ Z

Hn(Sn)

φ ∼=
��

Hn(f) // Hn(Sn)

φ∼=
��

Z
z 7→deg(f)·z

// Z.

Clearly, the mapping degree does not depend on the choice of the isomorphism φ : Hn(Sn)→ Z.
If ψ : Hn(Sn) → Z is another isomorphism, then composing them yields an isomorphism
ψ ◦φ−1 : Z→ Z, which is given by multiplication with 1 or -1. Applying this isomorphism twice
does not change the degree.

Lemma 3.6.6: The mapping degree has the following properties:

1. Homotopic maps have the same degree: if f ∼ g, then deg(f) = deg(g).

2. The identity has degree deg(idSn) = 1.

3. The degree is multiplicative: deg(g ◦ f) = deg(g) · deg(f).

4. If f is not surjective, then deg(f) = 0.

Proof:
1. follows directly from the fact that f ∼ g implies Hn(f) = Hn(g) by Proposition 3.2.3. Claims
2. and 3. follow from the commuting diagrams

Hn(Sn)

φ ∼=
��

Hn(idSn )=idHn(Sn) // Hn(Sn)

φ∼=
��

Z z 7→z
// Z.

Hn(Sn)

φ∼=
��

Hn(g◦f)

((

Hn(f)
// Hn(Sn)

φ∼=
��

Hn(g)
// Hn(Sn)

φ∼=
��

Z

z 7→deg(g)·deg(f)·z

88
z 7→deg(f)·z // Z z 7→deg(g)·z // Z

4. If f : Sn → Sn is not surjective, then there is a point p ∈ Sn \ f(Sn), and f corestricts to a
map f ′ : Sn → Sn \ {p}. We then have ι ◦ f ′ = f : Sn → Sn for the inclusion ι : Sn \ {p} → Sn.
As Sn \ {p} ∼= Dn ' •, we have Hn(Sn \ {p}) = 0 and the commuting diagram

Hn(Sn)

Hn(f)

))

φ∼=
��

Hn(f ′)
// Hn(Sn \ {p})

∼=
��

Hn(ι)
// Hn(Sn)

φ∼=
��

Z

z 7→0

66// 0 // Z.

2

We now construct continuous maps f : Sn → Sn with other mapping degrees than 0,1. Note
that by Lemma 3.6.6 any such map is a surjective non-identity map.
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We first consider the reflection on an n-dimensional linear subspace in Rn+1. It is the identity
on every vector contained in the subspace and reverses the direction of very vector orthogonal
to the subspace. It also restricts to a continuous map from Sn to Sn of mapping degree -1.

Lemma 3.6.7: For all n ∈ N the reflection φn : Sn → Sn, (x1, . . . , xn+1) 7→ (−x1, . . . , xn+1)
has mapping degree deg(φn) = −1.

Proof:
For 0 < ε < 1 we consider the open subsets

U+ = {x ∈ Sn | xn+1 > −ε} U− = {x ∈ Sn | xn+1 < ε}.

with U± ' Dn ' • and U+ ∩ U− = {x ∈ Sn | −ε < xn+1 < ε} ' Sn−1. More specifically, a
homotopy equivalence is given by the maps

in : Sn−1 → U+ ∩ U−, (x1, . . . , xn) 7→ (x1, . . . , xn, 0)

rn : U+ ∩ U− → Sn−1, (x1, . . . , xn+1) 7→ (1− x2
n+1)−1/2(x1, . . . , xn)

satisfying rn ◦ φn = φn−1 ◦ rn and φn ◦ in = in ◦ φn−1. With the Mayer-Vietoris sequence we
obtain for n ≥ 2 the following commuting diagram, in which Hn(U±) = Hn−1(U±) = 0 and,
consequently, ∂n is an isomorphism

. . . // Hn(U+)⊕Hn(U−) //

��

Hn(Sn)
∂n //

Hn(φn)

��

Hn−1(Sn−1) //

Hn(φn−1)
��

Hn−1(U+)⊕Hn−1(U−) //

��

. . .

. . . // Hn(U+)⊕Hn(U−) // Hn(Sn)
∂n // Hn−1(Sn−1) // Hn−1(U+)⊕Hn−1(U−) // . . .

This gives deg(φn) = deg(φn−1) . . . = deg(φ1) for all n ∈ N.

For n = 1 The Huréwicz Theorem 3.1.11 implies that H1(S1) is generated by the homology
class of the cycle

σ : [0, 1]→ S1, t 7→ (sin(2πt),− cos(2πt)).

As we have φ1 ◦ σ = σ̄ : [0, 1]→ S1 and hence H1(φ1)[σ] = −[σ] by the Huréwicz isomorphism.
This gives deg(φn) = deg(φ1) = −1 for all n ∈ N. 2

Corollary 3.6.8: The antipodal map a : Sn → Sn, x 7→ −x has degree deg(a) = (−1)n+1.

Proof:
The antipodal map is the composite a = φ

(n+1)
n ◦ . . . ◦ φ(1)

n of the reflections

φ(i)
n : Sn → Sn, (x1, . . . , xn+1)→ (x1, . . . ,−xi, . . . , xn+1).

As in the proof of Lemma 3.6.7, one can show that deg(φ
(i)
n ) = −1. With the multiplicativity

of the degree from Lemma 3.6.6 this gives

deg(a) = deg(φ(1)
n ) · · · deg(φ(n+1)

n ) = (−1)n+1.

2

Corollary 3.6.9: The restriction of any orthogonal linear map M ∈ O(n+ 1) to Sn ⊂ Rn+1

has degree deg(M) = det(M).
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Proof:
Every orthogonal map M ∈ O(n+ 1) can be written as a product M = ψ1 . . . ◦ψk of reflections
ψj : Sn → Sn on planes of dimension n. As in Lemma 3.6.7 one can show that each of them
has degree deg(ψj) = −1, and from linear algebra we know that det(ψj) = −1. This gives
deg(M) = (−1)k = det(M). 2

To construct continuous maps f : Sn → Sn with mapping degrees other than 0,1,-1, we require
a construction that adds the mapping degrees. This is achieved by considering wedge sums
of spheres. For this, we equip the n-sphere Sn with the basepoint en+1 ∈ Sn and consider the
wedge sum Sn∨Sn with respect to these basepoints. We denote for j = 1, 2 by ij : Sn → Sn∨Sn
and pj : Sn ∨ Sn → Sn the inclusion and projection maps from Remark 3.5.8.

By the universal property of the wedge sum, the identity maps idSn : Sn → Sn induce a unique
map F : Sn ∨Sn → Sn with F ◦ i1 = F ◦ i2 = idSn , the fold map. Likewise, we have a canonical
map P : Sn → Sn ∨ Sn that collapses the equator Sn−1 × {0} = {x ∈ Sn | xn+1 = 0} ∼= Sn−1

to a point. This defines a quotient space Sn/Sn−1 that is homeomorphic to Sn ∨Sn (Exercise).
The associated canonical surjection P : Sn → Sn/Sn−1 ∼= Sn ∨ Sn is called the pinch map or
pinching map, because it pinches the sphere Sn in the middle.

Definition 3.6.10:

1. The pinch map is the canonical surjection P : Sn → Sn/Sn−1 ∼= Sn ∨ Sn,

2. The fold map is the continuous map F : Sn ∨ Sn → Sn induced by idSn .

Let f1, f2 : Sn → Sn be continuous maps with f1(en+1) = f2(en+1) = en+1. By the universal
property of the wedge sum, there is a unique continuous map f1 ∨ f2 : Sn ∨ Sn → Sn ∨ Sn, the
wedge sum of f1 and f2, such that

pj ◦ (f1 ∨ f2) ◦ ij = fj, p2 ◦ (f1 ∨ f2) ◦ i1 = p1 ◦ (f1 ∨ f2) ◦ i2 = en+1 : x 7→ en+1. (25)

By applying first the pinch map, then the wedge sum of f1 and f2 and then the fold map, we
obtain a continuous map F ◦ (f1 ∨ f2) ◦ P : Sn → Sn.

Lemma 3.6.11: For all continuous maps f1, f2 : Sn → Sn with f1(en+1) = f2(en+1) = en+1

deg(F ◦ (f1 ∨ f2) ◦ P ) = deg(f1) + deg(f2).

Proof:
As the fold map is the unique continuous map F : Sn ∨ Sn → Sn with F ◦ i1 = F ◦ i2 = idSn
from Remark 3.5.8, we have from Remark 3.5.8 and Proposition 3.5.9

Hn(F ) ◦ (Hn(i1) +Hn(i2)) : Hn(Sn)⊕Hn(Sn)→ Hn(Sn), ([z1], [z2]) 7→ [z1] + [z2]. (26)

The pinch map P : Sn → Sn/Sn−1 ∼= Sn ∨ Sn can be described in coordinates as follows. We
parametrise points x ∈ Sn in terms of a vector v ∈ Sn−1 and t ∈ [0, 1] as x = (sin(πt)v, cos(πt)).
Then the composites of P with the maps pj : Sn ∨ Sn → Sn from Remark 3.5.8 are given by

p1 ◦ P : Sn → Sn, (sin(πt)v, cos(πt)) 7→

{
(sin(2πt)v, cos(2πt)) t ∈ [0, 1

2
]

−en+1 t ∈ [1
2
, 1]

p2 ◦ P : Sn → Sn, (sin(πt)v, cos(πt)) 7→

{
en+1 t ∈ [0, 1

2
]

(sin(2πt− π)v, cos(2πt− π)) t ∈ [1
2
, 1]
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Both, p1 ◦P and p2 ◦P are homotopic to the identity map idSn . Thus, the induced map on the
homologies is given by

(Hn(p1), Hn(p2)) ◦Hn(P ) : Hn(Sn)→ Hn(Sn)⊕Hn(Sn), [z] 7→ ([z], [z]). (27)

The map f1 ∨ f2 : Sn ∨ Sn → Sn ∨ Sn is given by (25), and this implies

(Hn(p1), Hn(p2)) ◦Hn(f1 ∨ f2) ◦ (Hn(i1) +Hn(i2)) : Hn(Sn)⊕Hn(Sn)→ Hn(Sn)⊕Hn(Sn),

([z1], [z2]) 7→ ([f1(z1)], [f2(z2)]). (28)

Combining (26), (27) and (28) and using that (Hn(i1)+Hn(i2))◦(Hn(p1), Hn(p2)) = idHn(Sn∨Sn)

by Proposition 3.5.9, we obtain

Hn(F ◦ (f1 ∨ f2) ◦ P ) =Hn(F ) ◦Hn(f1 ∨ f2) ◦Hn(P ) = Hn(f1) +Hn(f2) : Hn(Sn)→ Hn(Sn)

[z] 7→ ([z], [z]) 7→ ([f1(z)], [f2(z)]) 7→ [f1(z)] + [f2(z)].

This yields deg(F ◦ (f1 ∨ f2) ◦ P ) = deg(f1) + deg(f2). 2

Corollary 3.6.12:
For all n ∈ N0, k ∈ Z there is a continuous map f

(k)
n : Sn → Sn with deg(f

(k)
n ) = k.

Proof:
Setting f

(1)
n = idSn and f

(k)
n = F ◦ (f

(k−1)
n ∨ idSn)◦P yields deg(f

(k)
n ) = k ∈ N. Composing them

with a reflection φn yields f
(−k)
n = φn ◦ f (k)

n with deg(f
(−k)
n ) = deg(φn) · deg(f

(k)
n ) = −k. Any

non-surjective continuous map f
(0)
n : Sn → Sn has degree deg(f

(0)
n ) = 0 by Lemma 3.6.6, 4. 2

We will now apply the results on mapping degrees to prove some deceptively simple statements
about continuous maps on spheres that are difficult to prove with other methods. Many of them
are concerned with fixed points or antipodal points. There is also the famous statement about
even-dimensional hedgehogs: Combing such a hedgehog always leads to a bald spot.

Corollary 3.6.13: Let f, g : Sn → Sn with f(x) 6= g(x) for all x ∈ Sn. Then f is homotopic
to a ◦ g and deg(f) = (−1)n+1 deg(g).

Proof:
If f(x) 6= g(x) for all x ∈ Sn then 0 6= (1 − t)f(x) − tg(x) for all x ∈ Sn and t ∈ [0, 1]. This
yields the following homotopy from f to −g = a ◦ g

h : [0, 1]× Sn → Sn, (t, x) 7→ (1− t)f(x)− tg(x)

||(1− t)f(x)− tg(x)||

and implies deg(f) = deg(a ◦ g) = (−1)n+1 deg(g). 2

Corollary 3.6.14: Any continuous map f : Sn → Sn with deg(f) = 0 has a fixed point
x+ ∈ Sn with f(x+) = x+ and an antipodal point x− ∈ Sn with f(x−) = −x−.

Proof:
If f(x) 6= x = idSn(x) for all x ∈ Sn, then deg(f) = deg(a) · deg(idSn) = deg(a) = (−1)n+1 6= 0
by Corollary 3.6.13. So there is a point x+ ∈ Sn with f(x+) = x+. Likewise, if f(x) 6= −x = a(x)
for all x ∈ Sn, then by Corollary 3.6.13 we have deg(f) = deg(a ◦ a) = deg(idSn) = 1 6= 0.
Hence, there is a point x− ∈ Sn with f(x−) = −x−. 2
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Corollary 3.6.15: For even n ∈ N any continuous map f : Sn → Sn has a fixed point
x+ ∈ Sn with f(x+) = x+ or an antipodal point x− ∈ Sn with f(x−) = −x−.

Proof:
As in the proof of Corollary 3.6.14 f(x) 6= x for all x ∈ Sn implies deg(f) = (−1)n+1 and
f(x) 6= −x for all x ∈ Sn implies deg(f) = 1. As n is even, only one of them can be true. 2

Corollary 3.6.16 (combing the hedgehog):
Any tangential vector field to an even-dimensional sphere Sn vanishes in at least one point.

Proof:
In terms of the euclidean scalar product 〈 , 〉 on Rn+1 the tangent space at x ∈ Sn is given
by TxS

n = x⊥ = {y ∈ Rn+1 | 〈x, y〉 = 0}. Suppose V ∈ TSn is a vector field on Sn with
0 6= V (x) ∈ TxSn for all x ∈ X. Then rescaling V yields a continuous map

f : Sn → Sn, x 7→ V (x)

||V (x)||
.

As n is even, by Corollary 3.6.15 there is a point x+ ∈ Sn with f(x+) = x+ or a point x− ∈ Sn
with f(x−) = −x−. This would imply V (x+) = ||V (x+)||x+ or V (x−) = −||V (x−)||x−, in
contradiction to V (x) ∈ TxSn = x⊥ for all x ∈ Sn. 2

3.7 The Eilenberg-Steenrod Axioms

In this section we summarise our results on homologies in terms of an axiomatic definition of a
homology theory due to Eilenberg and Steenrod. These axioms characterise a homology theory
abstractly, and we show that singular homology satisfies these axioms.

Recall that singular homology defines

• functors Hn : Top(2)→ Ab for n ∈ Z:
By Definition 3.3.5 we have singular homology functors Hn : Top(2) → Ab from the
category of pairs of topological spaces and morphisms of pairs into the category of abelian
groups and group homomorphisms. This also covers also the non-relative homologies, as
we can view a topological space X as a pair (X, ∅) and a continuous map f : X → Y as
a morphism of pairs f : (X, ∅)→ (Y, ∅).

• connecting homomorphisms as natural transformations:
Theorem 3.3.7 and Corollary 3.3.8 imply that each pair of topological spaces yields in
fact three homology functors for each n ∈ N0, the functors H1

n, H
2
n, H

3
n : Top(2) → Ab

that assign to a pair (X,A) the homology Hn(A), Hn(X) and the relative homology
Hn(X,A), respectively. The connecting homomorphisms define natural transformations
∂n : H3

n ⇒ H1
n−1.

These functors and natural transformations have the following properties:

1. Long exact homology sequence: By Theorem 3.3.7 for each pair (X,A) of topological
spaces, the homology functors and the connecting homomorphisms organise into a long
exact homology sequence.
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2. Homotopy invariance: By Corollary 3.3.6 Hn(f) = Hn(f ′) : Hn(X,A) → Hn(X,B)
for all morphisms f, f ′ : (X,A)→ (Y,B) that are homotopic in Top(2).

3. Excision: By Theorem 3.5.1 the relative homologies of a pair (X,A) do not change, if a
subspace U ⊂ A with U ⊂ Å is removed from X and from A. One says that the singular
homologies satisfy excision.

4. Additivity: In Exercises 22 we proved that the relative homology groups of a topological
sum (qi∈IXi,qi∈IAi) for a family of pairs (Xi, Ai)i∈I are given by the direct sum of the
relative homology groups of these pairs.

5. Dimension: By Example 3.1.8, we have Hn(•) = 0 for n ∈ Z \ {0}.

These properties of singular homology are exactly the axioms one imposes on a homology theory,
the famous Eilenberg-Steenrod axioms. They were introduced by Eilenberg and Steenrod in 1964
to unify different homology theories that were known at that time.

Definition 3.7.1: An (ordinary) homology theory with values in Ab is a

• collection of functors Hn : Top(2)→ Ab for each n ∈ Z,
• collection of natural transformations ∂n : H3

n ⇒ H1
n−1 for all n ∈ Z,

that satisfy the Eilenberg-Steenrod axioms:

1. Long exact sequence: for every pair (X,A) there is a long exact sequence

. . .
∂n+1−−−→ Hn(A)

Hn(i)−−−→ Hn(X)
Hn(π)−−−→ Hn(X,A)

∂n−→ Hn−1(A)
Hn−1(i)−−−−→ . . .

2. Homotopy invariance: If f, g : (X,A)→ (Y,B) are homotopic, then for all n ∈ Z

Hn(f) = Hn(g) : Hn(X,A)→ Hn(Y,B).

3. Excision: For every pair (X,A) and every open subset U ⊂ A with U ⊂ Å the inclusions
ι : (X \ U,A \ U)→ (X,A) induce isomorphisms

Hn(ι) : Hn(X \ U,A \ U)
∼−→ Hn(X,A).

4. Additivity: For any family (Xi, Ai)i∈I of pairs of topological spaces and all n ∈ Z

Hn(qi∈IXi,qi∈IAi) ∼= ⊕i∈IHn(Xi, Ai).

5. Dimension axiom: Hn(•) = 0 for all n ∈ Z \ {0}.

The abelian group H0(•) is called the coefficient group of the homology theory.

Corollary 3.7.2: Singular homology is a homology theory with coefficient group Z.

Note that the homotopy invariance axiom implies directly that homotopy equivalent topolog-
ical spaces have isomorphic homologies, see the proof of Proposition 3.2.3. Together with the
dimension axiom, this implies that for contractible topological spaces X all homology groups
except H0(X) vanish, and H0(X) is isomorphic to the coeficient group.

Many results, such as the Mayer-Vietoris sequence and the homology groups of spheres can
be derived directly from the Eilenberg-Steenrod axioms. For the Mayer-Vietoris sequence, this
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is shown in Exercise 41. As the computation of the homologies of spheres in Example 3.5.6
only makes use of the Mayer-Vietoris sequence and the fact that discs are contractible, the
homologies of spheres in an ordinary homology theory are determined uniquely by its coefficient
group. Eilenberg and Steenrod proved that this does not only hold for spheres, but for all finite-
dimensional CW complexes. The precise statement of this is the following theorem.

Theorem 3.7.3 (Eilenberg-Steenrod): If (Hn, ∂n)n∈Z and (H ′n, ∂n)n∈Z are ordinary homology
theories and (T n)n∈Z is a family of natural transformations T n : Hn ⇒ H ′n such that

(i) T n
(Sk,∅) : Hn(Sk)→ H ′n(Sk) is an isomorphism for all k ∈ N0,

(ii) the following diagram commutes for all pairs (X,A)

Hn(X,A)

∂n
��

Tn
(X,A)// H ′n(X,A)

∂′n
��

Hn−1(A)
Tn−1

(X,A)

// H ′n−1(A),

then T n(X,∅) : Hn(X)→ H ′n(X) is an isomorphism on all finite CW complexes X.

As the homologies of spheres are determined by the Eilenberg-Steenrod axioms, this states that
all homologies of finite CW complexes are determined uniquely by their coefficient groups. We
will investigate the homologies of finite and non-finite CW complexes in the next section.

Homology theories that satisfy all axioms except the dimension axiom are called extraordi-
nary homology theories. They are more difficult to handle than ordinary homology theories.
Important examples are topological K-theory and bordism theories.
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4 Homologies of CW complexes

4.1 CW complexes

CW complexes are topological spaces that are built up from simple pieces, closed discs Dn for
n ∈ N0, that are glued together along their boundaries ∂Dn = Sn−1 to form a topological space.
In this section we first investigate the construction and topological properties of CW complexes
and then derive a way to systematically compute their homologies. We will see that this leads
to simple formulas for the homology groups that are obtained by just counting the number of
discs in each dimension.

We first introduce the concept that describes the gluing of topological spaces. Intuitively, gluing
two topological spaces means considering them together, which amounts to taking a topological
sum, and then identifying points of one space with the other, which amounts to taking a
quotient. This combination of a topological sum and a quotient is encoded in the concept of a
pushout. As topological sums and quotients are final topologies, this also holds for pushouts.

Definition 4.1.1: Let f1 : A→ X1 and f2 : A→ X2 be continuous maps.
The pushout of f1 and f2 is the topological space

X1 qA X2 = (X1 qX2)/ ∼ ι1 ◦ f1(a) ∼ ι2 ◦ f2(a) for all a ∈ A.

Remark 4.1.2: The inclusions ιj : Xj → X1 qX2 for the topological sum and the canonical
surjection π : X1 qX2 → X1 qA X2 define continuous maps ij = π ◦ ιj : Xj → X1 qA X2.

The space X1qAX2 is equipped with the final topology induced by the maps ij : Xj → X1qAX2:
A subset U ⊂ X1 qA X2 is open if and only if i−1

1 (U) ⊂ X1 and i−1
2 (U) ⊂ X2 are open.

The pushout can also be described more abstractly and efficiently via its universal property.
This universal property allows one to characterise continuous maps g : X1 qA X2 → Y from
a pushout in terms of continuous maps g1 : X1 → Y and g2 : X2 → Y with g1 ◦ f1 = g2 ◦ f2.
Continuous maps into a pushout can be constructed directly by considering continuous maps
into the spaces X1 and X2 and composing them with the maps i1 and i2.

Lemma 4.1.3: The pushout of continuous maps f1 : A → X1 and f2 : A → X2 has the
following universal property:

The maps i1 : X1 → X1 qA X2 and i2 : X2 → X1 qA X2 are continuous with i1 ◦ f1 = i2 ◦ f2.
For every pair of continuous maps g1 : X1 → Y and g2 : X2 → Y with g1 ◦ f1 = g2 ◦ f2, there is
a unique continuous map g : X1 qA X2 → Y with g ◦ i1 = g1 and g ◦ i2 = g2.

Y

X1 qA X2

∃!g

ee

X1
i1oo

g1qq

X2

i2

OO
g2

QQ

A.
f2

oo

f1

OO
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Proof:
The maps i1 and i2 are continuous as composites of continuous maps and satisfy i1 ◦f1 = i2 ◦f2

by construction.

Let g1 : X1 → Y and g2 : X2 → Y be continuous maps with g1 ◦ f1 = g2 ◦ f2. By the universal
property of the direct sum there is a unique continuous map g′ : X1qX2 → Y with g′ ◦ ι1 = g1

and g′ ◦ ι2 = g2. By construction, it satisfies g′ ◦ ι1 ◦ f1 = g1 ◦ f1 = g2 ◦ f2 = g′ ◦ ι2 ◦ f2. By the
universal property of the quotient, there is a unique continuous map g : X1 qA X2 → Y with
g ◦ π = g′. This implies g ◦ ij = g ◦ π ◦ ιj = g′ ◦ ιj = gj for j = 1, 2.

If g′′ : X1 qA X2 → Y is another continuous map with g′′ ◦ ij = g′′ ◦ π ◦ ιj = gj, then by the
universal property of the topological sum g′′ ◦π = g ◦π, and surjectivity of π implies g′′ = g. 2

It is clear that the universal property of the pushout in Lemma 4.1.3 generalises to other
categories, if we replace continuous maps by morphisms in the relevant category. The description
of a pushout in terms of a topological sum and a quotient is a special case of the construction of
a pushout from coproducts and coequalisers. As a categorical construction characterised by a
universal property, a pushout is determined uniquely up to unique isomorphism by its universal
property (Exercise 42).

Example 4.1.4:

1. topological sums:
If we take A = ∅, then f1 : ∅ → X1 and f2 : ∅ → X2 are the empty maps. Then the
resulting pushout is the topological sum X1qAX2 = X1qX2 with the injective inclusions
ι1 = i1 : X1 → X1 qX2 and ι2 = i2 : X2 → X1 qX2 .

2. wedge sums:
If we take A = •, then a continuous map fj : A→ Xj amounts to the choice of a basepoint
xj = fj(•) ∈ Xj. By comparing with Definition 3.5.7, we see that X1 q• X2 = X1 ∨X2.
Again, the maps i1 : X1 → X1 qA X2 and i2 : X2 → X1 qA X2 are injective.

3. collapsing a subspace:
If we take a subspace A ⊂ X1 with the inclusion f1 = ιA : A → X1 and the terminal
map f2 : A→ •, then we identify ι2(•) ∼ ι1(a) in X1 q • for all a ∈ A. The pushout the
quotient space X1 qA • ∼= X1/A obtained by collapsing the subspace A ⊂ X1. In this
case, i1 = π : X1 → X1/A is the canonical surjection.

4. attaching topological spaces:
If we take again a subspace A ⊂ X1 with the inclusion f1 = ιA : A → X1 and a general
continuous map f2 : A→ X2, then one says the pushout X1qAX2 is obtained by gluing
or attaching X1 to X2 with the attaching map f2 : A→ X2.

The maps i2 : X2 → X1 qA X2 and i1|X1\A : X1 \ A → X1 qA X2 are always injective.
The map i1 : X1 → X1 qA X2 is injective if and only if f2 is injective.

5. attaching n-discs: If X1 = qi∈IDn and A = qi∈ISn−1 ⊂ X1, then an attaching map
f2 : qi∈ISn−1 → X2 corresponds to a family (f i2)i∈I of continuous maps f i2 : Sn−1 → X2.

Likewise, by the universal property of the topological sum, the continuous map
i1 : X1 → X1qAX2 corresponds to a family (ci)i∈I of continuous maps ci : Dn → X1qAX2.

On then says the pushout X1 qA X2 is obtained by attaching n-discs to X2 with the
attaching maps f i2 : Sn−1 → X2 and characteristic maps ci : Dn → X1 qA X2.
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A CW complex is a topological space that is built inductively, starting out with a discrete set
X0 = qi∈ID0 of 0-discs or points. In the first step, one attaches intervals D1 = [−1, 1] to these
points. In the second step one attaches 2-discs D2 to the topological space constructed in the
first step, in the third step 3-discs D3 to the space from the second step, in the nth step n-discs
Dn to the topological space constructed in step n− 1.

As we work with pairs of topological spaces, we also need a concept of a relative CW complex.
In this case, one starts with an arbitrary topological space X−1. Attaching points or 0-discs to
X−1 means taking the topological sum of X−1 and a discrete set of points. The procedure then
continues as in the case of a CW complex, by first attaching intervals to this topological sum,
then 2-discs to the resulting topological space.

A CW-complex can thus be viewed as a relative CW complex, where one starts out with the
empty set. In both cases, it is also allowed not to attach any discs in a given step, and the
number of discs attached in each step need not be finite. Also, the attaching procedure does
not need to stop after a finite number of steps, but can continue indefinitely.

Definition 4.1.5: A relative CW complex (X,X−1) is a topological space X with a sub-
space X−1 ⊂ X and a filtration X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xn ⊂ . . . ⊂ X such that

(CW1) X = ∪∞n=−1Xn,

(CW2) Xn is obtained from Xn−1 by attaching n-discs for all n ∈ N0

Xn Xn−1

in−1,noo

qi∈InDn

(ci)i∈In

OO

qi∈InSn−1

(ι)i∈In

oo

(fi)i∈In

OO

(CW3) X is equipped with the final topology induced by the inclusions in : Xn → X:
A subset U ⊂ X is open if and only if U ∩Xn is open for all n ≥ −1.

The spaces Xn are called the n-skeleta, the maps fi : Sn−1 → Xn the attaching maps, the
maps ci : Dn → Xn the characteristic maps and the spaces σi = ci(D̊

n) ⊂ X the n-cells.
If X−1 = ∅, then X = (X, ∅) is called a CW complex.

Remark 4.1.6: Let (X,X−1) be a relative CW complex.

1. Axiom (CW2) for n = 0 states that X0 is the topological sum of X−1 and a discrete set
of points qi∈I0•, as the pushout is over the empty space, cf. Example 4.1.4, 1. If X−1 = ∅,
then X0 is a discrete set of points.

2. By Remark 4.1.2, a subset U ⊂ Xn is open (closed) in Xn if and only if c−1
i (U) is open

(closed) in Dn for all i ∈ In and U ∩Xn−1 is open (closed) in Xn−1.

3. This implies that a subset U ⊂ X is open (closed) if and only if U ∩X−1 is open (closed)
in X−1 and for each n ∈ N0 and i ∈ In the set c−1

i (U) is open (closed) in Dn.

4. In particular, all skeleta Xn for n ≥ −1 are closed in X.

This follows, because c−1
i (Xn−1) = f−1

i (Xn−1) = Sn−1 is closed in Dn for all i ∈ In and
Xn−1 is closed in itself. Hence, Xn−1 is closed in Xn for all n ∈ N0, and this implies
inductively that Xn closed in Xk for all k ≥ n.
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5. Each point x ∈ X is contained either in X−1 or in a unique cell. This defines a relative
cell decomposition of X, a decomposition of the set X as a disjoint union

X = X−1∪̇
(
∪̇∞n=0∪̇i∈Inci(D̊n)

)
.

If X−1 = ∅, this is called a cell decomposition of X.

6. By 3. and 5. the restrictions ci|D̊n : D̊n → ci(D̊
n) are homeomorphisms or all i ∈ In.

7. Continuous maps f : X → Y correspond to families (fn)n∈Z,n≥−1 of continuous maps
fn : Xn → Y with fn|Xn−1 = fn−1 for all n ∈ N0 (Exercise 48).

One says a topological space X has a CW structure or, more informally, is a CW complex
if it is homeomorphic to the topological space underlying a CW complex. Note that such a
decomposition and a CW structure on a given topological space X need not be unique, as we
will see in the following. A topological space may have several CW structures or none.

To show that a topological space is homeomorphic to a CW complex, one usually constructs a
homeomorphism from the pushout into the space X via its universal property. This homeomor-
phism can often be deduced from a cell decomposition of the space X as in Example 4.1.6, 5.
that satisfies certain additional conditions. In fact, cell decompositions are the starting point of
the original definition of a CW complex, which did not make use of pushouts. The conditions
on cell complexes in this older definition motivate the name CW complex: C stands for closure
finiteness and W for weak topology.

Remark 4.1.7: A Hausdorff space X with a decomposition X = ∪̇n∈N0∪̇i∈In σi such that
σi ∼= D̊n for all i ∈ In is a CW complex, if and only if

1. characteristic maps: there are continuous maps ci : Dn → X for i ∈ In, n ∈ N0 that
restrict to homeomorphisms ci|D̊n : D̊n → σi and such that ci(∂D

n) is contained in cells
of dimension at most n− 1 for all i ∈ I.

2. closure finiteness: σi intersects only finitely many cells of X for all i ∈ In, n ∈ N0.

3. weak topology: A ⊂ X is open if and only if A ∩ σi is open in σi for all i ∈ In, n ∈ N0.

We will not prove that the conditions in Remark 4.1.7 are equivalent to our definition of the
CW complex, but we will show that CW complexes according to our definition give raise to
cell decompositions that satisfy these conditions. We start by considering examples.

Example 4.1.8:

1. Real space R has the CW complex structure ∅ ⊂ Z ⊂ R ⊂ R ⊂ . . . given by

X1 = R X0 = ZιZoo

qZD
1

(ci)i∈Z

OO

qZS
0

(ι)i∈Z

oo

(fi)i∈Z

OO

with the attaching maps and characteristic maps

fi : {−1, 1} → Z, x 7→ i+ 1
2
(x+ 1) ci : [−1, 1]→ R, x 7→ i+ 1

2
(x+ 1)
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R−3 −2 −1 0 1 2 3

D1

f−3

D1

f−2

D1

f−1

D1

f0

D1

f1

D1

f2· · · · · ·

2. The n-sphere Sn has a CW complex structure ∅ ⊂ • ⊂ . . . ⊂ • ⊂ Sn ⊂ Sn ⊂ . . . with
Xk = • for 0 < k < n and Xk = Sn for k ≥ n. It is obtained by attaching an n-disc to
a point • with the terminal map f : Sn−1 → •. Its pushout describes the construction of
Sn = Dn/Sn−1 by collapsing Sn−1 = ∂Dn

Xn = Sn Xn−1 = {•}oo

Dn

π

OO

Sn−1.ι
oo

f

OO

D2

S1 S2

3. The n-sphere Sn has a CW complex structure ∅ ⊂ S0 ⊂ S1 ⊂ S2 ⊂ . . . ⊂ Sn ⊂ Sn ⊂ . . .
with Xk = Sk for 0 ≤ k ≤ n and Xk = Sn for k ≥ n. Here, Sk is obtained from Sk−1 by
attaching two k-discs with the map id : Sk−1 → Sk−1.

Sk Sk−1x 7→(x,0)oo

Dk qDk

(c+,c−)

OO

Sk−1 q Sk−1

(ι,ι)
oo

(id,id)

OO (29)

More explicitly, we can identify Sk−1 with the equator Sk−1 ∼= Sk−1×{0} ⊂ Sk and attach
the discs Dk as the upper and lower hemisphere Sk± = {x ∈ Sk | ±xk+1 ≥ 0}. Then the
attaching maps and characteristic maps are given by

f± = f : Sk−1 → Sk−1 × {0}, (x1, . . . , xk) 7→ (x1, . . . , xk, 0)

c± : Dk → Sk, (x1, . . . , xk) 7→ (x1, . . . , xk,±
√

1− x2
1 − . . .− x2

k)

D2

D2

S1

S2

4. Real projective space RPn is the space of real lines through the origin in Rn+1 and can
be realised as the quotient RPn = Sn/ ∼, where x ∼ −x for all x ∈ Sn. As any point in
the lower hemisphere Sn− is identified with a point in the upper hemisphere Sn+, we obtain
a CW structure ∅ ⊂ RP1 ⊂ RP2 ⊂ . . . ⊂ RPn ⊂ RPn ⊂ . . . with Xk = RPk for 0 ≤ k ≤ n
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and Xk = RPn for k ≥ n from 3. Here, RPk is obtained from RPk−1 by attaching a k-disc
with the canonical surjection π : Sk−1 → RPk−1, x 7→ [x]

RPk RPk−1[x] 7→[(x,0)]oo

Dk

c

OO

Sk−1,

π

OO

ι
oo

(30)

5. Complex projective space CPn is the space of complex lines through the origin in
Cn+1. If we identify Cn+1 with R2n+2 via the map

φ : R2n+2 → Cn+1, (x1, . . . , x2n+2) 7→ (x1 + ix2, . . . , x2n+1 + ix2n+2),

we can express it as the quotient CPn = S2n+1/ ∼ with

(x1, . . . , x2n+2) ∼ (R(x1, x2), . . . , R(x2n+1, x2n+2)) ∀R ∈ SO(2).

This yields the skeleton filtration

∅ ⊂ • ⊂ • ⊂ CP1 ⊂ CP1 ⊂ . . . ⊂ CPn−1 ⊂ CPn−1 ⊂ CPn ⊂ CPn ⊂ CPn . . . ,

with X2k = X2k+1 = CPk for 0 ≤ k ≤ n and Xk = CPn for k ≥ 2n, where CPk is obtained
from CPk−1 by attaching a 2k-disc D2k with the canonical surjection π : S2k−1 → CPk−1

CPk CPk−1[x]7→[(x,0,0)]oo

D2k

c

OO

S2k−1.

π

OO

ι
oo

(31)

6. In the last three examples the attaching need not be stopped at a fixed skeleton, but can
be continued indefinitely. This yields CW complexes

• X = S∞ with skeleta Xk = Sk for all k ∈ N0, where Sk is obtained from Sk−1 by
attaching two k-discs as in (29),

• X = RP∞ with skeleta Xk = RPk for all k ∈ N0, where RPk is obtained from RPk−1

by attaching a single k-disc as in (30),

• X = CP∞ with skeleta X2k = X2k+1 = CPk for all k ∈ N0, where CPk is obtained
from CPk−1 by attaching a single 2k-disc as in (30).

7. It is shown in [H, Corollary A.12] that every compact topological manifold is homotopy
equivalent to a CW complex.

It is known that every compact smooth manifold is homeomorphic to a CW complex and
that every compact topological manifold of dimension d 6= 4 is homeomorphic to a CW
complex. In dimension 4 the latter is still an opn question.

8. Examples of relative CW complexes arise from CW complexes. For every CW complex
X the pairs (X,Xk) for k ∈ N0 and (Xn, Xk) for k ≤ n are relative CW complexes.

Some of the CW complexes in Example 4.1.8 contain only cells up to a fixed dimension, whereas
the ones in Example 4.1.8, 6. contain cells of arbitrarily large dimensions. Note also that even if
the dimension of cells is restricted, there can still be infinitely many cells of a given dimension
as in Example 4.1.8, 1. It is also apparent that all examples of CW complexes in Example 4.1.8
with a finite number of cells are compact. This is not a coincidence.
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Definition 4.1.9: A CW complex X is called

• finite-dimensional of dimension d, if d = inf{k ∈ N0 | X = Xk} ∈ N0,
• of finite type, if each set In of n-cells is finite,
• finite, if it is finite-dimensional and of finite type.

Corollary 4.1.10: Every finite CW complex is compact.

Proof:
This follows by induction over the n-skeleta. The space X0 is compact, as it is a finite discrete
set. If Xn−1 is compact and In is finite, then the topological sum Xn−1 q (qi∈InDn) is compact
as a finite topological sum of compacta. The space Xn is a quotient of this topological sum and
hence compact as a quotient of a compact space. 2

This shows in particular that it is futile to look for a finite CW complex structure on a non-
compact space such as Rn or on an open n-disc D̊n. One might ask if the converse also holds.
Are there non-finite CW complex structures on compact spaces? That the answer is negative
is a consequence of the following lemma.

Lemma 4.1.11:
Each compact subset K of a CW complex X intersects only finitely many cells of X.

Proof:
Let In be the set that indexes the n-cells of X and ci : Dn → Xn and fi : Sn−1 → Xn−1 for
i ∈ In the associated characteristic maps and attaching maps.

Choose for each cell σ with σ ∩K 6= ∅ a point xσ ∈ σ ∩K. These points form a set S ⊂ K,
which is in bijection with the set of cells in X that intersect K. To show that S is finite, it is
sufficient to show that S is discrete and closed in X. As closed subsets of compacta are compact
and discrete compacta are finite, this implies that S is finite. Hence, we show that R ∩ Xn is
closed in Xn for all n ∈ N0 and subsets R ⊂ S.

As a subset of the discrete set X0, the set R ∩X0 is closed in X0 for any R ⊂ S. Suppose we
showed that R ∩Xk is closed in Xk for all subsets R ⊂ S and k ≤ n− 1. Then for each i ∈ Ik
with k ≤ n − 1 the set c−1

i (R) = c−1
i (R ∩ Xk) ⊂ Dk is closed in Dk as the preimage of the

closed set R ∩ Xk under the continuous map ci : Dk → Xk. Likewise, for each i ∈ In the set
f−1
i (R) = f−1

i (R ∩ Xn−1) ⊂ Sn−1 = ∂Dn is closed in Sn−1 as the preimage of the closed set
R ∩Xn−1 under the continuous map fi.

For each i ∈ In the set c−1
i (R) ⊂ Dn is either equal to f−1

i (R) ⊂ Sn−1 = ∂Dn, or it is obtained
from f−1

i (R) by adding a point in D̊n. As f−1
i (R) is closed in ∂Dn, it follows in both cases that

c−1
i (Dn) is closed in Dn. By Remark 4.1.6, 2. the set R ∩Xn is closed in Xn. 2

Corollary 4.1.12: Every compact CW complex is finite.

Proof:
If X is a compact CW complex, we can consider the compact subset K = X. As it intersects
all cells of X, it follows with Lemma 4.1.11 that X is finite. 2
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We will now look in more depth at the topological properties of CW complexes and relative
CW complexes. We already addressed the question of compactness. It is also clear from the
definition that we cannot say anything general about connectedness or path-connectedness of
CW complexes - this will depend on the individual CW complex. However, we can address their
separation properties. For this, we need to consider closed subsets of relative CW complexes
and to construct open neighbourhoods of such subsets.

We can also investigate local homotopy theoretical properties of CW complexes, such as local
contractibility or local path-connectedness. In this case, we want to show that certain neigh-
bourhoods of a point that are contained in a given open neighbourhood deformation retract to
the point. This requires the following technical lemma.

Lemma 4.1.13: Let (X,X−1) be a relative CW complex, A ⊂ X a closed subspace and
U ⊂ X open with A ⊂ U . Suppose there is an open neighbourhood N(A)−1 of A∩X−1 in X−1

with N(A)−1 ⊂ U ∩X−1.

1. Then there is an open neighbourhood N(A) of A with N(A) ⊂ U .

2. If A∩σ = ∅ for all n-cells σ, then N(A)∩Xn strongly deformation retracts to N(A)∩Xn−1.

Proof:
1. We construct open neighbourhoods N(A)k of Ak := A∩Xk in Xk with N(A)k ⊂ U∩Xk =: Uk
by induction. For n = −1 such a neighbourhood exists by assumption. Suppose we constructed
such neighbourhoods for all k ≤ n− 1.

For i ∈ In and εi ∈ (0, 1) let Yi = Vi ∪Wi be the union of the open sets

Vi = {x ∈ D̊n | d(x, c−1
i (A) ∩ D̊n) < εi} ⊂ D̊n

Wi = {λv | v ∈ c−1
i (N(A)n−1), 1− εi < λ ≤ 1} ⊂ Dn.

Disc D2 with the set c−1
i (A) in blue, c−1

i (N(A)1) in red, Vi in orange and Wi in violet.

As A is closed and ci continuous, the set c−1
i (A) ⊂ Dn is closed and hence compact. As U is

open, the set c−1
i (U) is open in Dn, and as A ⊂ U we have c−1

i (A) ⊂ c−1
i (U). By choosing εi > 0

sufficiently small, we can achieve V i ⊂ c−1
i (U). Likewise, c−1

i (N(A)n−1) ⊂ Sn−1 is closed and
hence compact and contained in c−1

i (U) by assumption. Hence, there is an εi > 0 such that
W i ⊂ c−1

i (U). Thus, for εi > 0 sufficiently small, we have Y i ⊂ c−1
i (U). We define

N(A)n = N(A)n−1 ∪ (∪i∈Inci(Yi)) = N(A)n−1 ∪
(
∪i∈Inci(Yi ∩ D̊n)

)
.

We show that N(A)n is open in Xn. The set N(A)n ∩ Xn−1 = N(A)n−1 is open in Xn−1 by
assumption. For each i ∈ In, we have c−1

i (N(A)n) = c−1
i (ci(Yi)) = Yi, as ci|D̊n is injective and
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Yi ∩ ∂Dn = c−1
i (N(A)n−1), which gives c−1

i (ci(Yi ∩ ∂Dn)) = c−1
i (N(A)n−1) = Yi ∩ ∂Dn. As Yi is

open in Dn by construction, Remark 4.1.6, 2. implies that N(A)n is open in Xn.

As ci|D̊n : D̊n → ci(D̊
n) is a homeomorphism for all i ∈ In and ci(∂D

n) ⊂ Xn−1 for i ∈ In we

have ∪i∈Incn(Yi) ⊂ ∪i∈I ci(Y i) ∪N(A)n−1. This yields

N(A)n = N(A)n−1 ∪ (∪i∈Inci(Y i)) ⊂ Un = U ∩Xn

An ⊂ An−1 ∪ (∪i∈In ci(Yi)) ⊂ N(A)n−1 ∪ (∪i∈Inci(Yi)) = N(A)n.

Then the open set N(A) = ∪∞n=−1Nn(A) satisfies N(A)k = N(A)∩Xk for all k ≥ −1 as well as

A ⊂ N(A) and N(A) ⊂ U .

2. If A ∩ ci(D̊n) = ∅ for all i ∈ In, then Yi = Wi for all i ∈ In. Then c−1
i (N(A)n−1) is a strong

deformation retract of Wi for all i ∈ In with the retraction and homotopy

ri : Wi → c−1
i (N(A)n−1), v 7→ v/||v|| hi : [0, 1]×Wi → Wi, (t, v) 7→ (1− t)v + tv/||v||

Consequently, the set N(A)n−1 is a strong deformation retract of N(A)n with retraction and
homotopy induced by the continuous maps

r′i : ci(Wi)→ ci(Wi) ∩Nn−1(A), x 7→

{
x x ∈ ci(Wi) ∩N(A)n−1

ci ◦ ri ◦ (ci|D̊n)−1(x) x ∈ ci(Wi ∩ D̊n)

h′i : [0, 1]× ci(Wi)→ ci(Wi), (t, x) 7→

{
x x ∈ ci(Wi) ∩N(A)n−1

ci ◦ hi(t, (ci|D̊n)−1(x)) x ∈ ci(Wi ∩ D̊n).

2

Corollary 4.1.14:

1. If X is a relative CW complex with X−1 normal, then X is normal.

2. Every CW complex is normal, in particular, Hausdorff.

Proof:
Let X be a relative CW complex such that X−1 is normal. We show that X is T1 and T4. The
separation axioms T0, T2 and T3 then follow.

1. We show that X is a T1-space:
Let x ∈ X and k = min{n ≥ −1 | x ∈ Xk}. If k = −1, then {x} is closed in X−1, as X−1

is normal. Otherwise, there is a unique i ∈ Ik with x ∈ ci(D̊
k) and a unique p ∈ D̊k with

ci(p) = x. Then {p} = c−1
i (x) is closed in Dk, c−1

j (x) = ∅ for all j ∈ Ik \{i} and {x}∩Xk−1 = ∅.
This shows that {x} is closed in Xk by Remark 4.1.6, 2.

That {x} is closed in Xn for n > k follows inductively. Suppose {x} ⊂ Xm is closed in Xm for
all m ≤ n−1. Then for all i ∈ In one has c−1

i (x) = f−1
i (x) ⊂ Sn−1 closed in Dn as the preimage

of the closed set {x} ⊂ Xn−1 under the attaching map fi : Sn−1 → Xn−1. With Remark 4.1.6,
2. it follows that {x} is closed in Xn. This shows that {x} is closed in X and X is T1.

2. We show that X is a T4-space:
Let A,B ⊂ X closed with A∩B = ∅. Then by Remark 4.1.6 A−1 = A∩X−1 and B−1 = B∩X−1

are closed and disjoint. As X−1 is normal, there are disjoint open subsets OA, OB ⊂ X−1 with
A−1 ⊂ OA and B−1 ⊂ OB.
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We set UA := X \B and N(A)−1 := OA. Then we have A ⊂ UA as well as

N(A)−1 = OA ⊂ X−1 \OB = X−1 \OB ⊂ X−1 \B−1 = X−1 ∩ UA.

By Lemma 4.1.13 there is an open neighbourhood N(A) of A in X such that N(A) ⊂ X \ B.
Then N(A) and X \N(A) are disjoint and open with A ⊂ N(A) and B ⊂ X \N(A).

This shows that X is T4 and with 1. that X is normal. 2

We have now proven that the cell decomposition X = ∪̇n∈N0∪̇i∈Inci(D̊n) for a CW complex X
satisfies all the conditions in Remark 4.1.7:

• Lemma 4.1.14 implies that X is a Hausdorff space.

• Definition 4.1.5 yields continuous maps ci : Dn → X for each i ∈ In, n ∈ N0 that
induce homeomorphisms ci|D̊n : D̊n → ci(D̊

n) by Remark 4.1.6, 6. and such that ci(∂D
n)

intersects only cells of dimension ≤ n−1 for i ∈ In. This is the characteristic map axiom.

• By Remark 4.1.6, 2. a subset U ⊂ X is open, if and only c−1
i (U) is open for all i ∈ In,

n ∈ N0. This is equivalent to U ∩ ci(Dn) is open for all i ∈ In and n ∈ N0. As ci(D
n) is

the closure of ci(D̊
n) by Exercise 45, this proves the weak topology axiom.

• By Lemma 4.1.11 the closure ci(D
n) of each cell ci(D̊

n) can intersect only finitely many
cells, which proves the closure finiteness axiom.

We will now apply the second part of Lemma 4.1.13 to investigate the homotopy theoretic
properties of a CW complex. More specifically, we prove that any CW complex is locally
contractible and hence locally path-connected and locally connected. We also show that for
each relative CW complex (X,X−1) the subspace X−1 is a strong deformation retract of X. For
this we need to combine the retractions and homotopies for subsequent skeleta from Lemma
4.1.13 into retractions and homotopies for the entire relative CW complex. This is achieved
with the following technical lemma.

Lemma 4.1.15: Let X0 ⊂ X1 ⊂ X2 ⊂ . . . a sequence of subspaces and X = ∪∞n=0Xn their
union with the final topology induced by the inclusions ιn : Xn → X. If Xn−1 is a strong
deformation retract of Xn for all n ∈ N, then X0 is a strong deformation retract of X.

Proof:
We denote by ιn−1,n : Xn−1 → Xn the inclusions. Let rn : Xn → Xn−1 be a retraction and
hn : [0, 1]×Xn → Xn a homotopy from idXn to ιn−1,i ◦ rn relative to Xn−1:

hn(0, x) = x ∀x ∈ Xn, hn(1, x) = rn(x) ∀x ∈ Xn, hn(s, x) = x ∀x ∈ Xn−1, s ∈ [0, 1].

For k, n ∈ N0 we consider the continuous maps rkn : Xk → Xn given by

rkn =


rn+1 ◦ . . . ◦ rk k > n

idXn k = n

ιn−1,n ◦ . . . ◦ ιk,k+1 k < n.

As they satisfy rkn(x) = rk−1
n (x) for all x ∈ Xk−1 and k, n ∈ N0, they define a map

Rn : X → Xn, Xk 3 x 7→ rkn(x) ∈ Xn.
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The map Rn is continuous, because R−1
n (U) = ∪∞k=0(rkn)−1(U) is open for all open U ⊂ X by

continuity of the maps rkn. As Rn(x) = x for all x ∈ Xn, it is a retraction from X to Xn.

A homotopy from ιn ◦Rn to ιn−1 ◦Rn−1 relative to Xn−1 is given by

h′n : [0, 1]×X → X, (t, x) 7→ hn(t, Rn(x)).

Composing the maps h′n for n ∈ N0 yields a homotopy from idX to ι0 ◦R0 relative to X0

h : [0, 1]×X → X, (t, x) 7→

{
h′n(2n(t− 2−n), x) t ∈ [2−n, 2−n+1]

x t = 0.

It satisfies h(0, x) = x for all x ∈ X, h(1, x) = h′1(1, x) = h1(1, R1(x)) = r1 ◦R1(x) = R0(x) for
all x ∈ X and h(s, x) = x for all x ∈ X0. It is continuous, because its restriction to [0, 1]×Xk

is continuous for all k ∈ N0

x ∈ Xk ⇒ h(t, x) =


x t ∈ [0, 2−k]

hk(2
k(t− 2−k), x) t ∈ [2−k, 2−k+1]

hn(2n(t− 2−n), Rn(x)) t ∈ [2−n, 2−n+1], n < k.

This yields h−1(U) = ∪∞k=0h
−1(U) ∩ ([0, 1] × Xk) = ∪∞k=0(h|[0,1]×Xk)

−1(U) open for all open
subsets U ⊂ X. 2

Proposition 4.1.16:

1. Every CW complex X is locally contractible.

2. In every relative CW complex (X,X−1) the space X−1 has an open neighbourhood
N(X−1) ⊂ X that strongly deformation retracts to X−1.

Proof:
1. Let X be a CW complex, x ∈ X and U an open neighbourhood of x. We construct an open
neighbourhood x ∈ N(x) ⊂ U such that {x} is a strong deformation retract of N(x).

We apply Lemma 4.1.13 to the subset A = {x}, which is closed by Corollary 4.1.14, and to the
open set U . This yields an open neighbourhood N(x) of x such that N(x) ⊂ U .

We show that {x} is a strong deformation retract of N(x). By Remark 4.1.6, 5. there is a unique
m ∈ N0 and a unique i ∈ Im such that x ∈ ci(D̊m). By construction of the neighbourhood N(x)
in Lemma 4.1.13 it follows that N(x)k = ∅ for all k < m. For k = m we have N(x)m = ci(Bε(p)),
the image of an open ε-ball around p = c−1

i (x) under the characteristic map ci : Dm → Xm.
For all k-cells σ with k > m we have σ ∩ {x} = ∅. By Lemma 4.1.13 this implies that N(x)k is
a strong deformation retract of N(x)k+1 for all k ≥ m.

Because all subspaces N(x)k are open, the topology on N(x) = ∪∞k=0Xk is the final topology
induced by the inclusions ι′k : N(x)k → N(x) by Exercise 49. Applying Lemma 4.1.15 to the
sequence of subspaces N(x)m ⊂ N(x)m+1 ⊂ N(x)m+2 ⊂ . . . then shows that N(x)m = ci(Bε(p))
is a strong deformation retract of N(x). As {x} is a strong deformation retract of N(x)m, it
follows that N(x) ⊂ U is contractible.

2. We apply Lemma 4.1.13 to the subspace A = X−1, which is closed by Remark 4.1.6, 3. and
U = X. This yields an open neighbourhood N(X−1) of X−1 with N(X−1)−1 = X−1. By Remark
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4.1.6, 5. none of the n-cells for n ≥ 0 intersect X−1. With Lemma 4.1.13 this implies that
N(X−1)n−1 is a strong deformation retract of N(X−1)n for all n ∈ N0.

Because all subsets N(X−1)k are open in X, the topology on N(X−1) is the final topology
induced by the inclusions ι′k : N(X−1)k → N(X−1) by Exercise 49. Applying Lemma 4.1.15 to
the sequence of subspaces N(X−1)−1 ⊂ N(X−1)0 ⊂ . . . shows that X−1 = N(X−1)−1 is a strong
deformation retract of N(X−1). 2

Our main applications of the second result are skeleta of CW complexes. As each skeleton
Xn of a CW complex X defines a relative CW complex by Example 4.1.8, 7. it has an open
neighbourhood N(Xn) that strongly deformation retracts to Xn by Lemma 4.1.16. In other
words, the pair (X,Xn) is a good pair in the sense of Definition 3.5.2. Their relative homologies
are thus given by the homologies of their quotient by Proposition 3.5.3. For a pair (Xn, Xn−1)
of subsequent skeleta, this quotient takes a particularly simple form.

Corollary 4.1.17: For every CW complex X the pairs (X,Xn) and (Xk, Xn) are relative CW
complexes and hence good pairs for all n ∈ N0 and k ≥ n.

Lemma 4.1.18: For every CW complex X and all n ∈ N we have homeomorphisms

Xn \Xn−1
∼= qi∈InD̊n Xn/Xn−1

∼= ∨i∈InSn.

Proof:
The first identity follows directly from the definition of a CW complex. The second identity
follows from the following two commuting diagrams, whose outer rectangles coincide

Xn/Xn−1 •oo

Xn

πn

OO

Xn−1

in−1,noo

OO

qi∈InDn

(ci)i∈In

OO

qi∈InSn−1

(ι)i∈In

oo

(fi)i∈In

OO

Xn/Xn−1 •oo

qi∈InDn/Sn−1

(c′i)i∈I

OO

qi∈In•oo

OO

qi∈InDn

(π)i∈In

OO

qi∈InSn−1.
(ι)i∈In

oo

OO

Here, the maps c′i : Dn/Sn−1 → Xn/Xn−1 are the unique continuous maps with c′i ◦ π = πn ◦ ci,
induced by the characteristic maps ci : Dn → Xn with ci(S

n−1) ⊂ Xn−1 via the universal
property of the quotient.

In the diagram on the left the lower square is a pushout by definition of a CW complex and
the upper diagram is a pushout by Example 4.1.4, 3, as it describes the construction of the
quotient. By Exercise 43, the outer diagram is a pushout as well.

In the diagram on the right the lower square is a pushout by Example 4.1.4, 3. and by Exercise
44, which states that pushouts are preserved by topological sums. As the outer rectangle is
a pushout, it follows with Exercise 43 that the upper square is a pushout as well. The latter
describes a wedge sum by Example 4.1.4, 2. and yields with Dn/Sn−1 = Dn/∂Dn ∼= Sn

Xn/Xn−1
∼=
(
qi∈InDn/Sn−1

)
/ (qi∈In•) ∼= (qi∈InSn) / (qi∈In•) ∼= ∨i∈ISn.

2
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4.2 Cellular homologies

In this section, we use the results on CW complexes to systematically compute their homologies.
As a first step, we compute the relative and some absolute homologies of their skeleta. Relative
homologies of subsequent skeleta can be computed with Proposition 3.5.3 and Lemma 4.1.18
by identifying them with a wedge sum of spheres. The absolute homologies are then obtained
from the long exact homology sequence. As in Definition 4.1.5 we characterise a CW complex
X by the following pushouts that describe the attaching of n-cells for n ∈ N0

Xn Xn−1

in−1,noo

qi∈InDn

(ci)i∈In

OO

qi∈InSn−1.
(ι)i∈In

oo

(fi)i∈In

OO

Proposition 4.2.1: Let X be a CW complex.

1. The relative homologies of its skeleta are given by

Hk(Xn, Xn−1) =

{
〈In〉Z k = n,

0 k 6= n.

2. The absolute homologies of its skeleta satisfy

Hk(Xn) = 0 k > n Hk(Xn) ∼= Hk(X) k < n.

Proof:
1. The case k = 0, n ∈ N follows from Exercise 25, and for k = n = 0 we have

H0(X0, X−1) = H0(X0, ∅) = H0(X0) = H0(qi∈I0•) ∼= ⊕i∈I0Z = 〈I0〉Z.

As (Xn, Xn−1) is a good pair we have in the other cases

Hk(Xn, Xn−1)
3.5.3∼= H̃k(Xn/Xn−1)

4.1.18∼= H̃k(∨i∈InSn)
3.5.9∼= ⊕i∈InH̃k(S

n)

3.5.6∼=

{
⊕i∈InZ k = n 6= 0

0 else
∼=

{
〈In〉Z n = k 6= 0

0 else.

2.(a) We consider the long exact homology sequence for the pair (Xn, Xn−1)

. . .→ Hk+1(Xn, Xn−1)
∂k+1−−→ Hk(Xn−1)

Hk(in−1,n)−−−−−−→ Hk(Xn)→ Hk(Xn, Xn−1)
∂k−→ . . .

• If k + 1 < n or k > n we have Hk(Xn, Xn−1) = Hk+1(Xn, Xn−1) = 0 by 1, and the map
Hk(in−1,n) is an isomorphism.

• For k = n− 1, we still have Hk(Xn, Xn−1) = 0, and Hn−1(in−1,n) is surjective.

For k > n this proves the first claim in 2: Hk(Xn) ∼= Hk(Xn−1) ∼= . . . ∼= Hk(X0) = 0.

For k < n this gives Hk(Xn) ∼= Hk(Xn+1) ∼= Hk(Xn+2) ∼= . . .. If X is a finite-dimensional CW
complex, there is an m ∈ N0 with X = Xm. This implies Hk(Xn) ∼= Hk(Xm) = Hk(X) for all
k < n and proves the second claim in 2.
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To prove the second claim in 2. in general, we show that Hn(in+1) : Hn(Xn+1) → Hn(X) is
an isomorphism for all n ∈ N0. For this, note that the inclusions in,n+1 : Xn → Xn+1 and the
inclusions in : Xn → X define the following commuting diagram in Top

X

. . . // Xn−2

in−2 ,,

in−2,n−1

// Xn−1

in−1

;;

in−1,n

// Xn

in

OO

in,n+1

// Xn+1

in+1

cc

in+1,n+2

// Xn+2

in+2rr

// . . .

(32)

2.(b) We show that Hn(in+1) : Hn(Xn+1)→ Hn(X) is surjective.

As the image of every singular n-simplex σ : ∆n → X is compact, it intersects only finitely many
cells by Lemma 4.1.11 and hence is contained in some skeleton of X. Hence, for every singular
n-cycle z = Σl

j=0ajσj ∈ Zn(X) there is an m ∈ N0 with σj(∆
n) ⊂ Xm for all j = 0, . . . , l.

Hence, the homology class [z] ∈ Hn(X) is of the form [z] = Hn(im)[z′], where z′ ∈ Zn(Xm) is
the associated n-cycle in Xm. The map

Hn(im−1,m ◦ . . . ◦ in+1,n+2) = Hn(im−1,m) ◦ . . . ◦Hn(in+1,n+2) : Hn(Xn+1)→ Hn(Xm)

is surjective, as Hn(in+x,n+x+1) is an isomorphism by 2.(a) for all x ∈ N. Hence, there is a
[z′′] ∈ Hn(Xn+1) with [z′] = Hn(im−1,m ◦ . . . ◦ in+1,n+2)[z′′]. With (32) we obtain

[z] = Hn(im)[z′] = Hn(im ◦ im−1,m ◦ . . . ◦ in+1,n+2)[z′′] = Hn(in+1)[z′′].

Thus, Hn(in+1) : Hn(Xn+1)→ Hn(X) is surjective.

2.(c) We show that Hn(in+1) : Hn(Xn+1)→ Hn(X) is injective.

Suppose that z ∈ Zn(Xn+1) with Hn(in+1)[z] = 0. Then there is an (n+ 1)-chain x ∈ Sn+1(X)
with Sn(in+1)z = dn+1(x). As the images of all simplexes in x are compact, there is some
m ≥ n + 1 such that the images of all simplexes in x are contained in Xm. This implies
x ∈ Sn+1(Xm) and Sn(im−1,m ◦ . . .◦ in+1,n+2)(z) = dn+1(x) and Hn(im−1,m ◦ . . .◦ in+1,n+2)[z] = 0.
As Hn(ik,k+1) is an isomorphism for k > n by 2.(a), this implies [z] = 0. 2

Remark 4.2.2: Diagram (32) that relates the skeleta Xn to the CW complex X and to
their neighbours is an example of a categorical construction called sequential colimit or,
confusingly, direct limit in the category Top. The arguments in the second part of the proof
of Proposition 4.2.1 are typical for such colimits and are often called colimit argument.

Corollary 4.2.3: Let X, Y be CW complexes.

1. If Xn
∼= Yn, then Hk(X) ∼= Hk(Y ) for all k < n.

2. If X has no n-cells, then Hn(X) = 0.

Proof:
1. By Proposition 4.2.1 we have Hk(X) ∼= Hk(Xn) ∼= Hk(Yn) ∼= Hk(Y ) for all k < n.

2. If X has no n-cells, then Xn = Xn−1, and Proposition 4.2.1, 2. gives 0 = Hn(Xn−1) = Hn(Xn).
2
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The relative homologies of a CW complex X are not just useful for computations with the long
exact homology sequences. They have a direct geometrical meaning - their generators represent
the n-cells in X - and they can be used to define a simplified chain complex, the cellular
complex. This complex consists of the relative homologies Hn(Xn, Xn−1) in degree n and a
boundary operator that is defined by the connecting homomorphisms and the projection maps
for the relative chain complex. As it has the same homologies as the singular chain complex, it
gives a simple and efficient way to compute homologies of CW complexes.

Proposition 4.2.4: Let X be a CW complex. Then the abelian groups of cellular chains
Cn(X) = Hn(Xn, Xn−1) = 〈In〉Z and the cellular boundary operators

dn = Hn−1(πn−1) ◦ ∂n : Hn(Xn, Xn−1)→ Hn−1(Xn−1)→ Hn−1(Xn−1, Xn−2)

induced by the morphisms πn : (Xn, ∅)→ (Xn, Xn−1) in Top(2) define a chain complex C•(X),
the cellular chain complex of X.

Proof:
We consider for n ∈ N0 the short exact sequences of chain complexes

0→ S•(Xn−1)
S•(in)−−−→ S•(Xn)

S•(πn)−−−−→ S•(Xn)/S•(Xn−1)→ 0.

induced by the morphisms πn : (Xn, ∅) → (Xn, Xn−1) and in : (Xn−1, ∅) → (Xn, ∅). The
associated long exact sequences of homologies define a commuting diagram with exact rows

. . .
Hn(πn) // Hn(Xn, Xn−1)

dn

))

∂n //

∂n
��

Hn−1(Xn−1)
Hn−1(in) //

Hn−1(πn−1)

��

Hn−1(Xn) // . . .

. . .
Hn−1(in−1) // Hn−1(Xn−1)

Hn−1(πn−1)// Hn−1(Xn−1, Xn−2)
dn−1

**

∂n−1 //

∂n−1

��

Hn−2(Xn−2)

Hn−2(πn−2)

��

// . . .

. . .
∂n−2 // Hn−2(Xn−3)

Hn−2(in−2)// Hn−2(Xn−2)
Hn−2(πn−2)// Hn−2(Xn−2, Xn−3) // . . .

As the squares in this diagram commute and the rows are exact, we have

dn−1 ◦ dn = Hn−2(πn−2) ◦ ∂n−1 ◦Hn−1(πn−1)︸ ︷︷ ︸
=0

◦∂n = 0.

2

Theorem 4.2.5: For every CW complex X there are isomorphisms

HnC•(X) ∼= Hn(X) ∀n ∈ N0.

Proof:
We consider the following commuting diagram in which the row and both columns are exact

Hn+1(Xn+1, Xn)

∂n+1

��

dn+1

))

Hn−1(Xn−2)
4.2.1
= 0

Hn−1(in−1)

��
0

4.2.1
= Hn(Xn−1)

Hn(in) // Hn(Xn)
Hn(πn) //

Hn(in+1)

��

Hn(Xn, Xn−1)
∂n //

dn

))

Hn−1(Xn−1)

Hn−1(πn−1)

��
Hn(Xn+1)

Hn(πn+1)
��

Hn−1(Xn−1, Xn−2)

Hn(Xn+1, Xn)
4.2.1
= 0.
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As the leftmost entry of the horizontal row is zero, we have that Hn(πn) is injective, which
implies Hn(Xn) ∼= imHn(πn) and im dn+1 = im (Hn(πn) ◦ ∂n+1) ∼= im ∂n+1. As the top entry
of the right column is zero, Hn−1(πn−1) is injective and ker dn = ker (Hn−1(πn−1) ◦ ∂n) =
ker ∂n. As the bottom entry of the left column is zero, Hn(in+1) is surjective and Hn(Xn+1) =
Hn(Xn)/im ∂n+1. Combining these statements yields with Proposition 4.2.1

HnC•(X) =
ker dn

im dn+1

=
ker ∂n

im dn+1

=
imHn(πn)

im dn+1

=
Hn(Xn)

im ∂n+1

∼= Hn(Xn+1)
4.2.1∼= Hn(X).

2

In some cases, no information about the boundary operator of the cellular chain complex is
required. Just counting the cells in each dimension of a CW complex is sufficient to compute its
homologies. This applies to the homologies of the n-spheres, if they are given the CW structure
from Example 4.1.8, 2. but also to complex projective space and its infinite counterpart.

Example 4.2.6:
For complex projective space CPn with the CW structure from Example 4.1.8, 5. we have

X0 = X1 = {•}, X2 = X3 = CP1, . . . , X2n−2 = X2n−1 = CPn−1, X2n = CPn,

where X2k is obtained from X2k−1 by attaching a 2k-disc D2k with the canonical surjection
πk : S2k−1 → CPk−1 for 1 ≤ k ≤ n.

This implies C2k(CPn) = H2k(X2k, X2k−1) ∼= Z for 0 ≤ k ≤ n and Ck(CPn) ∼= Hk(Xk, Xk−1) = 0
for k > 2n or k odd. The cellular complex is given by

0→ Z d2n−−→ 0
d2n−1−−−→ Z d2n−2−−−→ 0→ . . .

d3−→ Z d2−→ 0
d1−→ Z→ 0,

and its homologies are

Hk(CPn) = HkC•(CPn) =
ker dk

im dk+1

=

{
Z 0 ≤ k ≤ 2n, k even

0 else.

Example 4.2.7: Consider infinite complex projective space CP∞ with the CW structure from
Example 4.1.8, 6. We have X2k = X2k+1 = CPk for all k ∈ N0 and X2k is obtained from X2k−1

by attaching a 2k-disc D2k with the canonical surjection πk : S2k−1 → CPk−1 for all k ∈ N.

This yields C2k(CP∞) = H2k(X2k, X2k−1) ∼= Z and C2k+1(CP∞) = H2k+1(X2k+1, X2k) ∼= 0 for
all k ∈ N0. The cellular complex reads

. . .→ Z d2n+2−−−→ 0
d2n+1−−−→ Z d2n−−→ 0

d2n−1−−−→ Z d2n−2−−−→ 0→ . . .
d3−→ Z d2−→ 0

d1−→ Z→ 0,

and its homologies are given by

Hk(CP∞) = HkC•(CP∞) =

{
Z k ∈ N0 even

0 else.
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In general, computing the homologies of a CW complex also requires an understanding of the
cellular boundary operator. However, its definition in Proposition 4.2.4 makes use of the relative
singular homologies and is not adapted to the geometrical picture in terms of cells. The goal is
to have a more explicit and geometrical description of this operator in terms of cells and their
attaching maps.

We consider a CW complex X and denote by by fi : Sn−1 → Xn the attaching map and by
ci : Dn → Xn the characteristic map for the n-cell associated to i ∈ In

Xn Xn−1

in−1,noo

qi∈InDn

(ci)i∈In

OO

qi∈InSn−1.
(ι)i∈In

oo

(fi)i∈In

OO
(33)

The cellular boundary operator assigns to every n-cell σi = ci(D̊
n) a linear combination of

(n − 1)-cells τj = cj(D̊
n−1). We must express the coefficients of this linear combination in

terms of cells. This is achieved by combining two maps that relate the cells σi and τj to the
(n− 1)-sphere Sn−1, composing them and computing their mapping degree.

The first is the attaching map fi : Sn−1 → Xn−1 that describes how σi is attached to the
(n− 1)-skeleton Xn−1. The second is the collapsing map πj : Xn−1 → Sn−1 for an (n− 1)-cell
τj, that collapses the complement of τj in Xn−1 to a point. It is the composite

πj : Xn−1
π−→ Xn−1/Xn−2

∼= ∨k∈In−1S
n−1 pj−→ Sn−1

of the canonical surjection π : Xn−1 → Xn−1/Xn−2
∼= ∨k∈In−1S

n−1 from Lemma 4.1.18 and the
map pj : ∨k∈In−1S

n−1 → Sn−1 from Remark 3.5.8 that selects the (n− 1)-sphere for j ∈ In−1.

The composite πj ◦fi : Sn−1 → Xn−1 → Sn−1 describes the contribution of the boundary of the
n-cell σi to the (n − 1)-sphere obtained by collapsing the boundary of τj. As a map between
(n − 1)-spheres it has a mapping degree dij = deg(πj ◦ fi) ∈ Z. This is the coefficient of τj in
the expression for the cellular boundary dn(σi) as a linear combination of (n− 1)-cells.

Note in particular that there can be only finitely many non-vanishing mapping degrees dij for
a given n-cell σj. As fi(S

n−1) is compact, it intersects only finitely many (n − 1)-cells τj by
Lemma 4.1.11. If it does not intersect an (n − 1)-cell τj, the map πj ◦ fi is not surjective and
hence the mapping degree vanishes by Lemma 3.6.6, 4.

Proposition 4.2.8 (cellular boundary formula):
The boundary operators of the cellular chain complex are given by

d1 = ∂1 = d1 : 〈I1〉Z → 〈I0〉Z, i 7→ ci(1)− ci(−1) n = 1

dn : 〈In〉Z → 〈In−1〉Z, i 7→ Σj∈In−1dijj n ≥ 2,

where dij = deg(πj ◦ fi), the map fi : Sn−1 → Xn−1 is the attaching map for ci(D̊
n) and the

map πj : Xn−1 → Sn−1 collapses the complement of cj(D̊
n−1) to a point.

Proof:
For n = 1 the cellular boundary operator is given by d1 = ∂1 : 〈I1〉Z → Z0(X0), i 7→ ci(1) −
ci(−1), as X0 is a discrete set and every point x ∈ X0 is its own path component.

90



Let n ≥ 2. From the pairs (Dn, Sn−1) and (Xn, Xn−1) we obtain for all i ∈ In a commuting
diagram of chain complexes with exact rows

0 // S•(S
n−1)

S•(ι) //

S•(fi)
��

S•(D
n)

S•(π) //

S•(ci)
��

S•(D
n, Sn−1)

S•(ci)
��

// 0

0 // S•(Xn−1)
S•(in,n−1)

// S•(Xn)
S•(π)

// S•(Xn, Xn−1) // 0,

in which the left square commutes by (33), which implies in,n−1 ◦ fi = ci ◦ ι. By combining the
associated long exact homology sequences with the definition of the cellular boundary operators
in Proposition 4.2.4 we obtain for all i ∈ In and j ∈ In−1 the following commuting diagram

Z
φ∼=
��

deg(πj◦fi) // Z
φ∼=
��

Hn(Dn, Sn−1)

Hn(ci)

��

∂n
∼=

// Hn−1(Sn−1)
Hn−1(πj◦fi) //

Hn−1(fi)

��

Hn−1(Sn−1)

〈In〉Z ∼= Hn(Xn, Xn−1)

dn ++

∂n // Hn−1(Xn−1)

Hn−1(πj)
22

Hn−1(π)

��

Hn−1(π) // Hn−1(Xn−1/Xn−2) ∼= Hn−1(∨In−1S
n−1)

Hn−1(pj)

OO

∼=rr
〈In−1〉Z ∼= Hn−1(Xn−1, Xn−2),

in which

• the upper left square commutes by naturality of the connecting homomorphism,
• the lower left triangle by definition of the cellular boundary operator,
• the upper right square by Definition 3.6.5 of the mapping degree,
• the middle right square by by the identity πj = pj ◦ π,
• the lower right triangle by Proposition 3.5.3.

Comparing the paths that go along the boundary of the diagram then shows that

Hn−1(pj) ◦ dn ◦Hn(ci) = φ ◦ (z 7→ deg(πj ◦ fi) · z) ◦ φ−1 ◦ ∂n.

2

Example 4.2.9: We consider real projective space RPn = Sn/ ∼ with x ∼ −x for all x ∈ Sn
and the CW structure from Example 4.1.8, 4. The skeleta are given by Xk = RPk for 0 ≤ k ≤ n
with RP0 = •. the k-skeleton RPk is obtained from RPk−1 by attaching a single k-disc with the
canonical surjection fk : Sk−1 → RPk. The cellular chain complex is of the form

C•(RPn) = (0→ Z dn−→ Z dn−1−−−→ Z dn−2−−−→ . . .
d2−→ Z d1−→ Z→ 0).

As a group endomorphism of Z, each cellular boundary operator is of the form dk : Z → Z,
z 7→ nk · z with an integer nk ∈ Z.

To compute the integers nk, we apply the cellular boundary formula in Proposition 4.2.8. As
X0 = •, we have d1 = 0 : Z → Z. The other cellular boundary operators are given by the
integers nk = deg(πk−1 ◦ fk), where πk−1 : RPk−1 → Sk−1 collapses the complement of the
(k − 1)-cell in RPk−1 to a point.
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This map is induced by the pinch map Pk−1 : Sk−1 → Sk−2/Sk−1 ∼= Sk−1 ∨ Sk−1 that squeezes
the equator of Sk−1 to a point and by the fold map Fk−1 : Sk−1 ∨ Sk−1 → Sk−1 from Definition
3.6.10. More specifically, as the antipodal map ak−1 : Sk−1 → Sk−1, x 7→ −x identifies the
lower hemisphere with the upper hemisphere and can be adjusted with a rotation to preserve
a selected point, we have the commuting diagram

Sk−1 fk //

Pk−1

��

RPk−1 = Sk−1/ ∼
πk−1

��
Sk−1/Sk−2 ∼= Sk−1 ∨ Sk−1

id
Sk−1∨ak−1

// Sk−1 ∨ Sk−1
Fk−1

// Sk−1.

As deg(idSk−1) = 1 by Lemma 3.6.6 and deg(ak−1) = (−1)k by Corollary 3.6.8, this implies

nk = deg(πk−1 ◦ fk) = deg(Fk−1 ◦ (idSk−1 ∨ ak−1) ◦ Pk−1)
3.6.11
= deg(idSk−1) + deg(ak−1)

= 1 + (−1)k.

Thus, the cellular chain complex is

C•(RPn) = (0→ Z dn:z 7→(1+(−1)n)·z−−−−−−−−−−→ . . .
d3:z 7→0−−−−→ Z d2:z 7→2z−−−−−→ Z d1:z 7→0−−−−→ Z→ 0),

and its homologies are given by

Hk(RPn) = HkC•(RPn) =


Z k = 0 or k = n odd

Z/2Z 1 ≤ k < n odd

0 k even or k > n.
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5 Homology with coefficients

5.1 Homology with coefficients

In Proposition 3.1.5 we defined the singular chain complex of a topological space X by con-
sidering the free abelian groups Sn(X) generated by the set Singn(X) = HomTop(∆n, X) of its
singular n-simplexes σ : ∆n → X. Elements of Sn(X) are finite linear combinations of singular
n-simplexes with coefficients in Z. The boundary operator is obtained by pre-composing each
n-simplex with face maps and taking an alternating sum over all such composites. The result is
an ordinary cohomology theory in the sense of Definition 3.7.1 with coefficient group H0(•) = Z.

To construct homology theories with other coefficient groups, note that an analogous construc-
tion can be performed for any abelian group M instead of Z, by replacing the free abelian
group Sn(X) = ⊕Singn(X)Z by the direct sum Sn(X;M) = ⊕Singn(X)M . By Definition 1.1.8
elements of Sn(X;M) are tuples (mσ)σ∈Singn(X), where mσ = 0 for almost all σ ∈ Singn(X),
or, equivalently, finite linear combinations Σi∈Imiσi of singular n-simplexes with coefficients
mi ∈ M . The boundary operator acts again by pre-composing each n-simplex with face maps
and taking an alternating sum over all such composites.

Definition 5.1.1: Let M be an abelian group.
The singular chain complex S•(X;M) with coefficients in M consists of the abelian groups

Sn(X;M) = ⊕Singn(X)M,

and the boundary operators dn : Sn(X;M)→ Sn−1(X;M), Σi∈Imiσi 7→ Σi∈Imidn(σi). The nth
singular homology with coefficients in M is

Hn(X;M) := HnS•(X;M).

Note that we have Sn(X;Z) = Sn(X) by definition. The identities dn−1 ◦ dn = 0 follow anal-
ogously to the corresponding identities for M = Z. Note also that we have Sn(•;M) = M
and dn = idM : Sn(•;M) → Sn(•;M) for all n ∈ N0, which yields Hn(•;M) = 0 for n 6= 0
and H0(•;M) = M . This shows in particular that any abelian group can be realised as the
coefficient group of a homology theory.

In the same way, we can also generalise cellular homology of CW complexes from proposition
4.2.4. In this case, we replace the free abelian groups generated by the set In of n-cells by the
direct sum ⊕InM . The action of the boundary operator is given by its actions on n-cells.

Definition 5.1.2: Let M be an abelian group, X a CW complex and In its set of n-cells.
The cellular chain complex C•(X;M) with coefficients in M is given by the abelian groups

Cn(X;M) = ⊕InM

and the boundary operator dn : Cn(X;M) → Cn−1(X;M), Σi∈Inmici 7→ Σi∈Imidn(ci). Its nth
homology HnC•(X;M) is called the nth cellular homology with coefficients in M .

One might wonder why it is necessary or interesting to extend the singular homologies of
topological spaces from the ones with coefficients in Z to coefficients in an abelian group M .
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One of the reasons is that there are many other approaches to homology and cohomology in
specific settings. For instance, de Rham cohomology of smooth manifolds is formulated in terms
of differential forms. This yields a cohomology theory with coefficients in the abelian group
(R,+). In order to compare these approaches, one needs to handle this case in the framework
of singular and cellular homology as well.

The other reason is that, depending on the choice of the abelian group M , these homology
theories contain different information and yield different results. This is apparent when one
considers the cellular homologies of RPn.

Example 5.1.3: By Example 4.2.9 the cellular chain complex for RPn is given by

C•(RPn) = (0→ Z dn−→ Z dn−1−−−→ Z dn−2−−−→ . . .
d2−→ Z d1−→ Z→ 0) dk = 1 + (−1)k.

with homologies

Hk(RPn) = HkC•(RPn) =


Z k = 0 or k = n odd

Z/2Z 1 ≤ k < n odd

0 k even or k > n.

• If M = Z/2Z, we have dk = 1 + (−1)k = 2 = 0, and this yields

C•(RPn;Z/2Z) = (0→ Z/2Z dn=0−−−→ Z/2Z dn−1=0−−−−→ . . .
d2=0−−−→ Z/2Z d1=0−−−→ Z/2Z→ 0)

and homologies

HkC•(RPn;Z/2Z) =

{
Z/2Z 0 ≤ k ≤ n

0 else.

• If M = (F,+) is the additive group of a field F of characteristic charF 6= 2, then

C•(RPn,F) = (0→ F dn−→ F dn−1−−−→ . . .F d3=0−−−→ F d2=2−−−→ F d1=0−−−→ F→ 0) dk = 1 + (−1)k.

As 2F ∼= F, the homologies are then given by

HkC•(RPn,F) =

{
F k = 0 or k = n odd

0 else.

5.2 Tensor product of abelian groups

In the following sections, we will compare the homology groups with coefficients in different
abelian groups systematically and finally show that they are all determined by the homologies
with coefficients in Z, together with information that only depends on the abelian groups.

In this section, we introduce the algebraic background for this comparison, namely tensor
products of abelian groups. This is a special case of the tensor product of modules over rings.
Hence, it can be viewed as the abelian group counterpart of the tensor product of vector spaces,
but it behaves differently, especially for abelian groups with torsion.
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Definition 5.2.1: The tensor product of abelian groups A,B is the abelian group A⊗B
with generating set A×B and relations

(a+ a′, b)− (a, b)− (a′, b) (a, b+ b′)− (a, b)− (a, b′) ∀a, a′ ∈ A, b, b′ ∈ B.

We denote by τ = π ◦ ι : A×B → A⊗B the composite of the inclusion ι : A×B → 〈A×B〉Z
and the canonical surjection π : 〈A×B〉Z → A⊗B and set a⊗b = τ(a, b) for all a ∈ A, b ∈ B.

Remark 5.2.2:

1. The relations of the tensor product imply for all n ∈ Z, a, a′ ∈ A, b, b′ ∈ B

(a+ a′)⊗b = a⊗b+ a′⊗b, a⊗(b+ b′) = a⊗b+ a⊗b′, n(a⊗b) = (na)⊗b = a⊗(nb).

2. The elements a⊗b for a ∈ A and b ∈ B generate the abelian group A⊗B:
Any element of A⊗B is a finite sum Σm

i=1ni ai⊗bi with m ∈ N0, ni ∈ Z, ai ∈ A, bi ∈ Bi.

This follows, because the elements of the free group 〈A× B〉Z = ⊕A×BZ are finite linear
combinations of elements in A×B and π : 〈A×B〉Z → A⊗B is surjective.

3. Due to 2. we often denote a group homomorphism f : A⊗B → C into an abelian group
C by f : A⊗B → C, a⊗b 7→ f(a⊗b). As the elements a⊗b generate A⊗B, the values
f(a⊗b) determine f completely.

The tensor product of abelian groups has a universal property that is analogous to the one
of tensor products of vector spaces. The only difference is that vector spaces are replaced by
abelian groups and instead of (bi)linear maps over a field, one considers Z-(bi)linear maps.
It arises from the universal property of the free group, cf. Remark 1.1.12, and the universal
property of the factor group.

Lemma 5.2.3: The tensor product has the following universal property:
The map τ = π ◦ ι : A×B → A⊗B is Z-bilinear:

τ(a+ a′, b) = τ(a, b) + τ(a′, b) τ(a, b+ b′) = τ(a, b) + τ(a, b′) ∀a, a′ ∈ A, b, b′ ∈ B.

For every Z-bilinear map f : A × B → C into an abelian group C, there is a unique group
homomorphism f ′ : A⊗B → C with f ′ ◦ τ = f

A×B

τ %%

f // C

A⊗B
∃!f ′

<<

Proof:
The Z-bilinearity of τ holds by definition, due to the relations. To show uniqueness, suppose
g, h : A⊗B → C are group homomorphisms with g◦τ = f = h◦τ . Then we have g◦π◦ι = h◦π◦ι
and g ◦ π = h ◦ π by the universal property of the free group. By surjectivity of π this implies
g = h. This shows uniqueness.

To show existence, note that by the universal property of the free group, there is a unique group
homomorphism f ′′ : 〈A×B〉Z → C with f ′′ ◦ ι = f . Due to the Z-bilinearity of f and because
f ′′ is a group homomorphism, we have

f ′′((a+ a′, b)− (a, b)− (a′, b)) = f(a+ a′, b)− f(a, b)− f(a′, b) = 0

f ′′((a, b+ b′)− (a, b)− (a, b′)) = f(a, b+ b′)− f(a, b)− f(a, b′) = 0.
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Hence, the set U ⊂ 〈A×B〉Z of relations satisfies U ⊂ ker f ′′. By the universal property of the
factor group there is a unique group homomorphism f ′ : A⊗B → C with f ′ ◦ π = f ′′. This
implies f ′ ◦ τ = f ′ ◦ π ◦ ι = f ′′ ◦ ι = f . 2

Clearly, the universal property of the tensor product is useful to construct group homomor-
phisms f ′ : A⊗B → C from the tensor product of abelian groups A,B into an abelian group C.
To construct them, it is sufficient to specify a Z-bilinear map from A×B to C. An applicatoin
is the group isomorphism in the following example, which is left as an exercise.

Example 5.2.4: (Exercise 54)
For m,n ∈ N, m,n ≥ 2 the tensor product of the abelian groups Z/mZ and Z/nZ is

Z/mZ⊗Z/nZ ∼= Z/gcd(m,n)Z.

The universal property of the tensor product also allows one to extend the tensor product from
abelian groups to group homomorphisms between them. As this is compatible with the identity
maps and the composition of group homomorphisms, it defines a functor −⊗− : Ab×Ab→ Ab.
Fixing one of its arguments to an abelian group A yields functors A⊗−,−⊗A : Ab→ Ab. Any
group homomorphism defines natural transformations between such functors.

Proposition 5.2.5: The tensor product defines

• a functor −⊗− : Ab× Ab→ Ab,
• for each abelian group A functors A⊗− : Ab→ Ab and −⊗A : Ab→ Ab,
• for each group homomorphism f : A→ A′ natural transformations f⊗− : A⊗− ⇒ A′⊗−

and −⊗f : −⊗A⇒ −⊗A′.

Proof:
1. For all group homomorphisms f : A→ A′ and g : B → B′ between abelian groups, the map
τ ′ ◦ (f, g) : A×B → A′⊗B′ is Z-bilinear

τ ′ ◦ (f, g)(a+ a′, b) = τ ′(f(a+ a′), g(b)) = τ ′(f(a) + f(a′), g(b)) = τ ′(f(a), g(b)) + τ ′(f(a′), g(b))

= τ ′ ◦ (f, g)(a, b) + τ ′ ◦ (f, g)(a′, b)

τ ′ ◦ (f, g)(a, b+ b′) = τ ′(f(a), g(b+ b′)) = τ ′(f(a), g(b) + g(b′)) = τ ′(f(a), g(b)) + τ ′(f(a), g(b′))

= τ ′ ◦ (f, g)(a, b) + τ ′ ◦ (f, g)(a, b′).

By the universal property of the tensor product, there exists a unique group homomorphism
f⊗g : A⊗B → A′⊗B′ with (f⊗g) ◦ τ = τ ′ ◦ (f, g). This is equivalent to the condition
(f⊗g)(a⊗b) = f(a)⊗g(b) for all a ∈ A, b ∈ B.

A×B
τ
��

(f,g) // A′ ×B′

τ ′

��
A⊗B

f⊗g
// A′⊗B′.

(34)

The functor −⊗− : Ab× Ab→ Ab assigns

• to a pair (A,B) of abelian groups the tensor product A⊗B,
• to a pair (f, g) of group homomorphisms f : A → A′ and g : B → B′ of abelian groups

the group homomorphism f⊗g : A⊗B → A′⊗B′, a⊗b 7→ f(a)⊗g(b).
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That it is a functor follows, because the following diagrams commute

A×B
τ
��

(idA,idB)// A×B
τ
��

A⊗B
idA⊗B

// A⊗B

A×B

(f ′◦f,g′◦g)
**

τ
��

(f,g)
// A′ ×B′

τ ′

��

(f ′,g′)
// A′′ ×B′′

τ ′′

��
A⊗B

f⊗g
// A′⊗B′

f ′⊗g′
// A′′⊗B′′.

The functor −⊗A : Ab→ Ab for an abelian group A assigns

• to an abelian group B the abelian group B⊗A,
• to a group homomorphism f : B → B′ the group homomorphism f⊗idA : B⊗A→ B′⊗A,

and the functor A⊗− : Ab → Ab is defined analogously. Claims 2. and 3. follow from 1. and
the properties of products of groups (Exercise). 2

We now look in more depth at the properties of tensor products, in particular, its interaction
with direct sums of abelian groups and the role of the abelian group Z. The following lemma
shows that we can see abelian groups as an analogue of elements of a commutative unital
ring, with the direct sum replacing the ring addition and the tensor product replacing the
ring multiplication. The neutral element of the direct sum is the trivial group, and the neutral
element of the tensor product the group Z. There is also an associativity law for the tensor
product and a distributive law between tensor products and direct sums. Both hold up to
canonical isomorphisms.

Lemma 5.2.6 (properties of the tensor product):
The tensor product of abelian groups has the following properties:

1. 0⊗A = A⊗0 = 0 for all abelian groups A,

2. Z⊗A ∼= A⊗Z ∼= A for all abelian groups A,

3. A⊗B ∼= B⊗A for all abelian groups A,B,

4. (A⊗B)⊗C ∼= A⊗(B⊗C) for all abelian groups A,B,C,

5. A⊗(⊕i∈IBi) ∼= ⊕i∈I(A⊗Bi) and (⊕i∈IBi)⊗A ∼= ⊕i∈I(Bi⊗A) for all abelian groups A and
families (Bi)i∈I of abelian groups,

6. f⊗0 = 0⊗g = 0 : A⊗B → A′⊗B′ for all group homomorphisms f : A→ A′, g : B → B′,

7. For all group homomorphisms f, f ′ : A→ A′ and g, g′ : B → B′

(f + f ′)⊗g = f⊗g + f ′⊗g f⊗(g + g′) = f⊗g + f⊗g′.

Proof:
1. We have 0⊗a = (0 · 0)⊗a = 0 · (0⊗a) = 0 for all a ∈ A. As the elements 0⊗a generate 0⊗A,
this proves the claim. The proof for A⊗0 is analogous.

2. The map f : Z⊗A → A, λ⊗a 7→ λa is a group isomorphism with inverse f−1 : A → Z⊗A,
a 7→ 1⊗a. One has f ◦ f−1(a) = a and f−1 ◦ f(z⊗a) = z(1⊗a) = z⊗a for all a ∈ A and z ∈ Z.

3. The group isomorphism is given by f : A⊗B → B⊗A, a⊗b 7→ b⊗a.
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4. The isomorphism is given by f : (A⊗B)⊗C → A⊗(B⊗C), (a⊗b)⊗c 7→ a⊗(b⊗c).

5. The map f : A⊗(⊕i∈IBi) → ⊕i∈I(A⊗Bi), a⊗(bi)i∈I → (a⊗bi)i∈I is a group homomorphism
with inverse f−1 : ⊕i∈I(A⊗Bi)→ A⊗(⊕i∈IBi), (a⊗bi)i∈I 7→ a⊗(bi)i∈I .

6.-7. Exercise. 2

Note that there is no counterpart of claim 5. for direct products of abelian groups. For an
abelian group A and a family (Bi)i∈I indexed by an infinite index set I, the abelian group
A⊗(Πi∈IBi) is in general not isomorphic to Πi∈I(A⊗Bi) (Exercise 56).

Claims 2. and 5. in Lemma 5.2.6 relate tensor products 〈Y 〉Z⊗M of a free abelian group 〈Y 〉Z
with an abelian group M to direct sums of M with itself over the index set Y :

⊕y∈YM
2.∼= ⊕y∈Y (Z⊗M)

5.∼= (⊕y∈YZ)⊗M = 〈Y 〉Z⊗M.

This allows us to rewrite the groups of n-chains of singular chain complex S•(X;M) in Definition
5.1.1 as the tensor products Sn(X;M) = Sn(X)⊗M . Their boundary operators are then given
by dn⊗idM : Sn(X)⊗M → Sn−1(X)⊗M , Σi∈Iσi⊗mi 7→ Σi∈Idn(σi)⊗mi.

The benefit of this viewpoint is that it allows us to express the singular chain complexes with
coefficients in an abelian group M as a functor, analogously to the singular chain complex
functor S• : Top→ ChAb from Proposition 3.1.5.

To achieve this, we extend the functor −⊗M : Ab → Ab from Proposition 5.2.5 to a functor
−⊗M : ChAb → ChAb by tensoring each group of n-chains with M and each boundary operator
with the identity idM . Composing it with the singular homology functor S• : Top→ ChAb then
yields singular homology with coefficients in M . Likewise, composing it with the relative chain
complex functor S• : Top(2) → ChAb from Proposition 3.3.4 yields relative chain complexes
with coefficients in M .

Corollary 5.2.7: Let M be an abelian group. The tensor product of abelian groups defines
a functor −⊗M : ChAb → ChAb that assigns

• to a chain complex X• the chain complex X•⊗M with (X•⊗M)n = Xn⊗M and boundary
operators dn = dn⊗idM : Xn⊗M → Xn−1⊗M ,

• to a chain map f• : X• → X ′• the chain map f•⊗idM : X•⊗M → X ′•⊗M with components
fn⊗idM : Xn⊗M → X ′n⊗M .

Proof:
That X•⊗M is indeed a chain complex follows from the functoriality of −⊗M : Ab → Ab,
together with item 6. in Lemma 5.2.6, which give

(dn−1⊗idM) ◦ (dn⊗idM) = (dn−1 ◦ dn)⊗idM = 0⊗idM
6.
= 0 : Xn⊗M → Xn−2⊗M.

That the group homomorphisms fn⊗idM : Xn⊗M → X ′n⊗M define a chain map, and that
these assignments are compatible with the composition of morphism follows again from the
functoriality of −⊗M : Ab→ Ab

(fn−1⊗idM) ◦ (dn⊗idM) = (fn−1 ◦ dn)⊗idM = (d′n ◦ fn)⊗idM = (d′n⊗idM) ◦ (fn⊗idM)

(gn⊗idM) ◦ (fn⊗idM) = (gn ◦ fn)⊗idM (idXn⊗idM) = idXn⊗M 2
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Corollary 5.2.8: Let M be an abelian group. Then the singular chain complex with coeffi-
cients in M is given by the functor S•(−;M) = (−⊗M)S• : Top→ ChAb that assigns

• to a topological space X the chain complex S•(X;M) = S•(X)⊗M ,
• to a continuous map f : X → Y the chain map S•(f)⊗idM : S•(X;M)→ S•(Y ;M).

There is a functor S•(−;M) : Top(2) → ChAb, the relative chain complex functor with
coefficients in M , that assigns

• to a pair of spaces (X,A) the chain complex S•(X,A;M) = S•(X,A)⊗M ,
• to a morphism of pairs f : (X,A)→ (Y,B) the chain map

S•(f)⊗idM : S•(X,A;M)→ S•(Y,B;M).

5.3 The torsion functor

Corollary 5.2.8 establishes that singular chain complexes with coefficients in an abelian group
A are obtained by post-composing the singular homology functor S• : Top → ChAb with the
functor −⊗A : ChAb → ChAb. The aim is now to understand how this affects their homologies.
In other words, we need to understand how tensoring with an abelian group A affects the
kernels and images of the boundary operators and their quotients.

By Remark 2.2.2 we can characterise this in terms of short exact sequences. The homologies
of a chain complex X• are given as the quotients Hn(X) = ker dn/im dn+1 with respect to the
subgroup im dn+1 ⊂ ker dn. Remark 2.2.2 states that this is equivalent to a short exact sequence

0→ Bn(X) = im dn+1
ιn−→ Zn(X) = ker dn

πn−→ Hn(X) = ker dn/im dn+1 → 0. (35)

We therefore need to investigate how tensoring a short exact sequence of abelian groups with
a fixed abelian group affects its exactness. Unfortunately, it turns out that tensoring with an
abelian group A does in general not preserve exactness.

Example 5.3.1: Take the short exact sequence 0→ Z ι:z 7→n·z−−−−→ Z π−→ Z/nZ→ 0 for 2 ≤ n ∈ N.

Then tensoring with the abelian group Z/nZ yields the sequence

0→ Z⊗Z/nZ ι⊗id−−→ Z⊗Z/nZ π⊗id−−−→ Z/nZ⊗Z/nZ→ 0.

The map ι⊗id = 0 : Z⊗Z/nZ→ Z⊗Z/nZ is trivial, as we have for all k̄ ∈ Z/nZ and z ∈ Z

(ι⊗id)(z⊗k̄) = (nz)⊗k̄ = n(z⊗k̄) = z⊗(nk̄) = z⊗0̄ = 0.

Hence, ι⊗id is not injective. We still have π⊗id surjective and also im (ι⊗id) = 0 = ker (π⊗id),
as (π⊗id)(z⊗k̄) = z̄⊗k̄ = 0 implies either k̄ = 0 and hence z⊗k̄ = 0 or z̄ = 0 and hence z = nw
with some w ∈ Z, which also gives z⊗k̄ = (nw)⊗k̄ = w⊗(nk̄) = w⊗0 = 0.

In this example, exactness of the sequence is partially preserved, namely on the right of the
sequence, but not on the left. We will see that this is not specific to the chosen short exact
sequence or the abelian group it is tensored with, but holds in full generality.

In contrast, the example shows that exactness need not be preserved on the left of a sequence:
the image ι⊗idM : A⊗M → B⊗M of an injective group homomorphism ι : A → B the under
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the functor −⊗M : Ab→ Ab need no longer be injective. So tensoring with an abelian group
does not necessarily preserve kernels. Exactness on the left of the sequence depends on the
short exact sequence and on the abelian group tensored to this sequence.

The main examples of short exact sequences, where tensoring with any abelian group yields a
short exact sequence are split exact sequences. Recall from Exercise 8 that a short exact sequence
0→ A

ι−→ B
π−→ C → 0 is called split exact, if there is a group isomorphism φ : B → A⊕C such

that the following diagram commutes

0 // A ι //

ι1:a7→(a,0) ##

B π //

φ∼=
��

C // 0

A⊕ C.
π2:(a,c)7→c

;; (36)

Lemma 5.3.2: Let M be an abelian group.

1. The functors M⊗− and −⊗M are right exact:
for any exact sequence A

ι−→ B
π−→ C → 0 the following sequences are exact

M⊗A id⊗ι−−→M⊗B id⊗π−−−→M⊗C → 0 A⊗M ι⊗id−−→ B⊗M π⊗id−−−→ C⊗M → 0.

2. If 0→ A
ι−→ B

π−→ C → 0 is a split exact sequence, then the sequences

0→M⊗A id⊗ι−−→M⊗B id⊗π−−−→M⊗C → 0 0→ A⊗M ι⊗id−−→ B⊗M π⊗id−−−→ C⊗M → 0

are split exact. In particular, this holds, whenever C is a free group.

Proof:
1. We prove this for the second sequence. As A

ι−→ B
π−→ C → 0 is a chain complex, we have

π ◦ ι = 0, and it follows that (π⊗id) ◦ (ι⊗id) = (π ◦ ι)⊗id = 0⊗id = 0.

Exactness of the sequence A⊗M ι⊗id−−→ B⊗M π⊗id−−−→ C⊗M → 0 is then equivalent to the
statement that π⊗id is surjective and ker (π⊗id) = im (ι⊗id).

To show that π⊗id is surjective, let x = Σk
i=1ni(ci⊗mi) ∈ C⊗M with ni ∈ Z. By surjectivity

of π, there are elements bi ∈ B with π(bi) = ci, and this implies (π⊗id)(Σk
i=1ni(bi⊗mi)) = x,

thus π⊗id is surjective. As (π⊗id) ◦ (ι⊗id) = 0, we also have im (ι⊗id) ⊂ ker (π⊗id).

To show that im (ι⊗id) = ker (π⊗id), let p : B⊗M → (B⊗M)/im (ι⊗id) be the canonical
surjection. The Z-bilinear map φ = p ◦ τ : B ×M → (B⊗M)/im (ι⊗id) satisfies

φ ◦ (ι, id) = p ◦ τ(ι, id) = p ◦ (ι⊗id) ◦ τ = 0.

We obtain a Z-bilinear map ψ : C ×M → (B⊗M)/im (ι⊗id), (π(b),m) 7→ φ(b,m), which is
defined, because π is surjective and because π(b) = π(b′) implies b′ − b ∈ kerπ = im ι and
φ(b′,m) = φ(b,m) + φ(b′ − b,m) = φ(b,m). By construction, we have ψ ◦ (π, id) = φ.

By the universal property of the tensor product, there exists a unique group homomorphism
ψ′ : C⊗M → (B⊗M)/im (ι⊗id) with ψ′ ◦ τ = ψ. This implies

ψ′ ◦ (π⊗id) ◦ τ = ψ′ ◦ τ ◦ (π, id) = ψ ◦ (π, id) = φ = p ◦ τ
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and by the universal property of the tensor product ψ′◦(π⊗id) = p. Hence, we have ker (π⊗id) ⊂
ker p and ker (π⊗id) = im (ι⊗id).

2. If the sequence is split exact, then tensoring diagram (36) with an abelian group M and
using the group isomorphism (A⊕C)⊗M ∼= (A⊗M)⊕ (C⊗M) yields the commuting diagram

0 // A⊗M ι⊗id //

ι1⊗id:a⊗m 7→(a⊗m,0) ((

B⊗M π⊗id //

∼=φ⊗id
��

C⊗M // 0

(A⊗M)⊕ (C⊗M).
π2⊗id:(a⊗m,c⊗m)7→c⊗m

66

This shows that the sequence is exact. If C = 〈X〉Z is a free group, we can choose for every x ∈ X
an element h(x) ∈ B with π(h(x)) = x by surjectivity of π. This defines a map h : X → B,
and by the universal property of the free group a unique group homomorphism h : C → B with
π ◦ h = idC . By Exercise 8 the sequence splits. 2

Remark 5.3.3: Lemma 5.3.2 can also be phrased as the statement that tensoring with an
abelian group M preserves cokernels. The cokernel of a group homomorphism ι : A → B is
the factor group coker(ι) = B/im ι, together with the canonical surjection p : B → B/im ι.
Exactness of the sequence A

ι−→ B
π−→ C → 0 is equivalent to C = im π ∼= B/kerπ = B/im ι.

Thus, Lemma 5.3.2 states that for any such exact sequence

(B⊗M)/im (ι⊗id) = coker(ι⊗id) = coker(ι)⊗M = (B/im ι)⊗M.

Lemma 5.3.2 shows that for any short exact sequence that ends in a free group C on the right,
tensoring with any abelian group M yields again again a short exact sequence. It follows that
whenever the nth homology Hn(X) of a topological space X is a free group, the image of the
short exact sequence (35) is again a short exact sequence

0→ Bn(X)⊗M ιn⊗id−−−→ Zn(X)⊗M πn⊗id−−−→ Hn(X)⊗M → 0.

We will see in the following that this implies Hn(X;M) = Hn(X)⊗M . However, to treat
the general case, we require more background. In general, the abelian group C on the right
need not be a free group, but by Remark 1.1.12 it can be presented, that is, realised as a
quotient of a free group. Any presentation C = 〈M | U〉 yields a description of C as a quotient
C = 〈M〉Z/〈U〉, where 〈M〉Z is the free abelian group generated by M and 〈U〉 ⊂ 〈M〉Z is the
subgroup generated by U . This corresponds to a short exact sequence

0→ 〈U〉 ι−→ 〈M〉Z
π−→ C → 0,

where ι : 〈U〉 → 〈M〉Z is the inclusion and π : 〈M〉Z → C the canonical surjection. Such a short
exact sequence is also called a free resolution of C.

Definition 5.3.4: Let A be an abelian group. A free resolution of A is a short exact
sequence 0→ K

ι−→ F
π−→ A→ 0 of abelian groups, where F is a free abelian group.

Remark 5.3.5:

1. Every abelian group A has a resolution with F = 〈A〉Z = ⊕AZ. It is given by the group
homomorphism π : 〈A〉Z → A, a 7→ a and the inclusion ι : ker π → 〈A〉Z and called the
standard resolution of A.
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2. As subgroups of free abelian groups are free and K ∼= ι(K) ⊂ F , the group K in a free
resolution is also a free abelian group.

Example 5.3.6: The sequence 0→ Z ι:z 7→n·z−−−−→ Z π−→ Z/nZ→ 0 is a free resolution of Z/nZ.

We will now use presentations of abelian groups or, equivalently, free resolutions, to describe
the non-exactness of a functor −⊗M : ChAb → ChAb and to relate homologies with coef-
ficients in M to homologies with coefficients in Z. More specifically, we will use the quantity
ker (ι⊗id) ⊂ K⊗M to characterise the non-exactness of the functor −⊗M . However, the choice
of a presentation and hence of a free resolution is highly non-unique. The first step is to address
this non-uniqueness, by understanding how group homomorphisms between abelian groups in-
teract with their free resolutions.

Proposition 5.3.7: Let A,A′ be abelian groups, A• = 0 → K
ι−→ F

π−→ A → 0 a free
resolution of A and A′• = 0→ K ′

ι−→ F ′
π−→ A′ → 0 a short exact sequence.

1. For any group homomorphism f : A → A′ there are group homomorphisms g : F → F ′

and h : K → K ′ that form a chain map f• = (h, g, f) : A• → A′•

A• =

f•
��

0 // K
ι //

h
��

F

g

��

π // A //

f
��

0

A′• = 0 // K ′
ι′ // F ′

π′ // A′ // 0.

(37)

2. The chain map f• : A• → A′• is unique up to chain homotopy.

Proof:
1. Suppose that F = 〈M〉Z = ⊕m∈MZ for some set M . To define g, choose for every m ∈ M
an element f ′m ∈ F ′ with π′(f ′m) = f ◦ π(m), which exists by surjectivity of π′. This defines a
map g : M → F ′, m 7→ f ′m and by the universal property of the free abelian group a group
homomorphism g : F → F ′ with π′ ◦ g = f ◦ π.

The group homomorphism h is defined analogously. As K is free, there is a set N such that
K = 〈N〉Z = ⊕n∈NZ. For every n ∈ N we have π′ ◦ g ◦ ι(n) = f ◦ π ◦ ι(n) = f(0) = 0 and thus
g ◦ ι(n) ∈ kerπ′ = im ι′. Hence, there is a k′n ∈ K ′ with ι′(k′n) = g ◦ ι(n), and k′n is unique by
injectivity of ι′. This defines a map h : N → K ′, n 7→ k′n, and by the universal property of the
free group a group homomorphism h : K → K ′ with ι′ ◦ h = g ◦ ι.

2. Suppose g′ : F → F ′ and h′ : K → K ′ are group homomorphisms that define another chain
map f ′• : A• → A′•. We define a chain homotopy h• : f• ⇒ f ′• by setting h0 = 0 : A→ F ′. Then
we have π′ ◦ h0 = 0 = f − f .

To define h1 : F → K ′, note that we must have ι′ ◦ h1 + h0 ◦ π = ι′ ◦ h1 = g′ − g. As we have
π′ ◦ g = π′ ◦ g′ = f ◦ π, the map g′ − g : F → F ′ takes values in ker π′ = im ι′. Thus, for
every m ∈ M there is a unique km ∈ K ′ such that g′(m)− g(m) = ι′(km). This defines a map
h1 : M → K ′, m 7→ k′m and by the universal property of the free group a group homomorphism
h1 : F → K ′ with ι′ ◦ h1 = g′ − g.

As we have short exact sequences, we must set h2 = 0 : K → 0. The condition on a chain
homotopy then becomes h1 ◦ ι = h′ − h. By 1. we have ι′ ◦ (h′ − h) = (g′ − g) ◦ ι = ι′ ◦ h1 ◦ ι,
and by injectivity of ι′ this yields h′ − h = h1 ◦ ι. 2
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Corollary 5.3.8: All free resolutions of an abelian group A are chain homotopy equivalent.

Proof:
Let A• and A′• be free resolutions of A. By Proposition 5.3.7 the identity map idA : A → A
induces chain maps φ• : A• → A′• and ψ• : A′• → A•. The composites ψ• ◦ φ• : A• → A• and
φ• ◦ ψ• : A′• → A′• are again chain maps that extend the identity idA. As idA• : A• → A• and
idA′• : A′• → A′• also extend the identity maps, we have ψ• ◦ φ• ∼ idA• and φ• ◦ ψ• ∼ idA′• . 2

Corollary 5.3.8 shows that the choice of a free resolution does not affect its homologies, and
Proposition 5.3.7 allows us to extend group homomorphisms between abelian groups to chain
maps between their free resolutions. We can thus characterise the non-exactness of the functor
−⊗M : ChAb → ChAb for an abelian group M by choosing for any abelian group A a free
resolution and considering the homology ker (ι⊗id) of its image. As this is compatible with
group homomorphisms, this defines a functor, the torsion functor.

Proposition 5.3.9:
Any abelian group M defines a functor Tor(−,M) : Ab→ Ab that assigns

• to an abelian group A the group Tor(A,M) = ker (ι⊗id) for any free resolution
A• = 0→ K

ι−→ F
π−→ A→ 0,

• to a group homomorphism f : A→ A′ the group homomorphism

Tor(f,M) = h⊗id : ker (ι⊗idM)→ ker (ι′⊗idM)

for any chain map f• = (h, g, f) : A• → A′• between free resolutions that extends f .

Proof:
1. Given free resolutions A• = 0 → K

ι−→ F
π−→ A → 0 and A′• = 0 → K ′

ι′−→ F ′
π′−→ A′ → 0

of abelian groups A and A′ and a chain map f• = (h, g, f) : A• → A′• that extends a group
homomorphism f : A → A′, we can apply the functor −⊗M : Ab → Ab for an abelian group
M to diagram (37). This yields the commuting diagram

A•⊗M =

f•⊗id
��

0 // K⊗M ι⊗id //

h⊗id
��

F⊗M
g⊗id
��

π⊗id // A⊗M //

f⊗id
��

0

A′•⊗M = 0 // K ′⊗M
ι′⊗id

// F ′⊗M
π′⊗id

// A′⊗M // 0.

(38)

in which the rows are exact in the last two entries. By replacing the last non-trivial terms on
the right by zeros, we obtain a chain map

(A•⊗M)red =

fred•
��

0 // K⊗M ι⊗id //

h⊗id

��

F⊗M
g⊗id

��

// 0

(A′•⊗M)red = 0 // K ′⊗M
ι′⊗id

// F ′⊗M // 0.

(39)

The homologies of the reduced chain complexes are given by H0((A•⊗M)red) = A⊗M and
H1((A•⊗M)red) = ker (ι⊗id), and the induced map between the first homologies by

Tor(f,M) = H1(f red• ) : ker (ι⊗id)→ ker (ι′⊗id), x 7→ h(x).
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As any two resolutions A1
• and A2

• of A are chain homotopy equivalent by Corollary 5.3.8,
this also holds for the chain complexes A1

•⊗M and A2
•⊗M in (38) and for the resulting chain

complexes (A1
•⊗M)red and (A2

•⊗M)red in (39). Thus, their homologies do not depend on the
choice of the resolutions. This shows that Tor(A,M) is defined.

By Proposition 5.3.7, any two extensions f 1
• and f 2

• of f : A → A′ are chain homotopic. This
also holds for the induced chain maps f 1

•⊗id and f 2
•⊗id in (38) and the induced chain maps

f 1red
• and f 2red

• in (39). Hence, their associated maps H1(f 1red
• ) = H1(f 2red

• ) agree. This shows
that Tor(f,M) : Tor(A,M)→ Tor(A′,M) is defined.

2. We show that Tor(−,M) is a functor. For the identity map idA : A→ A we can choose free
resolutions A• = A′• and (idA)• = (idK , idF , idA) : A• → A•. This yields

Tor(idA,M) = H1((idA)red• ) = id : Tor(A,M)→ Tor(A,M).

Given group homomorphisms f : A → A′ and f ′ : A′ → A′′ with associated chain maps
f• = (h, g, f) : A• → A′• and f ′• = (h′, g′, f ′) : A′• → A′′• that extend f and f ′, we obtain the
chain map f ′• ◦ f• = (h′ ◦ h, g′ ◦ g, f ′ ◦ f) : A• → A′′• that extends f ′ ◦ f : A→ A′′. This gives

Tor(f ′◦f,M) = H1((f ′◦f)red• ) = H1(f ′red• ◦f red• ) = H1(f ′red• )◦H1(f red• ) = Tor(f ′,M)◦Tor(f,M).

2

Example 5.3.10:

1. For any n ∈ N and any abelian group M we have Tor(Z/nZ,M) = {m ∈M | nm = 0}.
This follows by choosing the free resolution 0→ Z ι:z 7→n·z−−−−→ Z π−→ Z/nZ→ 0. We then have

Z⊗M
∼=z⊗m7→zm
��

ι⊗id:z⊗m7→nz⊗m // Z⊗M
∼= z⊗m7→zm
��

M
ι′:m 7→n·m

//M,

and this shows that Tor(Z/nZ,M) = ker (ι′) = {m ∈M | nm = 0}.
2. Example 1. implies in particular Tor(Z/nZ,Z/mZ) ∼= Z/gcd(m,n)Z and

Tor(Z/nZ,F) = 0 for any field F whose characteristic does not divide n.

3. For all families (Ai)i∈I of abelian groups the compatibility between tensor products and
direct sums and the compatibiklity between homologies and direct sums imply (Exercise)

Tor(⊕i∈IAi, B) ∼= ⊕i∈ITor(Ai, B) Tor(B,⊕i∈IAi) ∼= ⊕i∈ITor(B,Ai).

4. For any free group F and abelian group A, we have Tor(A,F ) = Tor(F,A) = 0.

The free resolution 0 → 0 → F
id−→ F → 0 yields 0 → 0 → F⊗A id−→ F⊗A → 0, which is

a short exact sequence, and hence Tor(F,A) = 0.

To show that Tor(A,F ) = 0, note that Tor(A,Z) = 0, as tensoring a short exact sequence
with Z yields a sequence chain isomorphic to the original sequence. Applying 3. then
proves the claim for any free group F .

The identity Tor(Z/nZ,M) = {m ∈ M | nm = 0} in Example 5.3.10, 1. is the reason why the
functor Tor(−,M) : Ab → Ab is called torsion functor. By comparing with Definition 1.1.6
one sees that Tor(Z/nZ,M) computes the n-torsion subgroup of the abelian group M .

One can also show that the functor Tor is symmetric in both arguments: Tor(A,M) =
Tor(M,A) for all abelian groups A,M , but this requires more theory, see for instance [Me,
Section 4.5], in particular [Me, Theorem 4.5.6].

104



5.4 Tensor products of chain complexes and the Künneth formula

In this section we relate singular homology with coefficients in an abelian group M to singular
homology with coefficients in Z. They key ingredient is the (algebraic) Künneth formula1. It
also plays an important role in the computation of homologies of product spaces. The first step
is to generalise the concept of a tensor product from tensor products of abelian groups to tensor
products of chain complexes.

Definition 5.4.1: Let X• and Y• chain complexes. The tensor product of X and Y is the
chain complex X•⊗Y• with abelian groups (X•⊗Y•)n = ⊕p+q=nXp⊗Yq and boundary operators

dn : ⊕p+q=nXp⊗Yq → ⊕p+q=n−1Xp⊗Yq, Xp⊗Yq 3 x⊗y 7→ dp(x)⊗y + (−1)px⊗dq(y)

The sign in the formula for the boundary operator ensures that the boundary operator satisfies
dn−1 ◦ dn = 0 and is indeed a boundary operator.

The tensor product of chain complexes also sheds some light on the definition of a chain
homotopy in Definition 2.1.9. In Remark 2.1.11 we showed that a chain homotopy h• : f• ⇒ g•
between chain maps f•, g• : X• → X ′• can be viewed as a chain map k• : X ′′• → X•, where
X ′′• is a chain complex constructed from X•, which remained somewhat mysterious. With the
tensor product of chain complexes, we can understand this chain complex as the tensor product
I•⊗X•, where I• is a chain complex that generalises the unit interval.

Example 5.4.2: Let I• be the chain complex with I0 = Z ⊕ Z, I1 = Z and Ik = 0 for all
k 6= 0, 1 with boundary operator d1 : I1 → I0, z 7→ (z,−z)

I• = 0→ Z z 7→(z,−z)−−−−−→ Z⊕ Z→ 0.

Then the tensor product I•⊗X• is given by (I•⊗X•)n = I0⊗Xn + I1⊗Xn−1
∼= Xn⊕Xn⊕Xn−1

with boundary operator

dn : (I•⊗X•)n → (X•⊗I•)n−1, (x, x′, x′′) 7→ (dn(x) + x′′, dn(x)− x′′,−dn−1(x)).

This is the chain complex Remark 2.1.11.

Lemma 5.4.3:
The tensor product of chain complexes defines a functor ⊗ : ChAb×ChAb → ChAb that assigns

• to a pair (X•, Y•) of chain complexes the chain complex X•⊗Y•,
• to a pair (f•, g•) of chain maps f• : X• → X ′• and g• : Y• → Y ′• the chain map

f•⊗g• : X•⊗Y• → X ′•⊗Y ′• , Xp⊗Yq 3 x⊗y 7→ fp(x)⊗gq(y) ∈ X ′p⊗Y ′q .

It satisfies X•⊗Y• ∼= Y•⊗X• for all chain complexes X•⊗Y•.

Proof:
It is clear that these assignments are compatible with the composition of morphisms and with
identity morphisms. The isomorphism φ• : X•⊗Y• → Y•⊗X• has components

φn : ⊕p+q=nXp⊗Yq → ⊕p+q=nYq⊗Xp, Xp⊗Yq 3 x⊗y 7→ (−1)pqy⊗x ∈ Yq⊗Xp.

1This formula is due to Dr. Hermann Lorenz Künneth, a high school teacher in Erlangen who became an
adjunct professor at the Friedrich-Alexander-Universität after his retirement.

105



A direct computation shows that this is indeed a chain map. For all x ∈ Xp and y ∈ Yq one has

dn ◦ φn(x⊗y) = (−1)pqdn(y⊗x) = (−1)pq(dq(y)⊗x+ (−1)qy⊗dp(x))

= (−1)pqdq(y)⊗x+ (−1)(p−1)qy⊗dp(x) = φn−1(dp(x)⊗y + (−1)px⊗dq(y)) = φn−1 ◦ dn(x⊗y).

2

To relate the singular homologies of a topological space X to its singular homologies with
coefficients in an abelian group M we use the fact that every abelian group Sn(X) in the chain
complex S•(X) is a free abelian group.

Such chain complexes are called free chain complexes. We observe first that if a free chain
complex F• has a trivial boundary operator, the homologies of the chain complex F•⊗X• are
obtained by tensoring the homologies of X• with the abelian groups in F•.

Definition 5.4.4:
A chain complex X• in Ab is called free if all groups Xn for n ∈ Z are free abelian groups.

Lemma 5.4.5: Let F• a free chain complex with trivial differential dn = 0 : Fn → Fn−1. Then
for any chain complex X• the following maps are isomorphisms natural in X• and F•

φF•,X•n : ⊕p+q=nFp⊗Hq(X) = ⊕p+q=nHp(F•)⊗Hq(X•)→ Hn(F•⊗X•), f⊗[x] 7→ [f⊗x].

Proof:
As the boundary operators in F• are trivial, we have Zn(F•) = Fn, Bn(F•) = 0 andHn(F•) = Fn.
The boundary operators of F•⊗X• are given by

dn : ⊕p+q=nFp⊗Xq → ⊕p+q=n−1Fp⊗Xq, Fp⊗Xq 3 f⊗x 7→ (−1)pf⊗dq(x) ∈ Fp⊗Xq−1.

For every n ∈ Z we have a short exact sequence 0 → Bq(X•)
ιq−→ Zq(X•)

πq−→ Hq(X•) → 0.
As tensoring with a free abelian group preserves short exact sequences by Example 5.3.10, 4.,
tensoring with Fp yields a short exact sequence

0→ Fp⊗Bq(X•)
id⊗ιq−−−→ Fp⊗Zq(X•)

id⊗πq−−−→ Fp⊗Hq(X•)→ 0.

Taking direct sums over all p, q with p+ q = n yields a short exact sequence

0→ ⊕p+q=nFp⊗Bq(X•)︸ ︷︷ ︸
=Bn(F•⊗X•)

id⊗ιq−−−→ ⊕p+q=nFp⊗Zq(X•)︸ ︷︷ ︸
=Zn(F•⊗X•)

id⊗πq−−−→ ⊕p+q=nFp⊗Hq(X•)→ 0,

which shows that Hn(F•⊗X•) ∼= ⊕p+q=nFp⊗Hq(X•) and the maps φF•,X•n are isomorphisms.
To prove their naturality consider chain maps g• : F• → F ′• and k• : X• → X ′• and f ∈ Fp,
x ∈ Zq(X•) with p+ q = n. Then we have

φF
′
•,X
′
•

n ◦ (Hp(g•)⊗Hq(k•))(f⊗[x]) = φF
′
•,X
′
•

n (gp(f)⊗[kq(x)]) = [gp(f)⊗kq(x)]

= Hn(g•⊗k•)[f⊗x] = Hn(g•⊗k•) ◦ φF•,X•n (f⊗[x]).

2

With this preparations we can now prove a general version of the Künneth formula, which is
also sometimes called the algebraic Künneth formula.
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Theorem 5.4.6 (Künneth formula):
Let F• be a free chain complex and X• a chain complex in Ab. Then for every n ∈ Z the
following sequence is exact

0→ ⊕p+q=nHp(F•)⊗Hq(X•)
φn:[f ]⊗[x] 7→[f⊗x]−−−−−−−−−−→ Hn(F•⊗X•)→ ⊕p+q=n−1Tor(Hp(F•), Hq(X•))→ 0.

This sequence splits, but the splitting is not canonical

Hn(F•⊗X•) ∼=
(
⊕p+q=n Hp(F•)⊗Hq(X•)

)
⊕
(
⊕p+q=n−1 Tor(Hp(F•), Hq(X•))

)
.

Proof:
1. For each n ∈ Z we have a short exact sequence

0→ Bn(F•)
in−→ Zn(F•)

πn−→ Hn(F•)→ 0. (40)

As Fn is free, the subgroups Zn(F•), Bn(F•) ⊂ Fn are free as well, and this short exact sequence
is a free resolution of Hn(F•). As we have commuting diagrams

0 // Zn(F•)

0
��

ιn // Fn

dn
��

dn // Bn−1(F•)

0
��

// 0

0 // Zn−1(F•)ιn−1

// Fn−1 dn−1

// Bn−2(F•) // 0

we can promote the groups Zn(F•) and Bn−1(F•) to chain complexes by equipping them with
the trivial differential and obtain a short exact sequence of chain complexes

0→ Z•(F•)
ι•−→ F•

d•−→ B−1
• (F•)→ 0, (41)

where B−1
n (F•) = Bn−1(F•), ιn : Zn(F•) → Fn is the inclusion and dn : Fn → Bn−1(F•) the

corestriction of the differential. As Bn−1(F•) ⊂ Fn−1 is free as a subgroup of a free abelian
group, this sequence splits in each degree n by Lemma 5.3.2.

Tensoring with a chain complex X• yields a short exact sequence of chain complexes

0→ Z•(F•)⊗X•
ι•⊗id−−−→ F•⊗X•

d•⊗id−−−→ B−1
• (F•)⊗X• → 0. (42)

As Fp is a free abelian group, we have a splitting Fp ∼= ker dp ⊕ im dp = Zp(F•) ⊕ Bp−1(F•).
Because the boundary operators of Z•(F•) and B−1

• (X•) are trivial, this yields a splitting of
the short exact sequence (42), given by the following isomorphisms, which define a chain map

(F•⊗X•)n = ⊕p+q=nFp⊗Xq
∼= (⊕p+q=nZp(F•)⊗Xq)⊕ (⊕p+q=nBp−1(F•)⊗Xq) .

As Z•(F•) and B−1
• (F•) are free chain complexes with trivial boundary operators, by Lemma

5.4.5 the long exact homology sequence for (42) takes the form

. . .
∂n+1−−−→ (Z•(F•)⊗H•(X•))n

Hn(ι•⊗id)−−−−−−→ Hn(F•⊗X•)
Hn(d•⊗id)−−−−−−→ (B−1

• (F•)⊗H•(X•))n
∂n−→ . . .

(43)

The exactness of this sequence yields for all n ∈ Z short exact sequences

0→ coker ∂n+1 → Hn(F•⊗X•)→ ker ∂n → 0. (44)
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By definition, the connecting homomorphism ∂n assigns to x ∈ ⊕p+q=nBp−1(F•)⊗Hq(X•) the
unique y ∈ ⊕p+q=nZp−1(F•)⊗Hq(X•) with Hn−1(ι•⊗id)(y) = dn(w), where w ∈ Hn(F•⊗X•)
satisfies Hn(d•⊗id)(w) = x. If x = Σm

i=1dpi(fi)⊗[xi], we can take w = Σm
i=1[fi⊗xi], which

implies y = Σm
i=1dp(fi)⊗[xi]. Thus, the connecting homomorphism is given by

∂n = (i•⊗id)n : ⊕p+q=nBn−1(F•)⊗Hq(X•)→ ⊕p+q=nZn−1(F•)⊗Hq(X•),

where i• : B−1
• (F•)→ Z•(F•) is the inclusion from (40). As (40) is a free resolution, this yields

ker ∂n = ⊕p+q=nTor(Hp−1(F•), Hq(F•))

coker ∂n+1 = ⊕p+q=nHp(F•)⊗Hq(X•).

Inserting this back into (44) proves the claim.

2. We prove that the sequence splits only for free chain complexes X•, as this is the only case
needed in the following. If X• is free, the short exact sequence of chain complexes

0→ Z•(X•)
ι′•−→ X•

d′•−→ B−1
• (X•)→ 0

splits in each degree, analogously to (41), because Bn−1(X•) ⊂ Xn−1 is free as a subgroup of a
free group. By Exercise 8 we can choose retractions rn : Fn → Zn(F•) and r′n : Xn → Zn(X•)
with rn ◦ ιn = idZn(F•) and r′n ◦ ι′n = idZn(X•). The composite maps

sn = πn ◦ rn : Fn → Hn(F•), f 7→ [rn(f)] s′n = π′n ◦ r′n : Xn → Hn(X•), x 7→ [r′n(x)]

are surjective as composites of two surjective maps, because retractions are surjective. As
rn−1|Zn−1(F•) = id and r′n−1|Zn−1(X•) = id, we have for all f ∈ Fn and x ∈ Xn

sn−1 ◦ dn(f) = πn−1 ◦ rn−1 ◦ dn(f) = [dn(f)] = 0 s′n−1 ◦ d′n(x) = π′n−1 ◦ r′n−1 ◦ d′n(x) = [d′n(x)] = 0.

Hence, the maps sn : Fn → Hn(F•) and s′n : Xn → Hn(X•) define a chain map

ψ• : F•⊗X• → H•(F•)⊗H•(X•), Fp⊗Xq 3 f⊗x 7→ [rp(f)]⊗[r′q(x)] ∈ Hp(F•)⊗Hq(X•),

where the chain complexes H•(F•) and H•(X•) are equipped with the trivial differential. The
induced maps on the homologies

Hn(ψ•) : Hn(F•⊗X•)→ ⊕p+q=nHp(F•)⊗Hq(X•), [f⊗x] 7→ [rp(f)]⊗[r′q(x)]

are left inverses to the maps φn and split the short exact sequence in the Künneth formula. 2

With the algebraic Künneth formula, we can now relate singular homology with coefficients
in an abelian group M to singular homology with coefficients in Z. For this, we consider the
singular chain complex S•(X) and interpret the coefficient group M as a chain complex with a
single non-trivial entry. The algebraic Künneth formula then yields the following corollary.

Corollary 5.4.7 (universal coefficient theorem):
For every topological space X and abelian group M there is a short exact sequence

0→ Hn(X)⊗M [x]⊗m 7→[x⊗m]−−−−−−−−→ Hn(X;M)→ Tor(Hn−1(X),M)→ 0.

The sequence splits, but not canonically:

Hn(X;M) ∼=
(
Hn(X)⊗M

)
⊕ Tor(Hn−1(X),M).
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Proof:
We consider the singular chain complex F• = S•(X), which is free, and a chain complex X•
with X0 = M and Xk = 0 for k 6= 0. As this implies H0(X•) = M and Hq(X•) = 0 for q 6= 0,
this yields the short exact sequence in the corollary. Its splitting is given by the maps

ψn : Hn(X;M)→ Hn(X)⊗M, [x⊗m] 7→ [rn(x)]⊗m,

where rn : Sn(X)→ Zn(X) is a retraction of ιn : Zn(X)→ Sn(X), as in step 2. of the proof of
Theorem 5.4.6. 2

The universal coefficient theorem in Corollary 5.4.7 shows that singular homologies with co-
efficients in an abelian group are determined by the ones with coefficients in Z. Hence, the
additional information contained in them is purely algebraic. However, they are nevertheless
useful in many applications. For instance, homologies with coefficients in certain fields can con-
tain less information, but may be easier to compute in some cases. In the setting of manifolds, it
is sometimes more natural to work with homologies with real coefficients rather than integers.

Example 5.4.8:

1. If X is a topological space such that Hn(X) is free for all n ∈ N0, then we have
Tor(Hn−1(X),M) = 0 for all n ∈ N and abelian groups M . The homology groups with
coefficients in M are then given by Hn(X;M) = Hn(X)⊗M .

2. In particular, we have for all abelian groups M

Hn(Sk;M) =


M ⊕M n = k = 0

M n = 0, k ∈ N or n = k ∈ N
0 else.

3. If X is a CW complex of finite type and M torsion free then Hn(X;M) = Hn(X)⊗M
for all n ∈ N0 (Exercise 65).

4. By Example 5.1.3, real projective space RPn has the homology groups

Hk(RPn) =


Z k = 0 or k = n odd

Z/2Z 1 ≤ k < n odd

0 k even or k > n.

The universal coefficient theorem gives

Hk(RPn;M) =


M k = 0 or k = n odd

M/2M 1 ≤ k < n odd

Tor2(M) 1 ≤ k ≤ n even

0 k ≥ n+ 1,

where we used Z/2Z⊗M = M/2M and Tor(Z/2Z,M) = Tor2(M) = {m ∈ M | 2m = 0}
from Example 5.3.10, 1.
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5.5 Homologies of product spaces

An important application of the Künneth formula in Theorem 5.4.6 are homologies of product
spaces. Together with the Eilenberg-Zilber Theorem, which we will prove in this section, the
Künneth formula yields a short exact sequence that allows one to compute homologies of
product spaces X × Y in terms of the homologies of X and Y .

For this we need to relate the singular chain complex S•(X × Y ) for the product of two topo-
logical spaces X, Y to the tensor product S•(X)⊗S•(Y ) of their singular chain complexes. This
amounts to relating the functors

S•× : Top× Top
×−→ Top

S•−→ ChAb ⊗(S• × S•) : Top× Top
S•×S•−−−−→ ChAb × ChAb

⊗−→ ChAb.

The appropriate mathematical structure to relate them are natural transformations

f : S•× ⇒ ⊗(S• × S•) g : ⊗(S• × S•)⇒ S•×,

whose components for a pair (X, Y ) of topological spaces are chain maps

fX,Y• : S•(X × Y )→ S•(X)⊗S•(Y ) gX,Y• : S•(X)⊗S•(Y )→ S•(X × Y ).

Their naturality states that for all continuous maps α : X → X ′ and β : Y → Y ′

fX
′,Y ′

• ◦ S•(α× β) = (S•(α)⊗S•(β)) ◦ fX,Y• gX
′,Y ′

• ◦ (S•(α)⊗S•(β)) = S•(α× β) ◦ gX,Y• . (45)

This naturality condition is very strong and determines these chain maps almost completely.

The basis elements of Sp(X) and Sq(Y ) are singular n-simplexes ν : ∆p → X and ρ : ∆q → Y ,
which we can also interpret as continuous maps α = ν : ∆p → X and β = ρ : ∆q → Y . This
gives ν⊗ρ = (Sp(ν)⊗Sq(ρ))(id∆p⊗id∆q). The naturality condition (45) then allows us to express

gX,Yp+q (ν⊗ρ) in terms of g∆p,∆q

p+q (id∆p⊗id∆q).

Likewise, a basis of Sn(X ×Y ) are singular n-simplexes χ : ∆n → X ×Y or, equivalently, pairs
(σ, τ) of singular n-simplexes σ : ∆n → X and τ : ∆n → Y , obtained by projecting on X, Y . In
this case, we have (σ, τ) = Sn(σ, τ)(Dn) with the diagonal map Dn : ∆n → ∆n×∆n, x 7→ (x, x).
The naturality condition (45) then allows us to express fX,Yn in terms of f∆n,∆n

n (Dn).

The advantage of this is that the chain complexes S•(∆
n) have trivial homologies Hk(∆

n) = 0
for all k 6= 0, as ∆n is convex and hence contractible. More generally, a chain complex X• with
Hk(X•) = 0 for k 6= 0 is called acyclic. For this reason, the constructions in this section are
called the method of acyclic models.

The first step is to look at the properties of the chain complexes S•(∆
p×∆q) and S•(∆

p)⊗S•(∆q)
with boundary operators d×1 and d⊗1 , respectively.

Lemma 5.5.1: Let p, q ∈ N0.

1. The chain complexes S•(∆
p ×∆q) and S•(∆

p)⊗S•(∆q) are free and acyclic.

2. The group isomorphism φ : S0(∆p ×∆q)→ S0(∆p)⊗S0(∆q), (x, y) 7→ x⊗y satisfies

φ ◦ d×1 S1(∆p ×∆q) ⊂ d⊗1 (S•(∆
p)⊗S•(∆q))1

φ−1 ◦ d1(S1(∆p)⊗S0(∆q)) ⊂ d×1 S1(∆p,∆q) φ−1 ◦ d1(S0(∆p)⊗S1(∆q)) ⊂ d×1 S1(∆p,∆q).
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Proof:
1. As all abelian groups Sn(∆p) and Sn(∆p ×∆q) are free by definition, their tensor products
are free by Lemma 5.2.6, and so are their direct sums. As the standard n-simplexes ∆n are
convex and hence contractible, so are their products ∆p × ∆q. This implies Hn(∆p) = 0 and
Hn(∆p ×∆q) = HnS•(∆

p ×∆q) = 0 for all n > 0 and p, q ∈ N0. As all abelian groups Sn(∆p)
for n ∈ Z are free with H0(∆p) = Z the Künneth formula from Theorem 5.4.6 implies for n 6= 0

Hn(S•(∆
p)⊗S•(∆q)) ∼=

(
⊕j+k=n Hj(∆

p)⊗Hk(∆
q)
)
⊕
(
⊕j+k=n−1 Tor(Hj(∆

p), Hk(∆
q))
)

= 0.

2. The universal property of the product identifies singular simplexes χ : ∆n → ∆p ×∆q with
pairs (ν, ρ) of singular simplexes ν = π1 ◦ χ : ∆n → ∆p and ρ = π2 ◦ χ : ∆n → ∆q. We then
have for all 1-simplexes ν : ∆1 → ∆p and ρ : ∆n → ∆q and x ∈ ∆p, y ∈ ∆q

φ ◦ d×1 (ν, ρ) = ν(1)⊗ρ(1)− ν(0)⊗ρ(0) = (ν(1)− ν(0))⊗ρ(1) + ν(0)⊗(ρ(1)− ρ(0))

= d1(ν)⊗ρ(1) + ν(0)⊗d1(ρ) = d1(ν⊗ρ(1) + ν(0)⊗ρ) ∈ d⊗1 (S•(∆
p)⊗S•(∆q))1

φ−1 ◦ d⊗1 (ν⊗y) = (d1(ν), y) = d1(ν, y) ∈ d×1 S1(∆p ×∆q)

φ−1 ◦ d⊗1 (x⊗ρ) = (x, d1(ρ)) = d1(x, ρ) ∈ d×1 S1(∆p ×∆q).

2

We will now use the fact that the chain complexes S•(∆
p×∆q) and S•(∆

p)⊗S•(∆q) are acyclic
to construct natural transformations f : S•× ⇒ ⊗(S• × S•) and g : ⊗(S• × S•) ⇒ S•×, as
outlined above. Naively, one could expect that these should be natural isomorphisms, but this is
neither true nor required. In order to induce isomorphisms on the homologies, it is sufficient that
their components define chain homotopy equivalences between S•(X × Y ) and S•(X)⊗S•(Y ).

The existence of such natural transformations follows with the Theorem of Eilenberg and Zilber.
To keep notation simple, we identify for all topological spaces X and Y the free abelian groups
S0(X × Y ) = 〈X × Y 〉Z ∼= 〈X〉Z⊗〈Y 〉Z = S0(X)⊗S0(Y ).

Theorem 5.5.2: (Eilenberg-Zilber)

1. There are natural transformations f : S•× ⇒ ⊗(S• × S•) and g : ⊗(S• × S•) ⇒ S•×
whose components are chain maps with fX,Y0 = gX,Y0 = id.

2. Their components fX,Y• : S•(X×Y )→ S•(X)⊗S•(Y ), gX,Y• : S•(X×Y )→ S•(X)⊗S•(Y )
are unique up to chain homotopies natural in X, Y .

3. Their components fX,Y• and gX,Y• form chain homotopy equivalences with chain homo-
topies that are natural in X, Y .

Any such pair of natural transformations f and g is called an Eilenberg-Zilber map.

Proof:
1. We construct fX,Yn and gX,Yn inductively. For n = 0 we set fX,Y0 = gX,Y0 = id.

Suppose we constructed for all 0 ≤ k ≤ n−1 group homomorphisms fX,Yk and gX,Yk that satisfy
for all k < n and continuous maps α : X → X ′ and β : Y → Y ′

d⊗k ◦ f
X,Y
k = fX,Yk−1 ◦ d

×
k d×k ◦ g

X,Y
k = gX,Yk−1 ◦ d

⊗
k (46)

(S•(α)⊗S•(β))k ◦ fX,Yk = fX
′,Y ′

k ◦ Sk(α, β) Sk(α, β) ◦ gX,Yk = gX
′,Y ′

k ◦ (S•(α)⊗S•(β))k. (47)
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We denote by Dn : ∆n → ∆n ×∆n, x 7→ (x, x) the diagonal map.

If n = 1, the second claim in Lemma 5.5.1 implies that there is a z ∈ (S•(∆
1)× S•(∆1))1 and

for p+ q = 1 a w ∈ S1(∆p ×∆q) with

d⊗1 (z) = f∆1,∆1

0 ◦ d×1 (D1) = d×1 (D1) d×1 (w) = g∆p,∆q

0 ◦ d⊗1 (id∆p⊗id∆q) = d⊗1 (id∆p⊗id∆q).

If n > 1, then (46) implies for p+ q = n

d⊗n−1(f∆n,∆n

n−1 ◦ d×n (Dn)) = f∆n,∆n

n−2 ◦ d×n−1 ◦ d×n (Dn) = 0

d×n−1(g∆p,∆q

n−1 ◦ d⊗n (id∆p⊗id∆q)) = g∆p,∆q

n−2 ◦ d⊗n−1 ◦ d⊗n (id∆p⊗id∆q) = 0.

This shows that the terms in the brackets are (n− 1)-cycles and hence (n− 1)-boundaries, as
Hn−1(∆n ×∆n) = Hn−1(S•(∆

p)⊗S•(∆q)) = 0 for n > 1.

We define for all singular simplexes σ : ∆n → X, τ : ∆n → Y , ν : ∆p → X and ρ : ∆q → Y

fX,Yn (σ, τ) = (S•(σ)⊗S•(τ))n(z) d⊗n (z) = f∆n,∆n

n−1 ◦ d×n (Dn) (48)

gX,Yn (ν⊗ρ) = Sn(ν, ρ)(w) d×n (w) = g∆p,∆q

n−1 ◦ d⊗n (id∆p⊗id∆q).

We now show that (46) and (47) hold for k = n. For (46), we compute

d⊗n ◦ fX,Yn (σ, τ)
(48)
= d⊗n ◦ (S•(σ)⊗S•(τ))n(z) = (S•(σ)⊗S•(τ))n−1 ◦ d⊗n (z)

(48)
= (S•(σ)⊗S•(τ))n−1 ◦ f∆n,∆n

n−1 ◦ d×n (Dn)
(47)
= fX,Yn−1 ◦ Sn−1(σ, τ) ◦ d×n (Dn)

= fX,Yn−1 ◦ d×n ◦ Sn(σ, τ)(Dn) = fX,Yn−1 ◦ d×n (σ, τ)

d×n ◦ gX,Yn (ν⊗ρ)
(48)
= d×n ◦ Sn(ν, ρ)(w) = Sn−1(ν, ρ) ◦ d×n (w)

(48)
= Sn−1(ν, ρ) ◦ g∆p,∆q

n−1 ◦ d⊗n (id∆p⊗id∆q)

(47)
= gX,Yn−1 ◦ (S•(ν)⊗S•(ρ))n−1 ◦ d⊗n (id∆p⊗id∆q)

= gX,Yn−1 ◦ d⊗n ◦ (S•(ν)⊗S•(ρ))n(id∆p⊗id∆q) = gX,Yn−1 ◦ d⊗n (ν⊗ρ).

For (47) we consider continuous maps α : X → X ′ and β : Y → Y ′ and obtain

(S•(α)⊗S•(β))n ◦ fX,Yn (σ, τ)
(48)
= (S•(α ◦ σ)⊗S•(β ◦ τ))n(z)

(48)
= fX

′,Y ′

n (α ◦ σ, β ◦ τ)

= fX
′,Y ′

n ◦ Sn(α, β)(σ, τ)

Sn(α, β) ◦ gX,Yn (ν, ρ)
(48)
= Sn(α ◦ ν, β ◦ ρ)(w)

(48)
= gX

′,Y ′

n (α ◦ ν⊗β ◦ ρ)

= gX
′,Y ′

n ◦ (S•(α)⊗S•(β))n(ν⊗ρ).

2. We show that natural transformations f, f ′ : S•× ⇒ ⊗(S•×S•) and g, g′ : ⊗(S•×S•)⇒ S•×
with f ′X,Y0 = fX,Y0 and g′X,Y0 = gX,Y0 are chain homotopic with a chain homotopy that is natural
in X and Y .

We construct chain homotopies hX,Y• : fX,Y• ⇒ f ′X,Y• and kX,Y• : gX,Y• ⇒ g′X,Y• inductively from

hX,Y0 = 0 : S0(X × Y )→ (S•(X)⊗S•(Y ))1 kX,Y0 = 0 : (S•(X)⊗S•(Y ))0 → S1(X × Y ).

Suppose we constructed hX,Yj and kX,Yj for all topological spaces X, Y and all 0 ≤ j ≤ n − 1
such that for all 0 ≤ j ≤ n− 1 and continuous maps α : X → X ′ and β : Y → Y ′

d⊗j+1 ◦ h
X,Y
j + hX,Yj−1 ◦ d×j = f ′X,Yj − fX,Yj d×j+1 ◦ h

X,Y
j + hX,Yj−1 ◦ d⊗j = g′X,Yj − gX,Yj (49)

(S•(α)⊗S•(β))j+1 ◦ hX,Yj = hX
′,Y ′

j ◦ Sj(α, β) Sj+1(α, β) ◦ kX,Yj = kX
′,Y ′

j ◦ (S•(α)⊗S•(β))j. (50)
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Then we have from (49) for j = n− 1

d⊗n ((f ′∆
n,∆n

n − f∆n,∆n

n − h∆n,∆n

n−1 ◦ d×n )(Dn)) = h∆n,∆n

n−2 ◦ d×n−1 ◦ d×n (Dn) = 0

d×n ((g′∆
n,∆n

n − g∆n,∆n

n − k∆n,∆n

n−1 ◦ d⊗n )(id∆p⊗id∆q)) = k∆n,∆n

n−2 ◦ d⊗n−1 ◦ d⊗n (id∆p⊗id∆q) = 0

This shows that the terms in the brackets are n-cycles and hence n-boundaries, because we
have Hn(∆n ×∆n) = 0 and Hn(∆p ×∆q) = 0 for n > 0. We define for all singular n-simplexes
σ : ∆n → X, τ : ∆n → Y , ν : ∆p → X and ρ : ∆q → Y

hX,Yn (σ, τ) = (S•(σ)⊗S•(τ))n+1(z) d⊗n+1(z) = (f ′∆
n,∆n

n − f∆n,∆n

n − h∆n,∆n

n−1 ◦ d×n )(Dn) (51)

kX,Yn (ν⊗ρ) = Sn+1(ν, ρ)(w) d×n+1(w) = (g′∆
n,∆n

n − g∆n,∆n

n − k∆n,∆n

n−1 ◦ d⊗n )(id∆p⊗id∆q).

A direct computation shows that with this definition the identities (49) and (50) hold for j = n

d⊗n+1 ◦ hX,Yn (σ, τ)
(51)
= d⊗n+1 ◦ (S•(σ)⊗S•(τ))n+1(z) = (S•(σ)⊗S•(τ))n ◦ d⊗n+1(z)

(51)
= (S•(σ)⊗S•(τ))n ◦ (f ′∆

n,∆n

n − f∆n,∆n

n − h∆n,∆n

n−1 ◦ d×n )(Dn)

nat f,(50)
= (f ′X,Yn − fX,Yn ) ◦ Sn(σ, τ)(Dn)− hX,Yn−1 ◦ Sn−1(σ, τ) ◦ d×n (Dn)

= (f ′X,Yn − fX,Yn − hX,Yn−1 ◦ d×n ) ◦ Sn(σ, τ)(Dn)

= (f ′X,Yn − fX,Yn − hX,Yn−1 ◦ d×n )(σ, τ)

d×n+1 ◦ kX,Yn (ν⊗ρ)
(51)
= d×n+1 ◦ Sn(ν, ρ)(w) = Sn(ν, ρ) ◦ d×n+1(w)

(51)
= Sn(ν, ρ) ◦ (g′∆

p,∆q

n − g∆p,∆q

n − k∆p,∆q

n−1 ◦ d⊗n )(id∆p⊗id∆q)

nat g,(50)
= (g′X,Yn − gX,Yn ) ◦ (S•(ν)⊗S•(ρ))n−1(id∆p⊗id∆q)

− kX,Yn−1 ◦ (S•(ν)⊗S•(ρ))n−1 ◦ d⊗n (id∆p⊗id∆q)

= (g′X,Yn − gX,Yn − kX,Yn−1 ◦ d⊗n ) ◦ (S•(ν)⊗S•(ρ))n(id∆p⊗id∆q)

= (g′X,Yn − gX,Yn − kX,Yn−1 ◦ d⊗n )(ν⊗ρ)

(S•(α)⊗S•(β))n+1 ◦ hX,Yn (σ, τ)
(51)
= (S•(α ◦ σ)⊗S•(β ◦ τ))n+1(z)

= hX
′,Y ′

n+1 (α ◦ σ, β ◦ τ) = hX
′,Y ′

n ◦ Sn(α, β)(σ, τ)

Sn+1(α, β) ◦ kX,Yn (ν⊗ρ)
(51)
= Sn+1(α ◦ ν, β ◦ ρ)(w) = kX

′,Y ′

n (α ◦ ν⊗β ◦ ρ)

= kX
′,Y ′

n ◦ (S•(α)⊗S•(β))n(ν⊗ρ)

3. The proof of this statement is analogous to the proof of 2. One considers natural transforma-
tions F : S•× ⇒ S•× and G : ⊗(S• × S•)⇒ ⊗(S• × S•) with FX,Y

0 = id and GX,Y
0 = id for all

topological spaces X, Y . One inductively constructs chain homotopies hX,Y• : idS•(X×Y ) ⇒ FX,Y
•

and kX,Y• : idS•(X)⊗S•(Y ) ⇒ GX,Y
• that are natural in X and Y with hX,Y0 = 0 and kX,Y0 = 0.

Setting F = g ◦ f and G = f ◦ g then proves the claim. (Exercise 66) 2

The construction in the Eilenberg-Zilber Theorem is implicit - it just proves existence of the
natural transformations f : S•× ⇒ ⊗(S•×S•) and g : ⊗(S•×S•)⇒ S•× and the uniqueness of
their components up to natural chain homotopy. It is possible to use the inductive construction
to give concrete formulas for the components of the natural transformations f and g, but these
can be complicated, and it is often not necessary to work with concrete formulas.

113



We now combine the Eilenberg-Zilber theorem with the Künneth formula in Theorem 5.4.6 to
obtain a formula that allows us to compute the homologies of product spaces.

Corollary 5.5.3 (topological Künneth formula):
For all topological spaces X, Y there is a short exact sequence that is natural in X, Y

0→
⊕
p+q=n

Hp(X)⊗Hq(X)→ Hn(X × Y )→
⊕

p+q=n−1

Tor(Hp(X), Hq(Y ))→ 0.

The sequence splits, but not canonically.

Proof:
For topological spaces X, Y the Künneth formula gives a short exact sequence

0→
⊕
p+q=n

Hp(X)⊗Hq(X)→ Hn(S•(X)⊗S•(Y ))→
⊕

p+q=n−1

Tor(Hp(X), Hq(Y ))→ 0.

As the homologies and Tor are functors, this is natural in X and Y . As S•(X) and S•(Y ) are
free chain complexes, this sequence splits, but not canonically. The Eilenberg-Zilber Theorem
yields a chain homotopy equivalence fX,Y• : S•(X×Y )→ S•(X)⊗S•(Y ) that is natural in X, Y .
It induces an isomorphism on the homologies

Hn(S•(X)⊗S•(Y )) ∼= HnS•(X × Y ) = Hn(X × Y ).

2

Example 5.5.4:

1. If X is a topological space such that Hn(X) is a free abelian group for all n ∈ N0, then
Hn(X × Y ) = ⊕p+q=nHp(X)⊗Hq(Y ) for all topological spaces Y .

2. In particular, if X is a contractible topological space, then Hn(X × Y ) = Hn(Y ) for all
n ∈ N0, as H0(X) = Z and Hk(X) = 0 for all k > 0.

3. The n-torus T n = (S1)×n = S1 × . . .× S1 has the homologies Hk(T
n) = Z(nk).

(Exercise 67).
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6 Singular cohomology

6.1 The singular cochain complex and singular cohomology

As explained already in Section 2.1, see in particular Definition 2.1.4, there is a notion of cochain
complex that is dual to the usual notion of chain complex. A cochain complex X• = (Xn)n∈Z
consists of a family of abelian groups Xn and coboundary operators dn : Xn → Xn+1 that
raise the degree by one. Although every cochain complex X• defines a chain complex X• with
Xn = X−n and dn = d−n : Xn → Xn−1 and vice versa, it is sometimes preferable in algebraic
topology to work with cochain complexes. This leads to the concept of singular cohomology.
Just as singular homology, singular cohomology can be considered for the abelian group Z or
with coefficients in a general abelian group M .

Definition 6.1.1: Let X be a topological space and M an abelian group.

The singular cochain complex S•(X;M) with coefficients in M is the cochain complex
with Sn(X;M) = HomAb(Sn(X),M) for n ∈ Z and coboundary operator

dn = HomAb(dn+1,M) : Sn(X;M)→ Sn+1(X;M), φ 7→ φ ◦ dn+1

• elements of Sn(X;M) are called singular cochains,
• elements of Zn(X;M) = ker dn ⊂ Sn(X;M) are called singular cocycles,
• elements of Bn(X;M) = im dn−1 ⊂ Zn(X;M) are called singular coboundaries.

The nth singular cohomology group with coefficients in M is

Hn(X;M) =
Zn(X;M)

Bn(X;M)
.

For M = Z one writes S•(X) := S•(X;Z) and Hn(X) := Hn(X;Z).

The singular cohomologies of a topological space X with coefficients in an abelian group M are
not independent from its singular homologies with coefficients in Z. Just like singular homologies
with coefficients in M , they can be reduced to the singular homologies with coefficients in Z
and algebraic quantities given by the group M . This is analogous to the universal coefficient
theorem for singular homology in Corollary 5.4.7. The only difference is that the role of the
functor −⊗M : Ab→ Ab in Corollary 5.4.7 is taken by the functor Hom(−,M) : Abop → Ab.

To obtain this result, we proceed as in Section 5. The first step is to analyse the behaviour of
the functor Hom(−,M) : Abop → Ab on short exact sequences and to derive a counterpart of
Lemma 5.3.2 for the functor −⊗M : Ab→ Ab.

Lemma 6.1.2: Let M be an abelian group.

1. The functor Hom(−,M) : Abop → Ab is left exact:
for any exact sequence A

ι−→ B
π−→ C → 0 the following sequence is exact

0→ HomAb(C,M)
π∗:φ 7→φ◦π−−−−−−→ HomAb(B,M)

ι∗:φ 7→φ◦ι−−−−−→ Hom(A,M)

2. If 0→ A
ι−→ B

π−→ C → 0 is a split exact, then one has a split exact sequence sequence

0→ HomAb(C,M)
π∗:φ 7→φ◦π−−−−−−→ HomAb(B,M)

ι∗:φ 7→φ◦ι−−−−−→ Hom(A,M)→ 0.

In particular, this holds, whenever C is a free group.
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Proof:
1. We consider the group homomorphisms π∗ = Hom(π,M) : HomAb(C,M) → HomAb(B,M)
and ι∗ = Hom(π,M) : HomAb(B,M) → HomAb(A,M) and show that π∗ is injective with
imπ∗ = ker ι∗. If π∗(φ) = π∗(ψ) for group homomorphisms φ, ψ : C → M then φ ◦ π = ψ ◦ π
and by surjectivity of π this implies φ = ψ. We also have ι∗ ◦ π∗(φ) = φ ◦ π ◦ ι = φ ◦ 0 = 0 for
all group homomorphisms φ : C →M , which implies imπ∗ ⊂ ker ι∗.

If a group homomorphism χ : B → M satisfies χ ∈ ker ι∗, then we have ι∗(χ) = χ ◦ ι = 0 and
im ι = ker π ⊂ kerχ. By surjectivity of π, it induces a group homomorphism χ′ : C = imπ ∼=
B/kerπ →M with π∗(χ′) = χ′ ◦ π = χ. This shows that χ ∈ imπ∗ and im π∗ = ker ι∗.

2. The proof of the second claim is analogous to the one of Lemma 5.3.2. 2

Example 6.1.3: We apply the functor Hom(−,Z) : Abop → Ab to the short exact sequence
0→ Z z 7→nz−−−→ Z π−→ Z/nZ→ 0. This yields the chain complex

0→ HomAb(Z/nZ,Z)︸ ︷︷ ︸
∼=0

π∗:f 7→f◦π−−−−−−→ HomAb(Z,Z)︸ ︷︷ ︸
∼=Z

ι∗:f 7→f(n·−)−−−−−−−→ HomAb(Z,Z)︸ ︷︷ ︸
∼=Z

→ 0

Then the map π∗ : 0 = HomAb(Z/nZ,Z) → Hom(Z,Z), f 7→ f ◦ π is injective. As any group
homomorphism f : Z → Z is of the form f : Z → M , z 7→ zf(1), we have HomAb(Z,Z) ∼= Z
and ker (ι∗) = Torn(Z) = im π∗ = 0. However, ι∗ : Z→ Z, z 7→ nz is not surjective for n 6= ±1.

In Proposition 5.3.9 we used free resolutions to characterise the non-exactness of the functor
−⊗M : Ab → Ab in terms of the torsion functor Tor(−,M) : Ab → Ab. For this we applied
the functor −⊗M to a free resolution of an abelian group A and removed the exact part of the
resulting chain complex. On the group homomorphisms, the functor Tor(−,M) : Ab→ Ab was
obtained by lifting group homomorphisms f : A→ A′ to chain maps between the associated free
resolutions. Lemma 6.1.2 allows us to apply an analogous procedure to the functor Hom(−,M) :
Abop → Ab. This yields the functor Ext(−,M) : Abop → Ab, whose name stems from the fact
that Ext(A,M) classifies extensions of M by A.

Proposition 6.1.4:
Any abelian group M defines a functor Ext(−,M) : Abop → Ab that assigns

• to an abelian group A the group Ext(A,M) = coker ι∗ = Hom(K,M)/im ι∗ for any free
resolution A• = 0→ K

ι−→ F
π−→ A→ 0,

• to a group homomorphism f : A→ A′ the group homomorphism

Ext(f,M) = h∗ : coker(ι′∗)→ coker(ι∗), φ+ im ι′∗ → φ ◦ h+ im ι∗

for any chain map f• = (h, g, f) : A• → A′• between free resolutions that extends f .

Proof:
1. Given free resolutions A• = 0 → K

ι−→ F
π−→ A → 0 and A′• = 0 → K ′

ι′−→ F ′
π′−→ A′ → 0

of abelian groups A and A′ and a chain map f• = (h, g, f) : A• → A′• that extends a group
homomorphism f : A→ A′, we can apply the functor Hom(−,M) : Abop → Ab for an abelian
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group M to diagram (37). This yields the commuting diagram

Hom(A•,M) = 0 // Hom(A,M) π∗ // Hom(F,M) ι∗ // Hom(K,M) // 0

Hom(A′•,M) =

Hom(f•,M)

OO

0 // Hom(A′,M)
π′∗
//

f∗

OO

Hom(F ′,M)

g∗

OO

ι′∗
// Hom(K ′,M)

h∗

OO

// 0.

(52)

in which the rows are exact in the first two entries. The cokernels of ι∗ and ι′∗ are the first
cohomologies of the chain complexes in the diagram

Hom(A•,M)red = 0 // Hom(F,M) ι∗ // Hom(K,M) // 0

Hom(A′•,M)red =

Hom(f•,M)red

OO

0 // Hom(F ′,M)

g∗

OO

ι′∗
// Hom(K ′,M)

h∗

OO

// 0,

(53)

and the induced map Ext(f,M) = h∗ : coker(ι′∗)→ coker(ι∗) is given by

Ext(f,M) = H1(Hom(f•),M)red : H1Hom(A′•,M)→ H1Hom(A′•,M)red

As all free resolutions A1
• and A2

• of A are chain homotopy equivalent by Corollary 5.3.8, the
associated cochain complexes Hom(A1

•,M) and Hom(A2
•,M) in (52) are cochain homotopy

equivalent, and so are the chain complexes Hom(A1
•,M)red and Hom(A2

•,M)red in (53). Thus,
their cohomologies do not depend on the resolutions. This shows that Ext(A,M) is defined.

By Proposition 5.3.7, any two extensions f 1
• and f 2

• of f : A→ A′ are chain homotopic. This also
holds for the induced cochain maps Hom(f 1

• ,M) and Hom(f 2
• ,M) in (52) and the induced chain

maps Hom(f 1
• ,M)red and Hom(f 2

• ,M)red in (53). Hence, they induce the same homomorphisms
between the cohomologies. This shows that Ext(f,M) : Ext(A′,M)→ Ext(A,M) is defined.

2. That Ext(−,M) : Abop → Ab is a functor follows as in the proof of Proposition 5.3.9
(Exercise). 2

Example 6.1.5:

1. For all abelian groups M one has Ext(Z/nZ,M) = M/nM . This follows by choosing the
free resolution 0→ Z ι:z 7→nz−−−−→ Z π−→ Z/nZ→ 0. This yields a commuting diagram

Hom(Z,M)

∼= φ 7→φ(1)
��

ι∗:φ 7→nφ // Hom(Z,M)

∼= ψ 7→ψ(1)
��

M
ι′:m 7→nm

//M

and gives Ext(Z/nZ,M) = coker(ι∗) ∼= coker(ι′) = M/im ι′ = M/nM .

2. If A is a free group, we can choose the free resolution 0 → 0
ι−→ A

π=id−−−→ A → 0, which
gives Ext(A,M) = coker(ι∗) = Hom(0,M)/im ι∗ = 0.

3. An abelian group M is called divisible, if for all m ∈ M and n ∈ Z \ {0} there is an
m′ ∈ M with m = nm′. One can show that for divisible M one has Ext(A,M) = 0
for all abelian groups A. For finitely generated abelian groups, this follows directly from 1.
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4. For all abelian groups M and families (Ai)i∈I of abelian groups one has

Ext(⊕i∈IAi,M) = Πi∈IExt(Ai,M) Ext(M,Πi∈IAi) ∼= Πi∈IExt(M,Ai)

This follows, because the functors Hom(−,M) : Abop → Ab and Hom(M,−) : Ab→ Ab
satisfy Hom(⊕i∈IAi,M) ∼= Πi∈IHom(Ai,M) and Hom(M,Πi∈IAi) ∼= Πi∈IHom(M,Ai) by
Exercise 1 and by choosing appropriate resolutions (Exercise 68).

By making use of the functor Ext : Abop → Ab, we can now derive a counterpart of the universal
coefficient theorem for singular homologies. For this, we first derive a simplified counterpart of
the Künneth formula in Theorem 5.4.6, where we choose one of the relevant chain complexes
to be of the form 0 → M → 0. This is also known as the universal coefficient theorem for
cochain complexes. Its proof is a direct counterpart of the proof of Theorem 5.4.6, up to some
simplifications due to the choice of the chain complex 0 → M → 0. By choosing for the free
chain complex F• in Theorem 6.1.6 the singular chain complex S•(X) for a topological space
X, we then obtain the universal coefficient theorem for singular cohomology.

Theorem 6.1.6 (universal coefficients for cochain complexes):
Let M be an abelian group. For every free chain complex F• and M• = Hom(F•,M) and all
n ∈ Z one has an exact sequence that splits

0→ Ext(Hn−1(F•),M)→ Hn(M•)→ Hom(Hn(F•),M)→ 0.

Proof:
We consider the short exact sequence of chain complexes

0→ Bn(F•)
in−→ Zn(F•)

πn−→ Hn(F•)→ 0, (54)

where Bn(F•) ⊂ Zn(F•) ⊂ Fn are free as subgroups of free abelian groups. We also consider
the short exact sequence of chain complexes

0→ Z•(F•)
ι•−→ F•

d•−→ B−1
• (F•)→ 0

where B−1
n (F•) = Bn−1(F•), Z•(F•) and B−1

• (F•) are equipped with the trivial differential,
ιn : Zn(F•)→ Fn is the inclusion and dn : Fn → Bn−1(F•) is the corestriction of the differential.
As B−1

n (F•) is free for all n ∈ Z, this sequence splits. Applying Hom(−,M) : Abop → Ab yields
a short exact sequence of chain complexes

0→ Hom(B−1
• (F•),M)

d∗•−→ Hom(F•,M)
ι∗•−→ Hom(Z•(F•),M)→ 0.

As B−1
• (F•) and Z•(F•) have trivial boundary operators, the cohomologies of the first

and last cochain complex are given by HnHom(B−1
• (F•),M) = Hom(Bn−1(F•),M) and

HnHom(Z•(F•),M) = Hom(Zn(F•),M). The long exact cohomology sequence takes the form

. . .
∂n−1

−−−→ Hom(Bn−1(F•),M)
Hn(d∗•)−−−−→ Hn(M•)

Hn(ι∗•)−−−−→ Hom(Zn(F•),M)
∂n−→ . . .

This yields for each n ∈ Z a short exact sequence

0→ coker ∂n−1 → Hn(M•)→ ker ∂n → 0. (55)
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The connecting homomorphism is given by

∂n = i∗n : Hom(Zn(F•),M)→ Hom(Bn(F•),M), φ 7→ φ ◦ in.

Because (54) is a free resolution of Hn(F•), we have ker ∂n = ker i∗n = imπ∗n = Hom(Hn(F•),M)
and coker ∂n = Ext(Hn−1(F•),M). Inserting this into (55) gives the exact sequence in the
theorem. That this short exact sequence splits follows as for the Künneth formula in Theorem
5.4.6, but we omit the proof. 2

Corollary 6.1.7 (universal coefficients for singular cohomology):
For every topological space X, abelian group M and n ∈ Z one has a split exact sequence

0→ Ext(Hn−1(X),M)→ Hn(X;M)→ Hom(Hn(X),M)→ 0.

Example 6.1.8: We compute the singular cohomologies of RPn. By Corollary 6.1.7 we have
a short split exact sequence

0→ Ext(Hn−1(RPn),M)→ Hn(X;M)→ Hom(Hn(X),M)→ 0.

From Example 4.2.9 we have

Hk(RPn) =


Z k = 0 or k = n odd

Z/2Z 1 ≤ k < n odd

0 k even or k > n.

This yields Ext(Hk−1(RPn),M) = M/2M if 2 ≤ k ≤ n even and Ext(Hk−1(RPn),M) = 0 else.

We also have Hom(Hk(RPn),M) ∼= M if k = 0 or k = n odd, Hom(Hk(RPn),M) = Tor2(M)
if 1 ≤ k < n odd and Hom(Hk(RPn),M) = 0 else. This gives

Hk(RPn;M) ∼= Ext(Hk−1(RPn),M)⊕ Hom(Hk(RPn),M) =


M k = 0 ∨ k = n odd

Tor2(M) 1 ≤ k < n odd

M/2M 1 ≤ k ≤ n even

0 k < n.

Corollary 6.1.7 shows that the singular cohomologies of a topological space X with coefficients
in an abelian group M do not contain more information than the singular homologies with co-
efficients in Z. They can be computed from the coefficient group M and the singular homologies
with coefficients in Z.

More generally, cohomology theories behave analogously to homology theories. Just as homology
theories, they can be characterised by Eilenberg-Steenrod axioms, which are analogous to the
Eilenberg-Steenrod axioms for homology theories from Definition 3.7.1. Singular cohomology
with coefficients in an abelian group M satisfies these Eilenberg-Steenrod axioms and thus
defines a cohomology theory with coefficients in M .

Recall from Definition 3.7.1 that a homology theory is characterised by a family of functors
Hn : Top(2) → Ab from the category Top(2) of pairs of topological spaces and morphisms
of pairs and by a family of natural transformations ∂n : H3

n ⇒ H1
n−1, where the functors
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H1
n : Top(2) → Ab and H3

n : Top(2) → Ab assign to a pair (X,A) the homology Hn(A;M)
and the relative homology Hn(X,A;M), respectively. These natural transformations encode
the connecting homomorphisms. Likewise, a cohomology theory is characterised by a family of
functors Hn : Top(2)op → Ab and a family of natural transformations ∂n : Hn

1 ⇒ Hn+1
3 , where

Hn
1 , H

n
2 , H

n
3 : Top(2)op → Ab assign to a pair (X,A) the cohomologies Hn(A;M), Hn(X;M)

and Hn(X,A;M), respectively.

Theorem 6.1.9: Singular cohomology with coefficients in an abelian group M defines a

• collection of functors Hn : Top(2)op → Ab for each n ∈ Z,
• collection of natural transformations ∂n : Hn

1 ⇒ Hn+1
3 for all n ∈ Z,

that satisfy the Eilenberg-Steenrod axioms for cohomology:

1. Long exact sequence: for every pair (X,A) there is a long exact sequence

. . .
∂n←− Hn(A;M)

Hn(i)←−−− Hn(X;M)
Hn(π)←−−− Hn(X,A;M)

∂n−1

←−−− Hn−1(A;M)
Hn−1(i)←−−−− . . .

2. Homotopy invariance: If f, g : (X,A)→ (Y,B) are homotopic, then for all n ∈ Z

Hn(f) = Hn(g) : Hn(Y,B;M)→ Hn(X,A;M).

3. Excision: For every pair (X,A) and every open subset U ⊂ A with U ⊂ Å the inclusions
ι : (X \ U,A \ U)→ (X,A) induce isomorphisms

Hn(ι) : Hn(X,A;M)
∼−→ Hn(X \ U,A \ U ;M)

4. Additivity: For any family (Xi, Ai)i∈I of pairs of topological spaces and all n ∈ Z

Hn(qi∈IXi,qi∈IAi;M) ∼= Πi∈IH
n(Xi, Ai;M).

5. Dimension axiom: Hn(•;M) = 0 for all n ∈ Z \ {0}.

The abelian group H0(•) = M is called the coefficient group of the cohomology theory.

Proof:
The functor Hom(−,M) : Abop → Ab defines a functor Hom(−,M) : ChopAb → ChAb that

• sends a chain complexX• to the cochain complex HomAb(X•,M) with boundary operators

dn : HomAb(Xn,M)→ HomAb(Xn+1,M), φ 7→ φ ◦ dn+1,

• a chain map f• : X• → Y• to the cochain map Hom(f•,M) : Hom(Y•,M)→ Hom(X•,M)

Hom(fn,M) : HomAb(Yn,M)→ HomAb(Xn,M), φ 7→ φ ◦ fn.

That HomAb(X•,M) is indeed a cochain complex and Hom(f•,M) a cochain map follows,
because one has for all group homomorphisms φ : Xn →M and ψ : Yn →M

dn+1 ◦ dn(φ) = φ ◦ dn+1 ◦ dn+2 = φ ◦ 0 = 0 : Xn+2 →M

dn ◦ fn(ψ) = ψ ◦ fn ◦ dn+1 = ψ ◦ dn+1 ◦ fn+1 = fn+1 ◦ dn(ψ).

The functors Hn : Top(2)op → Ab are the composite functors

Hn : Top(2)op
S•−→ ChopAb

Hom(−,M)−−−−−−→ ChAb Hn

−−→ Ab.
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1. To prove the long exact sequence axiom, recall that a pair (X,A) of topological spaces gives
rise to a short exact sequence of chain complexes

0→ S•(A)
ι•−→ S•(X)

π•−→ S•(X,A)→ 0. (56)

For each n ∈ N0 there is a retraction map rn : Sn(X)→ Sn(A) with rn(σ) = σ for each singular
n-simplex σ : ∆n → X with σ(∆n) ⊂ A and rn(σ) = 0 for σ(∆n) 6⊂ A. By Exercise 8 the short
exact sequence (56) splits in each degree. Hence applying the functor Hom(−,M) yields a short
exact sequence of cochain complexes

0→ Hom(S•(X,A),M)
π∗•−→ Hom(S•(X),M)

ι∗•−→ Hom(S•(A),M)→ 0.

with an associated long exact cohomology sequence that defines the connecting homomorphisms
and hence the natural transformations ∂n : Hn

1 ⇒ Hn+1
3

. . .
∂n−1

−−−→ Hn(X,A;M)
Hn(π∗•)−−−−→ Hn(X;M)

Hn(ι∗•)−−−−→ Hn(A;M)
∂n−→ Hn+1(X,A;M)→ . . .

2. To show homotopy invariance, we show that the functor Hom(−;M) : ChopAb → ChAb sends
chain homotopies to cochain homotopies. Any chain homotopy h• : f• ⇒ g• between chain maps
f•, g• : X• → Y• yields a cochain homotopy k• = Hom(h•,M) : Hom(f•,M)⇒ Hom(g•,M)

kn = Hom(hn,M) : HomAb(Yn+1,M)→ HomAb(Xn,M), φ 7→ φ ◦ hn,

as we have for any group homomorphism φ : Yn+1 →M

(dn ◦ kn + kn+1 ◦ dn)(φ) = φ ◦ (hn ◦ dn+1 + dn+1 ◦ hn+1) = φ ◦ (gn − fn).

As the singular chain complex functor S• : Top(2) → ChAb sends homotopic maps to chain
homotopic chain maps, this proves the homotopy axiom.

3. The excision axiom follows by an argument analogous to the proof of Theorem 3.5.1. By
constructing retractions r′n : SUn (X) → Sn(A) and rn : Sn(X) → Sn(A) as in 1. one can
show that both rows of the commuting diagram (23) are split exact. Applying the functor
Hom(−,M) then yields again a commuting diagram with exact rows and an associated long
exact cohomology sequence, in which all arrows except the middle one are isomorphisms. This
proves a counterpart of Proposition 3.4.13. The excision isomorphism is obtained as in the proof
of Theorem 3.5.1.

4. The additivity axiom follows from the fact that the functor S• : Top(2)→ ChAb preserves co-
products and the functor Hom(−,M) : Abop → Ab sends direct sums in Ab to direct products.
Recall from Exercise 22 that for any family (Xi, Ai)i∈I of pairs in Top(2) and n ∈ Z

Sn(qi∈IXi,qi∈IAi) = Sn(qi∈IXi)/Sn(qi∈IAi) = ⊕i∈ISn(Xi, Ai).

By Exercise 1 the functor Hom(−,M) : Abop → Ab sends direct sums of abelian groups to
products of abelian groups. Hence, the cochain complex S•(qi∈IXi,qi∈IAi;M) is given by

. . .→ Πi∈IHom(Sn(Xi, Ai),M)
dn−1:(φi)i∈I 7→(φi◦din+1)i∈I−−−−−−−−−−−−−−−−→ Πi∈IHom(Sn+1(Xi, Ai),M)→ . . . ,

where din : Sn(Xi, Ai) → Sn−1(Xi, Ai) are the boundary operators of S•(Xi, Ai). Equivalently,
we have dn : (φi)i∈I 7→ (dni (φi))i∈I , where dni : Sn(Xi, Ai;M) → Sn+1(Xi, Ai;M), φ 7→ φ ◦ din+1

are the coboundary operators of S•(Xi, Ai;M). It follows that the cohomologies are given by

Hn(qi∈IXi,qi∈IAi;M) =
ker dn

im dn−1
=
∏
i∈I

ker dni
im dn−1

i

=
∏
i∈I

Hn(Xi, Ai;M).
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5. To prove the dimension axiom, recall that the singular chain complexes for the one-point space
are given by Sk(•) = 0 for k 6= 0 and S0(•) = Z. This yields S0(•;M) = HomAb(Z,M) ∼= M
and Sk(•;M) = HomAb(0,M) = 0 for k 6= 0, and the boundary operators are given by

d0 = 0 : M → 0, d−1 = 0 : 0→M, dk = 0 : 0→ 0 k 6= 0,−1.

This gives H0(•;M) = ker d0/im d−1 = M and Hk(•;M) = ker dk/im dk−1 = 0 for k 6= 0. 2

6.2 The ring structure of cohomology

In this section we show that the cohomology groups of a topological spaceX with coefficients in a
commutative unital ring R combine into a graded ring, the cohomology ring H•(X;R). This ring
structure contains additional information about the topological spaces: even if all cohomology
groups of two topological spaces are isomorphic, their cohomology rings may be non-isomorphic
(Exercise 72). This shows in particular that the spaces are not homotopy equivalent.

We will then investigate another structure, the cap product, that combines cohomology groups
and homology groups of a topological space to form homology groups. This can be seen as an
action of the cohomology ring on the homology groups and gives the direct sum of the latter
the structure of a graded module over the cohomology ring.

The multiplication of the cohomology ring is obtained from the multiplication of R, which
allows one to form the pointwise product of any p-cochain φ : Sp(X) → R and a q-cochain
φ : Sq(Y ) → R, and by pre-composition with an Eilenberg Zilber map f : S•× ⇒ ⊗(S• × S•)
as in Theorem 5.5.2. The latter combines a pair of a p-cochain φ : Sp(X)→ R and a q-cochain
φ : Sq(Y ) → R into a (p + q)-cochain on X × Y . Setting X = Y and precomposing with the
chain map induced by the diagonal map D : X → X × X, x 7→ (x, x) yields a multiplication
map that combines singular p- and q-cochains of X into a singular (p+ q)-cochain of X.

Definition 6.2.1: LetR be a commutative unital ring with multiplication map µ : R⊗R→ R,
r⊗s 7→ r · s and let f : S•× ⇒ ⊗(S• × S•) an Eilenberg-Zilber map.

For all topological spaces X, Y and p, q ∈ N0

• the cohomology cross product is the group homomorphism

× : Sp(X;R)⊗Sq(Y ;R)→ Sp+q(X × Y ;R), φ⊗ψ 7→ µ ◦ (φ⊗ψ) ◦ πp,q ◦ fX,Yp+q ,

where πp,q : (S•(X)⊗S•(Y ))p+q → Sp(X)⊗Sq(Y ) is the canonical projection.

• the cup product is the group homomorphism

∪ : Sp(X;R)⊗Sq(X;R)→ Sp+q(X;R), φ⊗χ 7→ µ ◦ (φ⊗χ) ◦ πp,q ◦ fX,Xp+q ◦ Sp+q(D)

where D : X → X ×X, x 7→ (x, x) denotes the diagonal map.

Remark 6.2.2: If we identify singular simplexes τ : ∆n → X × Y with pairs τ = (ρ, σ) of
singular simplexes ρ = π1 ◦ χ : ∆n → X and σ = π2 ◦ χ : ∆n → Y then the cup product and
the cross product are related by

(φ ∪ χ)(ρ) = (φ× χ)(ρ, ρ) (φ× ψ)(ρ, σ) = (φ ◦ π1 ∪ ψ ◦ π2)(ρ, σ)

for φ ∈ Sp(X), χ ∈ Sq(X), ψ ∈ Sq(Y ) and singular simplexes ρ : ∆p → X and σ : ∆q → Y .
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We can also describe the cross and the cup product with the following commuting diagram

Sn(X)

Sn(D)

��

φ∪χ // R

Sn(X ×X)

φ×χ

55

fX,Xn

��

R⊗R

µ:r⊗s 7→r·s

OO

⊕j+k=nSj(X)⊗Sk(X) πp,q
// Sp(X)⊗Sq(X)

φ⊗χ

OO

Clearly, the cross and cup products of cochains from Definition 6.2.1 depend on the choice of the
Eilenberg-Zilber map. However, we are mainly interested in the induced maps on the cohomolo-
gies. As all Eilenberg-Zilber maps are related by natural chain homotopies, this dependence on
the choice of the Eilenberg-Zilber map vanishes, once one passes to the cohomologies.

Proposition 6.2.3: For all topological spaces X, Y , commutative unital rings R and p, q ∈ N0

the cross product and the cup product induce group homomorphisms

× : Hp(X;R)⊗Hq(Y ;R)→ Hp+q(X × Y ;R), [φ]⊗[χ] 7→ [φ× χ]

∪ : Hp(X;R)⊗Hq(X;R)→ Hp+q(X;R), [φ]⊗[ψ] 7→ [φ ∪ ψ]

that do not depend on the choice of the Eilenberg-Zilber map.

Proof:
1. To show that the cross and cup product are well-defined on the homologies, it is sufficient
to consider the cross product by Remark 6.2.2. We have to show that the cross product of a
coboundary with a cochain is again a coboundary. For this let φ ∈ Zp(X;R), ψ ∈ Zq(Y ;R),
χ ∈ Sp−1(X;R) and ξ ∈ Sq−1(X;R). With the identities

πp,q ◦ dp+q+1 = (dp+1⊗id) ◦ πp+1,q + (−1)p(id⊗dq+1) ◦ πp,q+1 (57)

and with dp(φ) = 0 and dq(ψ) = 0 we obtain

dp−1(χ)× ψ = µ ◦ ((χ ◦ dp)⊗ψ) ◦ πp,q ◦ fX,Yp+q

(57)
= µ ◦ (χ⊗ψ) ◦ πp−1,q ◦ dp+q ◦ fX,Yp+q

= µ ◦ (χ⊗ψ) ◦ πp−1,q ◦ fX,Yp+q−1 ◦ dp+q = dp+q−1(χ× ψ)

φ× dq−1(ξ) = µ ◦ (φ⊗(ξ ◦ dq)) ◦ πp,q ◦ fX,Yp+q

(57)
= (−1)pµ ◦ (φ⊗ξ) ◦ πp,q−1 ◦ dp+q ◦ fX,Yp+q

= (−1)pµ ◦ (φ⊗ξ) ◦ πp,q−1 ◦ fX,Yp+q−1 ◦ dp+q = (−1)pdp+q−1(φ× ξ)

2. That the cross product and cup product on the cohomologies is independent of the choice
of the Eilenberg-Zilber map follows, because any two Eilenberg-Zilber maps are related by
natural chain homotopies. If f•, f

′
• : S•(X×Y )→ S•(X)⊗S•(Y ) are Eilenberg-Zilber maps and

h• : f• ⇒ f ′• a natural family of chain homotopies, then we have

φ×f ′ ψ − φ×f ψ = µ ◦ (φ⊗ψ) ◦ πp,q ◦ (f ′X,Yp,q − fX,Yp,q )

= µ ◦ (φ⊗ψ) ◦ πp,q ◦ (dp+q+1 ◦ hX,Yp+q + hX,Yp+q−1 ◦ dp+q)
(57)
= µ ◦ (dp(φ)⊗ψ) ◦ πp+1,q ◦ hX,Yp+q+1 + (−1)pµ ◦ (φ⊗dq(ψ)) ◦ πp,q+1 ◦ hX,Yp+q+1

+ dp+q(µ ◦ (φ⊗ψ) ◦ πp,q ◦ hX,Yp+q−1)
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The last summand of the last term is trivial in the cohomology class Hp+q(X×Y ;R), the other
two summands vanish on cohomology classes [φ] ∈ Hp(X;R) and [ψ] ∈ Hq(Y ;R). 2

Although the cross product and the cup product are defined abstractly, in terms of Eilenberg-
Zilber maps, it is useful for computations and proofs to have a more concrete description. This
is achieved by considering a specific Eilenberg-Zilber map with a geometric interpretation, the
Alexander-Whitney map. It is given in terms of front and rear faces of singular simplexes.

Definition 6.2.4: Let X be a topological space and σ : ∆n → X a singular n-simplex in X.

1. The (n− q)-dimensional front face of σ is the singular (n− q)-simplex

F n−q(σ) = σ ◦ in−q : ∆n−q → X in−q := fnn ◦ . . . ◦ f
n−q+1
n−q+1 : ∆n−q → ∆n, ei 7→ ei.

2. The q-dimensional back face or rear face of σ is the singular q-simplex

Rq(σ) = σ ◦ rq : ∆q → X rq := fn0 ◦ . . . ◦ f
q+1
0 : ∆q → ∆n, ei 7→ en−q+i.

Remark 6.2.5:

1. The front and rear face define group homomorphisms F n−q : Sn(X) → Sn−q(X) and
Rq : Sn(X)→ Sq(X) that are natural in X: for all continuous maps f : X → Y one has

F n−q ◦ Sn(f) = Sn−q(f) ◦ F n−q Rq ◦ Sn(f) = Sq(f) ◦Rq.

2. A direct computation using the relations fni ◦ fn−1
j = fnj ◦ fn−1

i−1 for 0 ≤ j < i ≤ n from
(9) shows that the front and rear face satisfy

F n−q−1(σ ◦ fni ) =

{
F n−q(σ) ◦ fn−qi i ≤ n− q
F n−q−1(σ) i ≥ n− q

(58)

Rq(σ ◦ fni ) =

{
Rq(σ) i ≤ n− q
Rq+1(σ) ◦ f q+1

i−n+q i ≥ n− q.

To define the Alexander-Whitney map, we again identify singular n-simplexes ρ : ∆n → X×Y
with pairs (σ, τ) of singular n-simplexes σ = π1 ◦ ρ : ∆n → X and τ = π2 ◦ ρ : ∆n → Y . The
Alexander-Whitney map on a pair (σ, τ) of singular n-simplexes is then obtained by taking the
tensor product of the p-dimensional front face of σ and the q-dimensional rear face of τ and
summing over all p, q with p+ q = n.

Proposition 6.2.6: The group homomorphisms

AWX,Y
n : Sn(X × Y )→

⊕
p+q=n

Sp(X)⊗Sq(Y ), (σ, τ) 7→
∑
p+q=n

F p(σ)⊗Rq(τ)

define a natural transformation AW : S•× ⇒ ⊗(S• × S•), the Alexander-Whitney map.

Proof:
In degree 0, the Alexander-Whitney map is the canonical isomorphism

AWX,Y
0 : S0(X × Y ) = 〈X × Y 〉Z

∼=−→ 〈X〉Z⊗〈Y 〉Z = S0(X)⊗S0(Y ).
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The naturality of the Alexander-Whitney map follows directly from Remark 6.2.5, 1. That its
components are chain maps follows by a direct computation with Remark 6.2.5, 2:

dn ◦ AWX,Y
n (σ, τ)

=
n−1∑
q=0

n−q∑
j=0

(−1)j(F n−q(σ) ◦ fn−qj )⊗Rq(τ) +
n∑
q=1

q∑
j=0

(−1)j+n−qF n−q(σ)⊗Rq(τ) ◦ f qj

(58)
=

n−1∑
q=0

n−q∑
j=0

(−1)jF n−q−1(σ ◦ fnj )⊗Rq(τ) +
n∑
q=1

q∑
j=0

(−1)j+n−qF n−q(σ)⊗Rq−1(τ ◦ fnj+n−q)

=
n−1∑
q=0

n−q∑
j=0

(−1)jF n−q−1(σ ◦ fnj )⊗Rq(τ) +
n−1∑
q=0

n∑
j=n−q+1

(−1)jF n−q−1(σ)⊗Rq(τ ◦ fnj )

(58)
=

n−1∑
q=0

n∑
j=0

(−1)jF n−q−1(σ ◦ fnj )⊗Rq(τ ◦ fnj ) = AWX,Y
n−1 ◦ dn(σ, τ).

2

Corollary 6.2.7: The cross product and the cup product are given by

([φ]× [ψ])(σ, τ) = φ(F p(σ)) · ψ(Rq(τ)) ([φ] ∪ [χ])(σ) = φ(F p(σ)) · χ(Rq(σ))

for φ ∈ Zp(X;R), ψ ∈ Zq(Y ;R), χ ∈ Zq(X;R) and σ : ∆p+q → X, τ : ∆p+q → Y .

Using the simple description of the cup product in terms of the Alexander-Whitney map, we
can investigate its properties. Its construction in terms of an Eilenberg-Zilber map implies that
the cup product is natural in the underlying topological space X. Its concrete description in
terms of the Alexander-Whitney map shows that it is also associative and commutative up to
a sign that depends on the dimension of the cohomology groups. Analogous properties hold for
the cross product, but we will not require them in the following, so we leave the formulation of
the corresponding statements for cross products and their proof as an exercise.

Proposition 6.2.8: Let X, Y, Z be topological spaces, R a commutative unital ring and
α ∈ Zp(X;R), β ∈ Zq(X;R), γ ∈ Zr(X;R). The cup product has the following properties

1. Naturality: Hp+q(f)([α]∪[β]) = Hp(f)[α]∪Hq(f)[β] for all continuous maps f : X → Y ,

2. Associativity: [α] ∪ ([β] ∪ [γ]) = ([α] ∪ [β]) ∪ [γ],

3. Graded commutativity: [α] ∪ [β] = (−1)pq[β] ∪ [α].

Proof:
1. Naturality follows, due to the naturality of the Eilenberg-Zilber map, the naturality of the
map πp+q : (S•(X)⊗S•(Y ))p+q → Sp(X)⊗Sq(Y ) and of the diagonal map D : X → X ×X.

2. Associativity holds already for the cup product of cochains and follows from the formula for
the Alexander-Whitney map and the formulas for the front and rear face in Definition 6.2.4.
These formulas imply for all singular n-simplexes σ : ∆n → X with n = p+ q + r

F p(σ)⊗F q ◦Rq+r(σ)⊗Rr ◦Rq+r(σ) = F p ◦ F p+q(σ)⊗Rq ◦ F p+q(σ)⊗Rr(σ)

This gives for all φ ∈ Sp(X;R), ψ ∈ Sq(X;R) and χ ∈ Sr(X;R) and singular n-simplexes
σ : ∆n → X with n = p+ q + r

(φ ∪ ψ) ∪ χ(σ) = (φ ∪ ψ)(F p+q(σ)) · χ(Rr(σ)) = φ(F p ◦ F p+q(σ)) · ψ(Rq ◦ F p+q(σ)) · χ(Rr(σ))

= φ(F p(σ)) · ψ(F q ◦Rq+r(σ)) · χ(Rr ◦Rq+r(σ)) = φ(F p(σ)) · (ψ ∪ χ)(Rq+r(σ)) = φ ∪ (ψ ∪ χ)(σ).
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3. Graded commutativity holds only for the cup product of the cohomologies, not of the
cochains. To prove it for the cohomologies, we consider the group homomorphisms

φXn : Sn(X)→ Sn(X), σ 7→ (−1)n(n+1)/2σ ◦ In

where In : ∆n → ∆n, [v0, . . . , vn] 7→ [vn, . . . , v0] is the affine-linear map that reverses the
ordering of the vertices of the standard n-simplex. They satisfy φXn ◦φXn = idSn(X) for all n ∈ N0

and topological spaces X as well as φX0 = idS0(X).

3.(a) We show that these group homomorphisms relate the cup product and its opposite:

For abelian groups A, B, we denote by τ : A⊗B → B⊗A, a⊗b 7→ b⊗a the map that flips
the factors in their tensor products. From the formulas in Definition 6.2.4 and the identity
1
2
(p+ q)(p+ q + 1) = pq + 1

2
p(p+ 1) + 1

2
q(q + 1) we then have

(F q⊗Rp) ◦ Sn(D) ◦ φXn = (−1)pqτ ◦ (φXp ◦ F p⊗φXq ◦Rq) ◦ Sn(D).

This implies for all ψ ∈ Sp(X;R) and χ ∈ Sq(X;R)

(χ ∪ ψ)(σ) = µ ◦ (χ⊗ψ) ◦ (F q⊗Rp)(σ⊗σ) (59)

= (−1)pqµ ◦ (ψ⊗χ) ◦ ((φXp ◦ F p)⊗(φXq ◦Rq))(φXn (σ)⊗φXn (σ))

= (−1)pq((ψ ◦ φXp ) ∪ (χ ◦ φXq ))(φXn (σ)⊗φXn (σ)).

3.(b) We show that these group homomorphisms define chain maps φX• : S•(X)→ S•(X) that
are natural in X and chain homotopic to the identity.

Naturality in X follows directly: for all continuous maps f : X → Y and n ∈ N0 one has

Sn(f) ◦ φXn (σ) = (−1)n(n+1)/2f ◦ σ ◦ In = φYn ◦ Sn(f).

With the identity In ◦ fnj = fnn−j ◦ In−1 we compute for all singular n-simplexes σ : ∆n → X

dn ◦ φXn (σ) = (−1)n(n+1)/2

n∑
j=0

(−1)jσ ◦ In ◦ fnj = (−1)n(n+1)/2

n∑
j=0

(−1)jσ ◦ fnn−j ◦ In−1

= (−1)n(n−1)/2

n∑
j=0

(−1)n−jσ ◦ fnn−j ◦ In−1 = (−1)n(n−1)/2

n∑
k=0

(−1)kσ ◦ fnk ◦ In−1

= φXn−1 ◦ dn(σ).

This shows that we have a natural family of chain maps φX• : S•(X)→ S•(X) with φX0 = idS0(X).
We inductively construct a construct a family of chain homotopies hX• : idS•(X) ⇒ φX• , natural
in X, by setting hX0 = 0 : S0(X)→ S1(X), as in the proof of the Eilenberg-Zilber Theorem.

Suppose we constructed for all k ≤ n− 1 group homomorphisms hXk : Sk(X)→ Sk+1(X) with

dk+1 ◦ hXk + hXk−1 ◦ dk = φXk Sk+1(f) ◦ hXk = hYk ◦ Sk(f) (60)

for all k ≤ n− 1 and continuous maps f : X → Y . As Hk(∆
n) = 0 for k ∈ N and

dn ◦ (f∆n

n − h∆n

n−1 ◦ dn) = dn ◦ f∆n

n − dn ◦ h∆n

n−1 ◦ dn = f∆n

n−1 ◦ dn− f∆n

n−1 ◦ dn + h∆n

n−2 ◦ dn−1 ◦ dn = 0,

there is a z ∈ Sn+1(∆n) with dn+1(z) = (f∆n

n − h∆n

n−1 ◦ dn)(id∆n), and we set

hXn : Sn(X)→ Sn+1(X), σ 7→ Sn+1(σ)(z) dn+1(z) = (f∆n

n − h∆n

n−1 ◦ dn)(id∆n).
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This gives for all singular n-simplexes σ : ∆n → X and continuous maps f : X → Y

dn+1 ◦ hXn (σ) = dn+1 ◦ Sn+1(σ)(z) = Sn(σ) ◦ dn+1(z)

= Sn(σ) ◦ f∆n

n (id∆n)− Sn(σ) ◦ h∆n

n−1 ◦ dn(id∆n)

= fXn (σ)− hXn−1 ◦ Sn−1(σ) ◦ dn(id∆n) = fXn (σ)− hXn−1 ◦ dn(σ)

Sn+1(f) ◦ hXn (σ) = Sn+1(f ◦ σ)(z) = hYn (f ◦ σ) = hYn ◦ Sn(f)(σ).

3.(c) As the chain maps φX• : S•(X) → S•(X) are chain homotopic to the identity maps, they
induce the identity morphisms on the cohomologies. Thus, formula (59) for cohomology classes
[ψ] ∈ Hp(X;R) and [χ] ∈ Hq(X;R) becomes [χ] ∪ [ψ] = (−1)pq[ψ] ∪ [χ]. 2

If we combine different cohomology groups of a topological space X by taking their direct sum,
then we can view the cup products as a multiplication map on this direct sum. Proposition
6.2.8 then ensures the associativity of this multiplication. The fact that all cup products are
group homomorphisms implies distributivity. The compatibility of the cup product with the
dimensions of the cohomology groups is encoded in the notion of a graded ring.

Definition 6.2.9: A graded ring R is a unital ring R together with a direct sum decompo-
sition R = ⊕∞j=0Rj of its additive group, such that Rj ·Rk ⊂ Rj+k for all j, k ∈ N0.

It is called graded commutative, if r · s = (−1)jks · r for all r ∈ Rj and s ∈ Rk.

Corollary 6.2.10: Let X be a topological space X and R a commutative ring.

1. The cohomologies of X with coefficients in R form a graded commutative ring

H•(X;R) = ⊕∞k=0H
k(X;R)

with the addition from their abelian group structure and the multiplication by the cup
product. The unit element is the cohomology class of φ : S0(X)→ R, x 7→ 1.

2. Continuous maps f : X → Y induce ring homomorphisms H•(f) : H•(Y )→ H•(X).

Proof:
The distributive law follows from the fact that the cup product induces group homomorphisms
∪ : Hp(X;R)⊗Hq(X;R)→ Hp+q(X;R), the associativity of the multiplication and the graded
commutativity from Proposition 6.2.8. That [φ] ∈ H0(X;R) is the neutral element for the
multiplication follows directly from Definition 6.2.1. That every continuous map f : X →
Y induces a unital ring homomorphism, follows from the naturality of the cup product in
Proposition 6.2.8 and the definition of the unit element. 2

The cohomology rings often contain nilpotent elements. in particular, as the multiplication adds
the degrees, any topological space X whose cohomologies Hk(X;R) vanish for all k ≥ n and
with Hk(X;R) 6= 0 for some k > 0 must contain nilpotent elements. This holds in particular for
finite CW complexes. Likewise, the graded commutativity implies that elements of odd degrees
must be nilpotent if R has no 2-torsion elements.
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Example 6.2.11:

1. The cohomology ring H•(Sn) of the n-sphere has a single generator [z] ∈ Hn(Sn) ∼= Z of
degree n and the unit element 1 ∈ H0(Sn) with

[z] ∪ [z] = [0] [z] ∪ 1 = 1 ∪ [z] = [z] 1 ∪ 1 = 1.

2. If R is torsion free or a field of char R 6= 2, any [z] ∈ Hp(X;R) of odd degree p is nilpotent

[z] ∪ [z] = (−1)p
2

[z] · [z] = −[z] ∪ [z] ⇒ [z] ∪ [z] = 0.

3. Let X1, . . . , Xn be topological spaces with basepoints xi ∈ Xi and suppose that every
basepoint xi ∈ Xi has a neighbourhood Ui that strongly deformation retracts to xi.

Then Hk(X1 ∨ ... ∨Xn) ∼= Hk(X1)⊕ ...⊕Hk(Xn) for k ∈ N by Proposition 3.5.9 and

Hk(X1 ∨ ... ∨Xn;R) = Hk(X1;R)× ...×Hk(Xn;R) k ∈ N
H0(X1 ∨ ... ∨Xn;R) = {(φ1, ..., φn) ∈ H0(X1;R)× ...×H0(Xn;R) | φi[xi] = φj[xj]}.

Thus, the cohomology ring of the wedge product is a subring

H•(X1 ∨ ... ∨Xn;R) ⊂ H•(X1;R)× ...×H•(Xn;R).

We will now derive another algebraic structure, the cap product, that relates the homologies
of a topological space X to its cohomologies. The starting point is the evaluation of n-cochains
of X on its n-chains. This can be considered in more generality for chain complexes X• and
the associated chain complexes Hom(X•,M) for an abelian group M and is known under the
name Kronecker pairing. It induces a pairing between the nth cohomology group and the nth
homology group of the chain complex that takes values in M .

Definition 6.2.12: Let M be an abelian group. The Kronecker pairing between a chain
complex X• and the associated cochain complex M• = HomAb(X•,M) is given by the maps

〈 , 〉 : Mn⊗Xn →M, φ⊗x 7→ 〈φ, x〉 = φ(x).

Lemma 6.2.13: Let X• be a chain complex and M• = HomAb(X•,M) for an abelian group
M . The Kronecker pairing induces a group homomorphism

〈 , 〉 : Hn(M•)⊗Hn(X•)→M, [φ]⊗[x] 7→ 〈φ, x〉.

Proof:
We show that the Kronecker pairing of φ ∈ Zn(M•) and z ∈ Zn(X) depends only on the
cohomology class of φ and the homology class of z. Let φ : Xn →M be a group homomorphism
with dn(φ) = φ ◦ dn+1 = 0 and φ′ = φ+ ψ ◦ dn−1 with a group homomorphism ψ : Xn−1 →M .
Let z′ = z + dn+1(x) with z ∈ Zn(X) and x ∈ Xn+1. Then we have

〈φ′, z′〉 = 〈φ+ ψ ◦ dn, z + dn+1(x)〉 = 〈φ, z〉+ 〈ψ ◦ dn, z〉+ 〈φ, dn+1(x)〉+ 〈ψ ◦ dn, dn+1(x)〉
= φ(z) + ψ ◦ dn(z) + φ ◦ dn+1(x) + ψ ◦ dn ◦ dn+1(x) = φ(z) = 〈φ, z〉,

where the second term in the last line vanishes, because z ∈ Zn(X), the third due to φ◦dn+1 = 0
and the third due to dn ◦ dn+1 = 0. 2
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If we apply the Kronecker pairing to the chain complex S•(X) and the cochain complex
S•(X;M) of a topological space X, then it defines a pairing between its nth cohomology
and its nth homology group

〈 , 〉 : Hn(X;M)⊗Hn(X)→M.

However, this pairing is too restrictive. Firstly, one would like to admit non-trivial coefficients
in the homology groups as well, for symmetry reasons. This can be remedied by restricting
attention to coefficients in a commutative ring R and using its multiplication.

Secondly, as with the cup product, we would like to pair cochains and chains of different degrees.
More specifically, evaluating a q-cochain on an n-chain with n ≥ q should give an (n− q)-chain.
As for the cup product, this is achieved by applying an Eilenberg-Zilber map to the n-chain.
To obtain simple expressions, we work with the Alexander-Whitney map from Definition 6.2.6
that is given in terms of the front and rear face of a simplex from Definition 6.2.4.

Finally, we will need the pairing between homologies and cohomologies also for relative coho-
mology and homology groups. This is important for applications to oriented manifolds in the
next two sections, where we will treat Poincaré duality.

Definition 6.2.14: Let (X,A) be a pair of topological spaces, R a unital ring and 0 ≤ q ≤ n.
The cap product is the group homomorphism

∩ :Sq(X,A;R)⊗Sn(X,A;R)→ Sn−q(X;R), φ⊗(z⊗r) 7→ F n−q(z)⊗r〈φ,Rq(z)〉

Example 6.2.15:

1. For q = 0 we have F n(σ) = σ and R0(σ) = σ(en) for singular n-simplexes σ : ∆n → X.
As S0(X,A;R) = HomAb(S0(X,A), R), any 0-cochain φ ∈ S0(X,A;R) corresponds to a
map φ : X → R with φ(a) = 0 for a ∈ A. Thus, the cap product is given by

∩ : S0(X,A;R)⊗Sn(X,A;R)→ Sn(X;R), φ⊗(σ⊗r) 7→ σ⊗rφ(σ(en)).

2. For q = n we have F 0(σ) = σ(e0) and Rn(σ) = σ for singular n-simplexes σ : ∆n → X.
Thus, the cap product is given by

∩ : Sn(X,A;R)⊗Sn(X,A;R)→ S0(X;R), φ⊗(σ⊗r) 7→ σ(e0)⊗rφ(σ).

As we work with pairs of topological spaces and relative (co)homologies, we need to show
that the cap product is indeed well-defined on relative q-cochains and relative n-chains. The
definition in terms of the front and rear face also suggests that it should be natural in X and
compatible with coboundary and boundary operators. The latter is largely a consequence of
the identities (58) that describe the interaction of the front and rear face with the face maps.

Lemma 6.2.16: (Properties of the cap product)
The cap product is well-defined and satisfies the following identities

1. Leibniz formula: for all φ ∈ Sq(X,A;R), z ∈ Sn(X,A) and r ∈ R

dn−q(φ ∩ (z⊗r)) = (−1)n−qdq(φ) ∩ (z⊗r) + φ ∩ (dn(z)⊗r).
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2. Naturality:
for all morphisms f : (X,A)→ (Y,B), φ ∈ Sq(X,A;R), z ∈ Sn(X,A) and r ∈ R one has

Sn−q(f)
(
Sq(f)φ ∩ (z⊗r)

)
= φ ∩ (Sn(f)z⊗r).

Proof:
To see that the cap product is well-defined, consider n-chains x ∈ Sn(X), a ∈ Sn(A). Then
Rq(a) ∈ Sq(A), which implies 〈φ,Rq(a)〉 = 0 for φ ∈ Sq(X,A;R) = Hom(Sn(X)/Sn(A), R).
Likewise, we have F n−q(a) ∈ Sn−q(A), which implies F n−q(a) = 0 in Sn(X,A). This gives

φ ∩ ((x+ a)⊗r) = F n−q(x+ a)⊗r〈φ,Rq(x+ a)〉 = (F n−q(x) + F n−q(a))⊗r〈φ,Rq(x) +Rq(a)〉
= F n−q(x)⊗r〈φ,Rq(x)〉 = φ ∩ (x⊗r).

1. To prove the Leibniz formula, we compute for a singular n-simplex σ : ∆n → X

dn−q(φ ∩ (σ⊗r)) = dn−q(F
n−q(σ)⊗r〈φ,Rq(σ)〉 = (dn−qF

n−q(σ))⊗r〈φ,Rq(σ)〉

=

n−q∑
i=0

(−1)iF n−q(σ) ◦ fn−qi ⊗r〈φ,Rq(σ)〉 (58)
=

n−q∑
i=0

(−1)iF n−q−1(σ ◦ fni )⊗r〈φ,Rq(σ)〉.

To determine the right-hand-side of the Leibnitz identity we compute the first term

dq(φ) ∩ (σ⊗r) = F n−q−1(σ)⊗r〈dq(φ), Rq+1(σ)〉 = F n−q−1(σ)⊗r〈φ, dq+1 ◦Rq+1(σ)〉

=

q+1∑
i=0

(−1)iF n−q−1(σ)⊗r〈φ,Rq+1(σ) ◦ f q+1
i 〉.

Applying again (58), we obtain for the second term on the right

φ ∩ (dn(σ)⊗r) = F n−q−1 ◦ dn(σ)⊗r〈φ,Rq ◦ dn(σ)〉

=
n∑
i=0

(−1)iF n−q−1(σ ◦ fni )⊗r〈φ,Rq(σ ◦ fni )〉

=

n−q−1∑
i=0

(−1)iF n−q−1(σ ◦ fni )⊗r〈φ,Rq(σ ◦ fni )〉+
n∑

i=n−q

(−1)iF n−q−1(σ ◦ fni )⊗r〈φ,Rq(σ ◦ fni )〉

(58)
=

n−q−1∑
i=0

(−1)iF n−q−1(σ ◦ fni )⊗r〈φ,Rq(σ)〉+
n∑

i=n−q

(−1)iF n−q−1(σ)⊗r〈φ,Rq+1(σ) ◦ f q+1
i−n+q+1〉

=

n−q−1∑
i=0

(−1)iF n−q−1(σ ◦ fni )⊗r〈φ,Rq(σ)〉+

q+1∑
i=1

(−1)i+n−q−1F n−q−1(σ)⊗r〈φ,Rq+1(σ) ◦ f q+1
i 〉

Combining these terms with the appropriate signs yields

(−1)n−qdq(φ) ∩ (σ⊗r) + φ ∩ (dn(σ)⊗r)

= (−1)n−qF n−q−1(σ)⊗r〈φ,Rq+1(σ) ◦ f q+1
0 〉+

n−q−1∑
i=0

(−1)iF n−q−1(σ ◦ fni )⊗r〈φ,Rq(σ)〉

(58)
=

n−q∑
i=0

(−1)iF n−q−1(σ ◦ fni )⊗r〈φ,Rq(σ)〉 = dn−q(φ ∩ (σ⊗r)).

2. Naturality of the cap product follows by a direct computation. We have for any singular
n-simplex σ : ∆n → X and morphism of pairs f : (X,A)→ (Y,B)

Sn−q(f)(Sq(f)φ ∩ (σ⊗r)) = (Sn−q(f) ◦ F n−q(σ))⊗r〈φ ◦ Sq(f), Rq(σ))

= (Sn−q(f) ◦ F n−q(σ))⊗r〈φ, Sq(f) ◦Rq(σ))

= F n−q(f ◦ σ)⊗r〈φ,Rq(f ◦ σ)) = φ ∩ (Sn(f)σ⊗r).
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2

With the results from Lemma 6.2.16 it is now straightforward to show that the cap product
induces a pairing between the relative cohomology and homology groups of a pair of topological
spaces with coefficients in a commutative ring R. It has naturality properties analogous to the
ones in Lemma 6.2.16 with respect to morphisms of pairs of topological spaces.

Proposition 6.2.17: The cap product induces group homomorphisms

∩ : Hq(X,A;R)⊗Hn(X,A;R)→ Hn−q(X;R), [φ]⊗([z]⊗r) 7→ [φ ∩ (z⊗r)]

that satisfy for all morphisms f : (X,A)→ (Y,B) in Top(2):

Hn−q(f)(Hq(f)[φ] ∩ ([z]⊗r)) = [φ] ∩ (Hn(f)[z]⊗r).

Proof:
The Leibniz formula implies φ∩ (z⊗r) ∈ Zn−q(X;R) for all φ ∈ Zq(X,A;R) and z ∈ Zn(X,A)
and r ∈ R. If we also have ψ = dq−1(χ) ∈ Bq(X,A;R) and b = dn+1(x) ∈ Bn(X,A;R), then

dn−q+1((−1)n−q+1χ ∩ (z⊗r)) = dq+1(χ) ∩ (z⊗r) = ψ ∩ (z⊗r) ⇒ ψ ∩ (z⊗r) ∈ Bn−q(X;R)

dn−q+1(φ ∩ (x⊗r)) = φ ∩ (dn+1(x)⊗r) = φ ∩ (b⊗r) ⇒ φ ∩ (b⊗r) ∈ Bn−q(X;R).

This shows that the cap product induces a group homomorphism

∩ : Hq(X,A;R)⊗Hn(X,A;R)→ Hn−q(X;R), [φ]⊗([z]⊗r) 7→ [φ ∩ (z⊗r)].

The naturality with respect to the morphisms in Top(2) follows from Lemma 6.2.16, 2. 2

We will now investigate the algebraic properties of the cap product. By comparing Definition
6.2.14 of the cap product for the case (X,A) = (X, ∅) with the formula for the cup product
in Definition 6.2.7 the similarities are apparent. Both are formulated in terms of the front and
rear face of a simplex, and the only difference between the two is the presence of the Kronecker
pairing in the latter. As the cap product of a singular cocycle and a singular cycle gives another
singular cycle, it is natural to interpret it as an action of the cohomology group on the homology
group. The fact that it respects degree is encoded in the notion of a graded module.

Definition 6.2.18: Let R = ⊕∞j=0Rj be a graded ring.

A graded module over R is an abelian groupM with a direct sum decompositionM = ⊕∞j=0Mj

and an R-module structure � : R⊗M →M such that Rj �Mk ⊂Mk+j for all j, k ∈ N0.

Proposition 6.2.19: Let R be a commutative ring and X a topological space.

The cap product defines a graded module structure on H•(X;R) = ⊕∞k=0H−k(X;R) over the
cohomology ring H•(X;R) = ⊕∞j=0H

k(X;R).

Proof:
The cap product defines a map

� = ∩ : H•(X;R)⊗H•(X;R)→ H•(X;R) with Hj(X;R) ∩Hk(X;R) ⊂ Hk−j(X;R).
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By the formula in Example 6.2.15, 1. the unit element 1 ∈ H0(X;R) acts by 1∩ [z⊗r] = [z⊗r].
It remains to show that for all φ ∈ Zp(X;R), ψ ∈ Zq(X;R) and z⊗r ∈ Zn(X;R)

([φ] ∪ [ψ]) ∩ [z⊗r] = [φ] ∩ ([ψ] ∩ [z⊗r])

For this, we note that by Definition 6.2.4 of the front and rear face of a simplex we have

F n−p−q(σ)⊗F p ◦Rp+q(σ)⊗Rq ◦Rp+q(σ) = F n−p−q ◦ F n−q(σ)⊗Rp ◦ F n−q(σ)⊗Rq(σ)

for all singular n-simplexes σ : ∆n → X. Inserting this into the formulas for the cup product
from Corollary 6.2.7 and the formula for the cap product from Definition 6.2.14 gives

(φ ∪ ψ) ∩ (σ⊗r) = F n−(p+q)(σ)⊗r〈φ ∪ ψ,Rp+q(σ)〉
= F n−(p+q)(σ)⊗r · φ(F p ◦Rp+q(σ)) · ψ(Rq ◦Rp+q(σ))

= F (n−q)−p(F n−q(σ))⊗r · φ(Rp ◦ F n−q(σ))) · ψ(Rq(σ))

= φ ∩ (F n−q(σ)⊗r · ψ(Rq(σ))) = φ ∩ (ψ ∩ (σ⊗r)).
2

6.3 Orientation of compact manifolds

In this and the following section, we will show that for compact oriented topological n-
manifolds X, there is a relation between the homology groups Hp(X;R) and cohomology groups
Hn−p(X;R), namely Poincaré duality, which states that for all p ∈ {0, . . . , n}

Hn−p(X;R) ∼= Hp(X;R).

This isomorphism is given by the cap product and a distinguished element [X] ∈ Hn(X), defined
by the orientation. For non-compact topological n-manifolds there is an analogous isomorphism
for the cohomology group with compact support.

In this section we define orientations of compact topological manifolds in terms of their ho-
mology groups. The notion of an orientation is familiar from linear algebra and can easily
generalised to smooth manifolds. Recall that an orientation on a finite-dimensional real vec-
tor space V is an equivalence class of ordered bases of V . Two bases B = (v1, . . . , vn) and
B′ = (v′1, . . . , v

′
n) are equivalent if the unique linear map φ : V → V with φ(vi) = v′i for

i = 1, . . . , n has determinant det(φ) > 0. Hence, a finite-dimensional real vector space V has
exactly two orientations.

A smooth n-manifold is a Hausdorff space X with a choice of homeomorphisms φ : U → V ,
the charts, from open subsets U ⊂ X to open subsets V ⊂ Rn such that the subsets U cover X
and all maps φUU ′ : (φ′|U∩U ′) ◦ (φ|U∩U ′)−1 : φ(U ∩ U ′)→ φ′(U ∩ U ′) are smooth. The fact that
the coordinate change maps are smooth allows one to define an orientation of X as a collection
of charts whose domains cover X and such that all derivatives of coordinate change maps have
positive determinant: det d((φ′|U∩U ′) ◦ (φ|U∩U ′)−1) > 0 for all x ∈ φ(U ∩ U ′).

For topological manifolds, smoothness of the coordinate change maps is not required. They
are just homeomorphisms, so one cannot define orientations by applying linear algebra to their
derivatives. Instead, orientations are defined by their homologies.
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Definition 6.3.1:

1. An n-dimensional topological manifold is a second countable Hausdorff space X such
that every x ∈ X has an open neighbourhood U homeomorphic to an open subset V ⊂ Rn.

2. A homeomorphism φ : U ⊂ X → V ⊂ Rn for an open subset U ⊂ X is called a chart. A
family {φi : Ui → Vi | i ∈ I} of charts with X = ∪i∈IUi is called an atlas.

Remark 6.3.2:

1. Without loss of generality one can impose V = Rn or V = D̊n in Definition 6.3.1.

If φ : U → V is a chart around x ∈ U , then U ⊂ Rn contains an open n-ball B around
φ(x), which is homeomorphic to D̊n. Restricting the chart φ to the open neighbourhood
U ′ = φ−1(B) ⊂ U then yields a homeomorphism φ′ : U ′ → B ∼= D̊n ∼= Rn.

2. A topological manifold of dimension n inherits the local topological properties from Rn.
In particular, it is locally compact, locally connected and locally path-connected.

This follows, because every neighbourhood W of X contains an open neighbourhood
U ⊂ W of x that is the domain of a chart φ : U → V . If W ⊂ V is a neighbourhood of
φ(x) ∈ V with the required property, then φ−1(W ) ⊂ U also has this property.

3. As locally compact Hausdorff spaces, topological manifold are regular topological spaces.

In the following we write n-manifold for topological manifold of dimension n. The requirement
of a countable base of the topology (second countability) is included in the definition of a
topological n-manifold for convenience, as it lets us avoid the use of Zorn’s Lemma in some of
the proofs. In many references, this condition is not imposed.

Many of the topological spaces encountered so far are topological manifolds. Obvious coun-
terexamples are any non-Hausdorff topological spaces, disjoint unions of topological manifolds
of different dimensions and infinite-dimensional CW complexes such as RP∞ and CP∞.

Example 6.3.3:

1. The empty topological space ∅ is an n-dimensional topological manifold for every n ∈ N0.

2. Every open subset of Rn is an n-dimensional topological manifold by construction.

3. Any open subset W ⊂ X of an n-dimensional topological manifold X is a topological
manifold. The charts of W are obtained by restricting charts φ : U → V of X to the
open subsets U ∩W ⊂ W .

4. The disjoint union of n-dimensional topological manifolds is a topological n-manifold.

5. The product X × Y of an n-dimensional topological manifold X and an m-dimensional
topological manifold Y is a topological manifold of dimension n+m.

6. The sphere Sn and real projective space RPn are n-dimensional topological manifolds.
Complex projective space CPn is an 2n-dimensional topological manifold.

7. Any oriented surface of genus g ≥ 0 is a 2-dimensional topological manifold.

8. The Klein bottle K = [0, 1] × [0, 1]/ ∼ with (x, 1) ∼ (x, 0) and (0, y) ∼ (1, 1 − y) for
x, y ∈ [0, 1] and the open Möbius strip M = [0, 1]× (0, 1)/ ∼ with (0, y) ∼ (1, 1− y) for
y ∈ (−1, 1) are 2-dimensional topological manifolds.
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To define orientations for topological manifolds, we consider the relative homologies Hk(X,X \
{x}) for points x ∈ X. We can compute these relative homology groups by restricting X to
the domain of a chart φ : U → V around x and show that they are given by Z for k = n and
trivial otherwise. The abelian group Z has exactly two generators, namely 1 and -1, and these
generators will replace the sign of the determinant in the definition of orientations of vector
spaces and orientations of smooth manifolds.

Proposition 6.3.4: For a topological n-manifold X and any point x ∈ X one has

Hk(X,X \ {x}) =

{
Z k = n

0 k 6= n.

Proof:
Let φ : U → V a chart around x ∈ X. Then we have

X \ U = X \ U ⊂ X \ {x} = (X \ {x})◦ Rn \ V = Rn \ V ⊂ Rn \ {φ(x)} = (Rn \ {φ(x)})◦.

By Theorem 3.5.1 excising X \ U and Rn \ V yields

Hk(X,X \ {x}) ∼= Hk(U,U \ {x}) ∼= Hk(V, V \ {φ(x)}) ∼= Hk(Rn,Rn \ {φ(x)}).

Applying Exercise 21 and Example 3.5.6 then yields the result. 2

Remark 6.3.5: By Proposition 6.3.4 the dimension of a non-empty topological manifold is
unique. If ∅ 6= X is a topological n-manifold, then X is not a topological m-manifold for m 6= n.

The idea is now to define an orientation as a coherent choice of generators of Hn(X,X\{x}) ∼= Z
for each point x ∈ X. At each point there are two choices, namely one corresponding to 1 ∈ Z
and one corresponding to −1 ∈ Z, and we must relate these choices at least for points in a
neighbourhood of a given point x ∈ X. To induce maps between the relative homologies, this
relation must be given by morphisms in Top(2). Given a topological space X and subspaces
B ⊂ A ⊂ X, we have a morphism of pairs induced by the identity map on X

iAB : (X,X \ A)→ (X,X \B), x 7→ x. (61)

If B = {x} ⊂ A contains a single point, we write iAx := iA{x} : X \A→ X \ {x}. Note that for
all subsets C ⊂ B ⊂ A ⊂ X these morphisms of pairs satisfy the compatibility conditions

iAA = 1(X,X\A) : (X,X \ A)→ (X,X \ A) iAC = iBC ◦ iAB : (X,X \ A)→ (X,X \ C).

Given a subset U ⊂ X we can use the maps iUx : X \ U → X \ {x} to compare the different
choice of generators at points x ∈ U .

Definition 6.3.6: Let X be a topological n-manifold and W ⊂ X a subset.

1. A choice of generators [zw] ∈ Hn(X,X \ {w}) for each w ∈ W is called coherent, if for
every w ∈ W there is an open neighbourhood U in X and an element [zU ] ∈ Hn(X,X \U)
such that Hn(iUy)[zU ] = [zy] for all y ∈ W ∩ U .

2. X is called orientable, if there is a coherent choice of generators [zx] ∈ Hn(X,X \ {x})
for W = X. A coherent choice of generators for X is called an orientation of X.
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Remark 6.3.7:

1. If {[zx]}x∈X is an orientation of X, then {−[zx]}x∈X is also an orientation of X, the
opposite orientation.

2. If U ⊂ X is such that Hn(iUx) : Hn(X,X \ U) → Hn(X,X \ {x}) is an isomorphism for
all x ∈ X, then the generators at points x, y ∈ U are related by

[zy] = Hn(iUy) ◦Hn(iUx)
−1[zx].

This can be seen as the topological counterpart of the formula for orientations of smooth
manifolds on the intersection of the domains of two charts.

Without further assumptions on the neighbourhood U , we do not have explicit results on the
homology group Hn(X,X \ U) or the map Hn(iUx) : Hn(X,X \ U) → Hn(X,X \ {x}). In
particular, the latter is in general not an isomorphism. However, there is one situation, where
this is well-controlled, namely compact and convex subsets K ⊂ Rn. In this case Exercise 26
implies that the maps Hn(iKx) are isomorphisms.

Example 6.3.8: If K ⊂ Rn is compact and convex, then the map

Hm(iKx) : Hm(Rn,Rn \K)→ Hm(Rn,Rn \ {x})

is an isomorphism for all x ∈ K and m ∈ N0. In particular, we have

Hn(Rn,Rn \K) ∼= Z Hm(Rn,Rn \K) = 0 for m 6= n.

Proof:
The inclusion defines a homotopy equivalence iKx : Rn \K → Rn \ {x}. This follows, because
the inclusion i : D̊n \K → D̊n \{0} is a homotopy equivalence for any compact subset K ⊂ D̊n

with 0 ∈ K by Exercise 26. For any x ∈ K there is a homeomorphism φ : Rn → D̊n with
φ(x) = 0 that sends K to a compact convex subset K ′ ⊂ D̊n. This can be constructed by first
applying a translation that sends x to 0, then a rescaling that sends K to a convex subset of an
n-ball B1/2(0) and then a homeomorphism ψ : Rn → D̊n that is the identity on B1/2(0) ⊂ D̊n.
This implies that Hm(iKx) : Hm(Rn \ K) → Hm(Rn \ {x}) is an isomorphism. Applying the
5-Lemma to the long exact homology sequence

. . .→ Hm(Rn \K)

Hm(iKx)∼=
��

Hm(ι) // Hm(Rn)
Hm(π) //

id
��

Hm(Rn,Rn \K)
∂m //

Hm(iKx)
��

Hm−1(Rn \K)
Hm−1(ι)//

Hm−1(iKx)∼=
��

Hm−1(Rn)→ . . .

id
��

. . .→ Hm(Rn \ {x})Hm(ι) // Hm(Rn)
Hm(π)// Hm(Rn,Rn \ {x}) ∂m // Hm−1(Rn \ {x})Hm−1(ι)// Hm−1(Rn)→ . . .

shows that the middle arrow is an isomorphism as well. 2

Given a coherent choice of generators {[zx]}x∈W for some subset W ⊂ X, it is natural to ask
if they can be combined into a single generator of Hn(X,X \W ). In other words, is there an
element [zW ] ∈ Hn(X,X \ W ) such that [zx] = Hn(iWx)[zW ] for all x ∈ W? In particular,
does orientability of a topological n-manifold X imply that there is a [zX ] ∈ Hn(X) such that
[zx] = Hn(iXx)[zX ] for all x ∈ X?

As orientability is defined locally, via neighbourhoods of points, it is clear that the proof of such
a statement will involve a cover of X by open neighbourhoods of points and will be particularly
simple if this cover is guaranteed to have a finite subcover. Hence, it makes sense to assume
that the subsets are compact.
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Definition 6.3.9: Let X be a topological n-manifold and K ⊂ X compact.

1. An element [zK ] ∈ Hn(X,X \K) is called an orientation of X along K if the elements
Hn(iKx)[zK ] ∈ Hn(X,X \ {x}) for x ∈ K form a coherent set of generators for K.

2. If K = X, then an orientation along K is called a orientation class or fundamental
class of X and denoted [X].

The aim is now to prove that every compact orientable manifold has a fundamental class. The
first step is to investigate orientations along compact subsets K ⊂ X. To establish uniqueness
of orientations along K, we need to investigate the kernels of all of the group homomorphisms
Hn(iKx) : Hn(X,X \ K) → Hn(X,X \ {x}) for x ∈ K and to show that Hn(iKx)[z] = 0 for
some [z] ∈ Hn(X,X \ K) and all x ∈ K implies [z] = 0. We will prove this first for small
compact subsets that are contained in the domains of charts and then extend it to their union
with the relative Mayer-Vietoris sequence. For this, we also need control over the homology
groups Hm(X,X \K) for m > n.

Lemma 6.3.10: Let X be a connected orientable n-manifold and K ⊂ X compact. Then:

1. Hm(X,X \K) = 0 for all m > n.

2. If [z] ∈ Hn(X,X \K) satisfies Hn(iKx)[z] = 0 for all x ∈ K, then [z] = 0.

In particular, if X is compact, then Hm(X) = 0 for m > n.

Proof:
1. We first reduce the proof of 1. and 2. to the case of compact subsets K ⊂ X with K ⊂ U
for some chart φ : U → V .

1.(a) As X is a locally compact topological space, every point x ∈ K has a compact neighbour-
hood Kx ⊂ Ux contained in the domain of a chart φx : Ux → Vx ⊂ Rn. Any choice of open
neighbourhoods Wx ⊂ Kx ⊂ Ux for each x ∈ K yields an open cover K = ∪x∈KWx, which has a
finite subcover by compactness of K. Hence, there are compact subsets Kx1 , . . . , Kxr ⊂ X, each
contained in the domain of a chart, such that K ⊂ Kx1∪. . .∪Kxr . This implies K = K1∪. . .∪Kr

with Ki = K ∩Kxi compact and contained in the domain of a chart.

1.(b) We show that if 1. and 2. hold for compact subsets A,B ⊂ X and their intersection
A∩B, then they also hold for A∪B. This follows with the relative Mayer-Vietoris sequence from
Proposition 3.5.5, applied to X \A and X \B, which are open in X \(A∩B) = (X \A)∪(X \B).
If 1. holds for A, B and A ∩B, one has

. . .→ Hm+1(X,X \ (A ∩B))︸ ︷︷ ︸
=0 m≥n

∂m+1−−−→ Hm(X,X \ (A ∪B))
φm−−→ Hm(X,X \ A)︸ ︷︷ ︸

=0 m>n

⊕Hm(X,X \B)︸ ︷︷ ︸
=0 m>n

→ . . .

with φn = (Hn(iA),−Hn(iB)) for the morphisms iA : (X,X \ (A ∪ B)) → (X,X \ A) and
iB : (X,X \ (A ∪B))→ (X,X \B) by Proposition 3.5.5.

This implies Hm(X,X \ (A ∪ B)) = 0 for m > n and injectivity of φn for m = n. As we have
Hn(i(A∪B)x) = Hn(iAx) ◦Hn(iA) for all x ∈ A and Hn(iBx) ◦Hn(iB) for all x ∈ B, the identity
Hn(i(A∪B)x)[z] = 0 for all x ∈ A ∪B implies

Hn(iAx) ◦Hn(iA)[z] = 0 ∀x ∈ A, Hn(iBx) ◦Hn(iB)[z] = 0∀x ∈ B.

As 2. holds for A and B, this gives Hn(iA)[z] = Hn(iB)[z] = 0 and [z] = 0 by injectivity of φn.
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2. If K ⊂ U for some chart φ : U → V , we have isomorphisms of pairs

φ : (U,U \K)→ (V, V \ φ(K)) φ : (U,U \ {x})→ (V, V \ {φ(x)}) for x ∈ K.

By excising X \ U and Rn \ V we then obtain for all m ∈ N0 and x ∈ K

Hm(X,X \K) ∼= Hm(U,U \K)
Hm(φ)−−−−→∼= Hm(V, V \ φ(K)) ∼= Hm(Rn,Rn \ φ(K))

Hm(X,X \ {x}) ∼= Hm(U,U \ {x}) Hm(φ)−−−−→∼= Hm(V, V \ {φ(x)}) ∼= Hm(Rn,Rn \ {φ(x)})

and a commuting diagram

Hm(X,X \K)

Hm(iKx)

��

∼= // Hm(Rn,Rn \ φ(K))

Hm(iφ(K)φ(x))

��
Hm(X,X \ {x}) ∼=

// Hm(Rn,Rn \ {φ(x)}).

This shows that it is sufficient to prove claims 1. and 2. for compact subsets K ⊂ Rn.

3. We prove 1. and 2. for compact subsets K ⊂ Rn.

Let z ∈ Zm(Rn,Rn \ K) be a relative m-cycle. Then we have dm(z) = Σr
j=1λjτj for singular

(m− 1)-simplexes τ1, . . . , τr : ∆m−1 → Rn \K. By compactness of ∆m−1 and continuity of the
simplexes, the union of their images M := ∪rj=1τj(∆

m−1) ⊂ Rn \K is compact. Consequently,
there is an open neighbourhood U of K such that M ⊂ Rn \ U . As K is compact, there are
closed balls B1, . . . , Bs in Rn with K ⊂ B := ∪sj=1Bj ⊂ U .

K
B

U

M

As M ⊂ Rn \ U , the relative m-cycle z also defines relative m-cycles z′ ∈ Zm(Rn,Rn \ U) and
z′′ ∈ Zm(Rn,Rn \ B) with Hm(iUB)[z′] = [z′′] and Hm(iBK)[z′′] = [z]. As the balls Bi ⊂ Rn are
compact and convex, claims 1. and 2. hold for Bj by Example 6.3.8 and follow for B with 1.(b).

Claim 1. for B implies [z′′] = Hn(iUB)[z′] ∈ Hm(Rn,Rn \ B) = {0} for m > n and hence
[z] = Hn(iBK)[z′′] = 0. This shows claim 1. for K.

For claim 2. let m = n and Hn(iKx)[z] = 0 for all x ∈ K. Then we have for all x ∈ K ∩Bj

0 = Hn(iKx)[z] = Hn(iKx) ◦Hn(iBK)[z′′] = Hn(iBx)[z
′′] = Hn(iBjx) ◦Hn(iBBj)[z

′′].

As Hn(iBjx) is an isomorphism by Example 6.3.8, this implies Hn(iBBj)[z
′′] = 0. It follows that

Hn(iBy)[z
′′] = Hn(iBjy) ◦ Hn(iBBj)[z

′′] = 0 for all y ∈ Bj. As K ⊂ ∪sj=1Bj, we can apply this
argument for all j = 1, . . . , s and obtain Hn(iBy)[z

′′] = 0 for all y ∈ B = ∪sj=1Bj. As claim
2. holds for B, it this yields [z′′] = 0 and [z] = Hn(iBK)[z′′] = 0, which proves claim 2. for K. 2
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We can now apply Lemma 6.3.10 to show that for any orientation {[zx]}x∈X on X and any
compact subset K ⊂ X, there is at most one orientation [zK ] along K with Hn(iKx)[zK ] = [zx]
for all x ∈ K. To prove that there is at least one such orientation along K is more difficult.
For this one works with open neighbourhoods U of points x ∈ X as in the definition of an
orientation and chooses compact subsets contained in such neighbourhoods. One then extends
the result to a compact subset K by covering K with neighbourhoods contained in these small
compacta and applying the relative Mayer-Vietoris sequence.

Proposition 6.3.11: Let X be an n-manifold and O = {[zx]}x∈X an orientation on X. Then
for any compact subset K ⊂ X there is a unique orientation [zK ] ∈ Hn(X,X \ K) along K
compatible with O: Hn(iKx)[zK ] = [zx] for all x ∈ K.

Proof:
1. To show uniqueness, let [zK ], [z′K ] ∈ Hn(X,X \K) two orientations of X along K that are
compatible with O. Then we have for all x ∈ K

Hn(iKx)([zK ]− [z′K ]) = Hn(iKx)[zK ]−Hn(iKx)[z
′
K ]) = [zx]− [zx] = 0,

and this implies [zK ] = [z′K ] = 0 by Lemma 6.3.10. This shows uniqueness.

2. Let K1, K2 ⊂ X compact subsets and [zK1 ] ∈ Hn(X,X \K1), [zK2 ] ∈ Hn(X,X \K2) orien-
tations along K1 and K2 compatible with O. We show that there is an orientation compatible
with O on K1 ∪K2.

The identity iKjy = iKjy ◦ iKj(K1∩K2) for j = 1, 2 implies for all y ∈ K1 ∩K2

[zy] = Hn(iKjy)[zKj ] = Hn(i(K1∩K2)y) ◦Hn(iKj(K1∩K2))[zKj ].

With 1. this implies Hn(iK1(K1∩K2))[zK1 ] = Hn(iK2(K1∩K2))[zK2 ] = [zK1∩K2 ] is an orientation
compatible with O along K1∩K2. The relative Mayer-Vietoris sequence from Proposition 3.5.5
yields an exact sequence, where the first term on the left vanishes by Lemma 6.3.10

0
∂n+1−−−→ Hn(X,X \ (K1 ∪K2))

φn−→ Hn(X,X \K1)⊕Hn(X,X \K2)
ψn−→ Hn(X,X \ (K1 ∩K2))→ . . .

φn = (Hn(i(K1∪K2)K1),−Hn(i(K1∪K2)K2)) ψn = Hn(iK1(K1∩K2)) +Hn(iK2(K1∩K2)).

Then we have ([zK1 ],−[zK2 ]) ∈ kerψn = imφn, as

ψn([zK1 ],−[zK2 ]) = Hn(iK1(K1∩K2))[zK1 ]−Hn(i(K2(K1∩K2)))[zK2 ] = [zK1∩K2 ]− [zK1∩K2 ] = 0.

Thus, there is an element [zK1∪K2 ] ∈ Hn(X,X \ (K1 ∪K2)) with

Hn(i(K1∪K2)K1)[zK1∪K2 ] = [zK1 ] Hn(i(K1∪K2)K1)[zK1∪K2 ] = [zK2 ].

This implies for all y ∈ Kj

Hn(i(K1∪K2)y)[zK1∪K2 ] = Hn(iKjy) ◦Hn(i(K1∪K2)y)[zK1∪K2 ] = Hn(iKjy)[zKj ] = [zy]

and hence Hn(i(K1∪K2)y)[zK1∪K2 ] = [zy] for all y ∈ K1 ∪ K2, which shows that [zK1∪K2 ] is an
orientation compatible with O along K1 ∪K2.
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3. To show existence, choose for each x ∈ K a neighbourhood Ux and a [zUx ] ∈ Hn(X,X \ Ux)
with Hn(iUxy)[zUx ] = [zy] for all y ∈ Ux, which exist by definition of an orientation. As X is
locally compact, there are compact neighbourhoods Kx and open neighbourhoods Wx of x such
that Wx ⊂ Kx ⊂ Ux. The open cover K ⊂ ∪x∈KWx has a finite subcover K ⊂ ∪ri=1Wxi , and
this yields K = ∪ri=1Ki, where Ki = Kxi ∩K ⊂ Uxi is compact. By defining

[zKi ] = Hn(iUxiKi)[zUxi ],

we obtain an orientation compatible with O along Ki, as we have for all y ∈ Ki ⊂ Uxi

Hn(iKiy)[zKi ] = Hn(iKiy ◦ iUxiKi)[zKi ] = Hn(iUxiy)[zUxi ] = [zy].

Applying step 2. we obtain an orientation [zK ] along K that is compatible with O. 2

By combining these results, we can relate the existence of an orientation on a compact connected
topological n-manifold X to the existence of an orientation class and to the nth homology group
of the manifold. The latter gives a simple criterion for the orientability of the manifold.

Theorem 6.3.12: Let X be a connected compact n-manifold.
Then the following are equivalent:

(i) The manifold X is orientable.
(ii) There is an orientation class of X.
(iii) Hn(X) ∼= Z.

Proof:
(i)⇒(ii): follows from Proposition 6.3.11.

(iii)⇒(i): If Hn(X) ∼= Z, then there are two possible choices of generators of Hn(X). For any
generator [z] ∈ Hn(X), the set {Hn(iXx)[z] | x ∈ X} is a coherent set of generators for X and
thus an orientation of X.

(ii)⇒(iii): Suppose [zX ] ∈ Hn(X) is an orientation class. Then the elements [zx] = Hn(iXx)[zX ]
for x ∈ X form a coherent set of generators for X. As [zx] generates Hn(X,X \ {x}) ∼= Z, the
element [zX ] cannot be of finite order. We show that it generates Hn(X).

Let [z] ∈ Hn(X). As [zx] generates Hn(X,X \ {x}) ∼= Z, for any there is a unique kx ∈ Z with
Hn(iXx)[z] = kx[zx]. This is equivalent to [z]− kx[zX ] ∈ kerHn(iXx) for all x ∈ X.

For every x ∈ X we can choose a chart φ : U → D̊n ⊂ Rn and a compact neighbourhood K of x
such that φ(K) is a compact convex neighbourhood of φ(x). Example 6.3.8 yields isomorphisms

Hn(iKx) : Hn(X,X \K)
∼=−→ Hn(X,X \ {x})

for all x ∈ K. This implies kerHn(iXx) = kerHn(iKy) ◦Hn(iXK) = kerHn(iXK) for x ∈ K and
shows that kx = ky for all x, y ∈ K. This shows that the map f : X → Z, x 7→ kx is locally
constant and hence constant, as X is connected. Thus, for every [z] ∈ Hn(X) there is a unique
k ∈ Z with Hn(iXx)([z]− k[zX ]) = 0 for all x ∈ X. This implies [z] = k[zX ] by compactness of
X with Lemma 6.3.10, 2. and shows that [zX ] generates Hn(X). As [zX ] is of infinite order, it
follows that Hn(X) ∼= Z. 2
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Example 6.3.13:

1. The n-sphere is orientable, as Hn(Sn) ∼= Z. The same holds for any orientable surface of
genus g > 0.

2. The Klein bottle K is a not orientable, because H2(K) = 0 (Exercise 20).

3. Real projective space RPn has the homologies Hn(RPn) = Z for n odd and Hn(RPn) = 0
for n even by Example 4.2.9. Hence, RPn is orientable if and only if n is odd.

4. By Example 4.2.6 complex projective space CPn has the homology group H2n(CPn) = Z.
Hence, CPn is an orientable 2n-dimensional topological manifold for all n ∈ N.

Note that the fundamental class in Theorem 6.3.12 must be a generator of Hn(X) ∼= Z, which is
unique up to a minus sign. Each connected compact orientable topological manifold has exactly
two orientation classes. Specifying an orientation amounts to selecting an orientation class, and
the opposite orientation corresponds to its inverse. Note also that all non-orientable compact
topological manifolds X in Example 6.3.13 have Hn(X) = 0. This is not a coincidence. One
can show that any non-orientable compact n-manifold has a trivial nth homology group.

A nice application of Theorem 6.3.12 is that it allows us to extend the concept of the mapping
degree from continuous maps f : Sn → Sn to continuous maps f : X → Y between compact
connected oriented n-manifolds X and Y . As Hn(X) ∼= Hn(Y ) = Z by Theorem 6.3.12 and the
orientation classes [X] and [Y ] generate the homology groups, there is a number deg(f) ∈ Z
with Hn(f)[X] = deg(f)[Y ].

Definition 6.3.14: Let X, Y be compact connected oriented manifolds of dimension n and
[X] and [Y ] the fundamental classes compatible with the chosen orientations.

The mapping degree of a continuous map f : X → Y is the unique integer deg(f) ∈ Z with

Hn(f)[X] = deg(f)[Y ].

Note that the mapping degree of a continuous map f : X → Y depends on the choice of an
orientation class or, equivalently, of an orientation of X and Y . For X = Y , it is independent
of the orientation choice, because Hn(f)[X] = deg(f)[X] implies Hn(f)(−[X]) = − deg(f)[X].
It is also clear from the definition that for X = Y = Sn the mapping degree reduces to the
one from Definition 3.6.5. The properties of the mapping degree of maps between spheres in
Proposition 6.3.15 also generalise to the mapping degree of maps between compact connected
oriented manifolds.

Proposition 6.3.15: Let X, Y, Z be oriented connected topological manifolds of dimension
n and denote by X the manifold X with the opposite orientation. Then

1. The mapping degree is multiplicative:
deg(g ◦ f) = deg(g) · deg(f) for all continuous maps f : X → Y and g : Y → Z,

2. deg(idX : X → X) = 1 and deg(idX : X → X) = −1,

3. If deg(f) 6= 0 then f is surjective.
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Proof:
1. and 2. follow from the definition. If [X], [Y ], [Z] are orientation classes of X, Y , Z, then

deg(g ◦ f)[Z] = Hn(g ◦ f)[X] = Hn(g) ◦Hn(f)[X] = deg(f)Hn(g)[Y ] = deg(f) · deg(g)[Z],

which implies deg(g ◦f) = deg(g) ·deg(f). As we have Hn(idX)[X] = [X] = −(−[X]), it follows
that deg(idX : X → X) = 1 and deg(idX : X → X) = −1.

3. Suppose that f : X → Y is not surjective and let y ∈ Y \ im (f). Then we have

0 = Hn(iY y) ◦Hn(f) : Hn(X)→ Hn(Y, Y \ {y}), [σ] 7→ [f ◦ σ]

because f ◦σ(∆n) ⊂ Y \{y} for any singular n-simplex σ : ∆n → Y . As Y is compact connected
and oriented, the group homomorphism Hn(iY y) : Hn(Y )→ Hn(Y, Y \ {y}) is an isomorphism
for any y ∈ Y by the proof of Theorem 6.3.12. This implies Hn(f) = 0 and deg(f) = 0. 2

Remark 6.3.16: Analogously, one defines orientations for a commutative unital ring R.

1. A topological n-manifold is called R-orientable is there is a coherent choice of generators
of the homology group Hn(X,X \ {x};R) ∼= R for all x ∈ X.

That Hn(X,X \ {x};R) ∼= R for all x ∈ X follows with the universal coefficient theorem
in Corollary 5.4.7 from Proposition 6.3.4.

2. Lemma 6.3.10 also holds for homologies with coefficients in a commutative unital ring R.

The reduction to the claims for (Rn,Rn \B) for compact balls B ⊂ Rn works analogously.
At the end of the proof, it is sufficient to note that Example 6.3.8 generalises to coeffi-
cients in R with the universal coefficient theorem. In particular, Hm(Rn,Rn \ B;R) = 0
for m > n.

3. Orientations along a compact subset K ⊂ X with coefficients in R are defined analogously
to Definition 6.3.9 as elements [zK ] ∈ Hn(X,X \K;R).

4. Proposition 6.3.11 and Theorem 6.3.12 hold analogously for R-orientations
[zK ] ∈ Hn(X,X \K;R) and for Hn(X) ∼= R.

Remark 6.3.17: More generally, one can show [H, Th. 3.26] that for a non R-orientable
topological n-manifold X the maps Hn(iXx) : Hn(X;R) → Hn(X,X \ {x};R) are always
injective with image Tor2(R) = {r ∈ R | 2r = 0}. This implies Hn(ixX) = 0 for R = Z.

6.4 Poincaré duality

In this section, we prove that any R-orientation of a compact orientable topological n-manifold
X with associated fundamental class [X] ∈ Hn(X;R) ∼= R for induces group isomorphisms

PDk : − ∩ [X] : Hk(X;R)
∼=−→ Hn−k(X;R),

the Poincaré duality maps. This is fairly straightforward to prove for compact manifolds X.
However, we also want to formulate an analogous result for non-compact orientable topological
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n-manifolds. In this case, we need to replace the cohomology groups with the cohomology groups
of compact support. They are constructed by considering only cocycles and coboundaries that
are trivial on all simplexes whose image does not intersect a certain compactum.

Definition 6.4.1: Let X be a topological space and R a commutative unital ring.

1. The subcomplex S•c (X;R) ⊂ S•(X;R) of singular cochains with compact support
is given by the subgroups

Snc (X;R) ={φ ∈ HomAb(Sn(X), R) |
∃Kφ ⊂ X compact with φ(σ) = 0 for all σ : ∆n → X with σ(∆n) ∩Kφ = ∅}.

2. The nth cohomology group with compact support is

Hn
x (X;R) = HnS•c (X;R).

That S•c (X;R) ⊂ S•(X;R) is a subcomplex can be seen as follows. Let φ : Sn(X) → R be a
group homomorphism with φ(σ) = 0 for all singular simplexes σ : ∆n → X with σ(∆n)∩Kφ = ∅.
For all singular (n + 1)-simplexes τ : ∆n+1 → X with τ ∩Kφ = ∅, every n-simplex in dn+1(τ)
is of the form τ ◦ fnj : ∆n → X and satisfies τ ◦ fnj (∆n) ∩ Kφ ⊂ τ(∆n+1) ∩ Kφ = ∅. This
implies dn(φ)(τ) = φ(dn+1(τ)) = 0 for all singular (n + 1)-simplexes τ : ∆n+1 → X with
τ(∆n+1) ∩Kφ = ∅. Hence, we can set Kdn(φ) = Kφ, and dn(φ) has compact support as well.

We will now relate the singular cochain complex S•c (X;R) with compact support to the relative
cochain complexes S•(X,X \ K;R) for compact subsets K ⊂ X. By construction, a relative
cochain φ ∈ Sn(X,X \K;R) is a group homomorphism φ : Sn(X,X \K)→ R. By the universal
property of the factor group Sn(X,X \K) = Sn(X)/Sn(X \K), such group homomorphisms
are in bijection with group homomorphisms φ : Sn(X) → R such that Sn(X \K) ⊂ kerφ or,
equivalently, with φ(σ) = 0 for all singular simplexes σ : ∆n → X with σ(∆n) ∩K = ∅. Thus,
every relative cochain φ ∈ Sn(X,X \K;R) is a cochain with compact support.

More abstractly, we can express this in terms of the inclusion morphisms in Top(2) associated
to subsets of X from (61). For all subsets B ⊂ A ⊂ X of a topological space X, the identity
map induces a morphism iAB : (X,X \ A)→ (X,X \B), x 7→ x in Top(2) with

iAA = 1(X,X\A) iAC = iBC ◦ iAB for C ⊂ B ⊂ A ⊂ X. (62)

These morphisms of pairs induce cochain maps between the associated relative cochain com-
plexes and group homomorphisms between their cohomologies. This allows us to rephrase our
observation from the last paragraph as the following lemma.

Lemma 6.4.2: Let X be a topological space and R a commutative unital ring.

1. For any compact subset K ⊂ X the morphism of pairs iXK : (X, ∅)→ (X,X \K) induces
a cochain map Sn(iXK) : Sn(X,X \K;R)→ Snc (X;R) and group homomorphisms

Hn(iXK) : Hn(X,X \K;R)→ Hn
c (X;R)

2. For compact subsets K ⊂ L ⊂ X there is a commuting diagram of cochain complexes

S•(X,X \K;R)

S•(iKX) ((

S•(iLK) // S•(X,X \ L;R)

S•(iLX)vv
S•c (X;R)
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and for each n ∈ N0 a commuting diagram of cohomology groups

Hn(X,X \K;R)

Hn(iKX) ((

Hn(iLK) // Hn(X,X \ L;R)

Hn(iLX)vv
Hn
c (X;R)

Proof:
The first statement follows, because the morphisms iXK : (X, ∅)→ (X,X \K) induce cochain
maps S•(iXK) : S•(X,X \K;R)→ S•(X;R) and every relative cochain φ ∈ Sn(X,X \K;R)
is a cochain with compact support in Sn(X;R). The second statement follows from (62). 2

We will now build up the singular cochain complex S•c (X;R) with compact support from
the relative cochain complexes S•(X,X \ K;R) for compact subsets K ⊂ X and relate their
cohomologies. Naively, one could attempt to combine the cochain complexes S•(X,X \K;R)
for different compact subsets K ⊂ X by taking their direct sum. However, this does not yield
correct result, as we need to identify relative cochains in Sn(X,X \L;R) with relative cochains
in Sn(X,X \ K;R) for compact subsets L ⊂ K ⊂ X and all n ∈ Z. Hence, we need to take
a quotient module of the direct sum of all R-modules Sn(X,X \ K;R), where cochains are
identified by the inclusions Sn(iLK) : Sn(X,X \L;R)→ Sn(X,X \K;R). This is a special case
of a categorical colimit, associated to a poset category.

Definition 6.4.3:
A partially ordered set or poset is a set I together with a relation � that is

(i) reflexive: i � i for all i ∈ I,
(ii) antisymmetric: i � j and j � i implies i = j,

(iii) transitive: i � j and j � k implies i � k.

A poset (M,�) is called direct, if for all i, j ∈ I there is a k ∈ I with i, j � k.

Lemma 6.4.4: Every poset (I,�) defines a category I, the poset category for I, whose

• objects are elements i ∈ I,
• morphism sets are given by |HomI(i, j)| = 1 if i � j and HomI(i, j) = ∅ else.

Proof:
The existence of identity morphisms is guaranteed by the reflexivity of � and the associativity
of the composition of morphisms by the transitivity of �. 2

Example 6.4.5: Let X be a topological space and K ⊂ P(X) the set of its compact subsets
K ⊂ X. Then K with the relation �=⊂ is a poset. It is direct, because for all compact subsets
K,K ′ ⊂ X the union K ∪K ′ is a compact subset of K with K,K ′ ⊂ K ∪K ′.

When considering the relative cochain complexes with respect to complements of compact
subsets, we assign to each compact subset K ⊂ X a relative cochain complex S•(X,X \K;R)
and to every inclusion L ⊂ K ⊂ X a chain map S•(iLK) : S•(X,X \L;R)→ S•(X,X \K;R).
It is plausible that these assignments should define a functor from the poset category for K
of X into the category of cochain complexes. Such functors from directed poset categories are
known as direct systems. The notion that we need to combine the relative cochain complexes
of compacta K ⊂ X into the cochain complex with compact support is a categorical colimit,
in this case known as a direct limit.
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Definition 6.4.6: Let (I,�) a direct poset and C a category.

1. A direct system for (I,�) in C is a functor F : I → C:
• a family (Fi)i∈I of objects in C,
• a family (fij)i�j of morphisms fij : Fi → Fj for all i, j ∈ I with i � j,

such that for all i � j � k

fii = 1Fi fik = fjk ◦ fik : Fi → Fk.

2. A map of direct systems from F : I → C to F ′ : I → C is a natural transformation
γ : F ⇒ F ′, a family (γi)i∈I of morphisms γi : Fi → F ′i with f ′ij ◦ γi = γj ◦ fij for all i � j.

3. A direct limit of a direct system F : I → C is a colimit of F :
• an object lim→ F of C,
• a family (fi)i∈I of morphisms fi : Fi → lim→ Fi with fj ◦ fij = fi for all i � j,

that have the following universal property:
for every object C and family (f ′i)i∈I of morphisms f ′i : Fi → C with f ′j ◦ fij = f ′i for all
i � j there is a unique morphism f : lim→ F → C with f ′i = f ◦ fi for all i ∈ I

Fi

fi ##

f ′i

##

fij // Fj

fj{{

f ′j

{{

lim→ F

∃!f
��
C.

Remark 6.4.7:

1. The name direct limit for a categorical colimit predates the notion of a colimit.

2. As it is defined by a universal property, the direct limit of a direct system is unique up
to unique isomorphism:

If (fi : Fi → C)i∈I and (f ′i : Fi → C ′)i∈I are two families of morphisms that define direct
limits of F : I → C, then there are unique morphisms f : C → C ′ with f ′i = f ◦ fi for all
i ∈ I and f ′ : C ′ → C with fi = f ′ ◦ f ′i for all i ∈ I, and f ′ = f−1.

3. If F, F ′ : I → C have direct limits, any morphism γ : F ⇒ F ′ of direct systems induces a
unique morphism lim→ γ : lim→ Fi → lim→ F

′
i with γ ◦ fi = f ′i ◦ γi for i ∈ I. This follows

with the universal property of the direct limit

F ′i

f ′i

))

f ′ij // F ′j

f ′j

uu

Fi

γi
__

fi $$

fij // Fj

fjzz

γj
??

lim→ F

∃! lim→ γ
��

lim→ F
′.

If all direct limits of functors F : I → C exist, this defines a functor lim→ : CI → C from
the functor category CI = Fun(I, C) into the category C (Exercise 74).
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4. Concretely, the direct limit of a direct system F : I → Ab is the factor group

lim
→
F = (⊕i∈IFi) /U U = 〈∪i�j∈I{ιj ◦ fji(m)− ιi(m) | m ∈ Fi}〉

where ιi : Fi → ⊕i∈IFi are the inclusions. The morphisms fi = π ◦ ιi : Fi → lim→ F are
the composites of the inclusions ιi with the canonical surjection π : ⊕i∈IFi → lim→ F
(Exercise 75).

5. The direct limit of a direct system F : I → ChAb is given degreewise by

(lim
→
F )n = lim

→
Fn dn = lim

→
dn : (lim

→
F )n → (lim

→
F )n−1.

6. Every direct system in the categories Set, Top and in the categories Ab or ChAb has a
direct limit. This follows, because these categories are cocomplete: every functor into
these categories has a colimit.

Example 6.4.8:
Let X be a topological space and K the associated direct poset category of compact subsets.

1. There is a direct system S•(X,X \ −;R) : K → ChAb of cochain complexes that
• assigns to a compact subset K ⊂ X the cochain complex S•(X,X \K;R)
• assigns to compact subsets L ⊂ K ⊂ X the cochain map

S•(iLK) : S•(X,X \ L;R)→ S•(X,X \K;R).

2. The cohomologies define a direct system Hn(X,X \ −;R) : K → Ab that
• assigns to a compact subset K ⊂ X the abelian group FK = Hn(X,X \K;R)
• assigns to compact subsets L ⊂ K ⊂ X the group homomorphism

Hn(iLK) : Hn(X,X \ L;R)→ Hn(X,X \K;R).

We will now show that the direct limit of the direct system S•(X,X \ −;R) is precisely the
singular cochain complex with compact support, and that the direct limit of the direct system
Hn(X,X \ −;R) are isomorphic to its cohomologies. This requires some auxiliary results on
the interaction of direct limits with short exact sequences.

Lemma 6.4.9: Let (I,�) a directed poset.

1. If A,B,C : I → Ab are direct systems of abelian groups and ι : A ⇒ B and π : B ⇒ C
maps of direct systems that form for each i ∈ I a short exact sequence

0→ Ai
ιi−→ Bi

πi−→ Ci → 0,

then they induce a induced short exact sequence

0→ lim
→
A

lim
→
ι

−−−→ lim
→
B

lim
→
π

−−−−→ lim
→
C → 0.

2. If A• : I → ChAb is a direct system of chain complexes, then for all n ∈ Z

lim
→
Hn(A•) ∼= Hn(lim

→
A•).
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Proof:
1. We denote by aij : Ai → Aj the group homomorphisms maps that characterise the direct
systems, and by ai : Ai → lim→A the maps that characterise the direct limits. We use the
description in Remark 6.4.7, 4. and write [x] for the equivalence class of an element x ∈ Ai
in lim→A = ⊕i∈IAi/UA. We then have ai : Ai → lim→A, x 7→ [x] with [aij(x)] = [x] for all
x ∈ Ai, i � j and analogous identities for B and C.

1. (a) We show that lim→ ι is injective:

Let a ∈ lim→A with lim→ ι(a) = 0. By Remark 6.4.7, 4. it is of the form a = [Σn
k=1xk] with

xk ∈ Aik and ik ∈ I. As I is direct, there is a j ∈ I with i1, . . . , in � j, which implies a = [x],
where x =

∑n
i=1 aikj(xk) ∈ Aj. Then we have 0 = lim→ ι(a) = [ιj(x)]. By Remark 6.4.7, 4. there

is an l ∈ I with j � l and 0 = bjl ◦ ιj(x). As ι is a map of direct systems, this implies
0 = bjl ◦ ιj(x) = ιl ◦ ajl(x) and by injectivity of ιl that ajl(x) = 0. Hence, a = [x] = [ajl(x)] = 0.

1. (b) We show that lim→ π is surjective:

Let c ∈ lim→C. As in case (a), there is an x ∈ Cj for some j ∈ I with c = [x]. By surjectivity
of πj : Bj → Cj there is a y ∈ Bj with x = πj(y). This implies c = [x] = [πj(y)] = lim→ π([x]).

1. (c) We show that ker lim→ π = im lim→ ι:

If b = lim→ ι(c) for some c ∈ lim→C, there is an x ∈ Cj for some j ∈ I with c = [x]. This implies
b = lim→ ι[x] = [ιj(x)] and lim→ π(b) = lim→ π[ιj(x)] = [πj ◦ ιj(x)] = 0 and b ∈ ker lim→ π.

Let b ∈ ker lim→ π. As in (a), there is an x ∈ Bj for some j ∈ I with b = [x] and lim→ π(b) =
[πj(x)] = 0. Hence, there is a k ∈ I with j � k such that 0 = cjk ◦ πj(x) = πk ◦ bjk(x).
By exactness of the sequence for k, there is an y ∈ Ak with ιk(y) = bjk(x). This implies
lim→ ι[y] = [ιk(y)] = [bjk(x)] = [x] = b and b ∈ im lim→ ι.

2. A direct system A• : I → ChAb of chain complexes consists of chain complexes Ai• for i ∈ I
and chain maps aij• : Si• → Aj• for all i � j such that aii• = idAi• for all i ∈ I and ajk• ◦ aij• = aik•
for all i � j � k. Its direct limit is a chain complex lim→A• with chain maps ai• : Ai• → lim→A•
such that aj• ◦ aij• = ai• for all i � j.

We consider the functors Hn, Zn, Bn : ChAb → Ab that assign to a chain complex X• the abelian
groups Hn(X•), Zn(X•) and Bn(X•), respectively, and to a chain map f• : X• → Y• the induced
maps Hn(f•) : Hn(X•) → Hn(Y•), Zn(f•) : Zn(X•) → Zn(Y•) and Bn(f•) : Bn(X•) → Bn(Y•).
The inclusions ιn : Bn(X•) → Zn(X•) and projections πn : Zn(X•) → Hn(X•) define natural
transformations ιn : Bn ⇒ Zn and πn : Zn ⇒ Hn.

Composing these functors and natural transformations with the direct system yields direct
systems HnA•, ZnA•, BnA• : I → Ab and maps of direct systems ιnA• : BnA• ⇒ ZnA• and
πnA• : ZnA• ⇒ HnA• for all n ∈ Z. For each i ∈ I they form a short exact sequence

0→ Bn(Ai•)
ιin−→ Zn(Ai•)

πin−→ Hn(Ai•)→ 0.

By 1. this yields for all n ∈ Z a short exact sequence

0→ lim
→
Bn(A•)

lim
→
ιn

−−−−→ lim
→
Zn(A•)

lim
→
πn

−−−−→ lim
→
Hn(A•)→ 0,
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which implies

lim
→
Hn(A•) =

lim→ Zn(A•)

lim→Bn(A•)
.

The maps Zn(ai•) : Zn(Ai•)→ Zn(lim→A•) and Bn(ai•) : Bn(Ai•)→ Bn(lim→A•) satisfy

Zn(aj•) ◦ Zn(aij• ) = Zn(ai•) Bn(aj•) ◦Bn(aij• ) = Bn(ai•)

for all i � j. By the universal property of the direct limit they induce R-linear maps

zn : lim
→
Zn(A•)→ Zn(lim

→
A•), [x]′ 7→ [x] bn : lim

→
Bn(A•)→ Bn(lim

→
A•), [y]′ 7→ [y],

where [x]′, [y]′ denote the equivalence classes of x ∈ Zn(Ai•) and y ∈ Bn(Ai•) in lim→ Zn(A•)
and lim→Bn(A•) and [x], [y] their equivalence classes in Zn(lim→A•) and Bn(lim→A•).

It remains to show that zn and bn are isomorphisms, which yields

lim
→
Hn(A•) =

lim→ Zn(A•)

lim→Bn(A•)
∼=
Zn(lim→A•)

Bn(lim→A•)
= Hn(lim

→
A•).

To show that zn is surjective, let a ∈ Zn(lim→A•). As in 1. (a), we see that there is an x ∈ Ajn
with a = [x] and dn(a) = [djn(x)] = 0. This implies that there is a k ∈ I with j � k such that
0 = ajkn−1 ◦ djn(x) = dkn ◦ ajkn (x). Hence, we have a = [x] = [ajkn (x)] with ajkn (x) ∈ Zn(ak•) and
hence zn[ajkn (x)]′ = [ajkn (x)] = [x] = a. This shows zn is surjective.

To show zn is injective, let a ∈ lim→ Zn(A•) with zn(a) = 0. Then there is an x ∈ Zn(Ai•)
with a = [x]′, and we have zn(c) = [x] = 0. Hence, there is a k ∈ I with i � k such that
aikn (x) = 0, and we have aikn (x) ∈ Zn(Ak•), as dkn ◦ aikn (x) = aikn−1 ◦ din(x) = 0. This implies
a = [x]′ = [aikn (x)] = 0, and hence zn is injective.

To show that bn is surjective, let a ∈ Bn(lim→A•). Then there is a b ∈ lim→An+1 with
a = dn+1(b) and a y ∈ Ajn+1 for some j ∈ I with b = [y]. This implies a = dn+1(b) = [dn+1j(y)] =

bn[djn+1(y)]′ with djn+1(y) ∈ Bn(Aj•), and thus bn is surjective.

To show that bn is injective, let c ∈ lim→Bn(A•) with bn(c) = 0. Then there is an x ∈ Ain+1

for some i ∈ I with c = [din+1(x)]′, and we have 0 = bn(c) = bn[din+1(x)]′ = [din+1(x)]. Hence,
there is a k ∈ I with i � k such that aikn ◦ din+1(x) = dkn+1 ◦ aikn+1(x) = 0. This implies
c = [din+1(x)]′ = [dkn+1 ◦ aikn+1(x)]′ = [aikn ◦ din+1(x)]′ = 0, and bn is injective. 2

Proposition 6.4.10: Let R be a commutative unital ring, X a topological space and K the
directed poset of compact subsets from Example 6.4.8. Then we have isomorphisms

lim
→
S•(X,X \ −;R) ∼= S•c (X;R) lim

→
Hn(X,X \ −;R) ∼= Hn

c (X;R).

Proof:
The cochain maps S•(iKX) : S•(X,X \K;R)→ S•c (X;R) for compact subsets K satisfy

S•(iKX) ◦ S•(iLK) = S•(iLX) : S•(X,X \ L;R)→ S•c (X;R)

for all compact subsets L ⊂ K ⊂ X. By the universal property of the direct limit, they induce
a cochain map

f • : lim
→
S•(X,X \ −;R)→ S•c (X;R).
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Its component fnK : lim→ S
n(X,X \ K;R) → Snc (X;R) for a compactum K ⊂ X sends each

equivalence class [φ] of a cochain φ ∈ Sn(X,X \ K;R) in the direct limit to φ. This is well-
defined, as φ is a group homomorphism φ : Sn(X) → R with φ(σ) = 0 for all σ : ∆n → X
with σ(∆n) ∩K = ∅. Clearly, all maps fnK is injective for all n ∈ Z and compacta K ⊂ X. It
is surjective, by definition of the cochains with compact support: If φ ∈ Snc (X;R), there is a
compactum Kφ ⊂ X with φ(σ) = 0 for all singular simplexes σ : ∆n → X with σ(∆n)∩Kφ = 0.
This shows that φ ∈ Sn(X,X \Kφ;R) and fnKφ [φ] = φ. Hence f • is an isomorphism of cochain
complexes. With Lemma 6.4.9, 2. we obtain

Hn
c (X;R) = HnS•c (X;R) ∼= Hn(lim

→
S•(X,X \ −;R)) ∼= lim

→
Hn(X,X \ −;R).

2

Example 6.4.11: The cohomologies with compact support of Rn with coefficients in a com-
mutative unital ring R are given by

Hk
c (Rn;R) = Hk

c (Rn,Rn \ {0};R) ∼=

{
R k = n

0 k 6= n

Proof:
We compute the cohomology groups with compact support with Proposition 6.4.10. This
amounts to computing the direct limit of the functor Hk(Rn,Rn \ −;R) : K → Ab, where
K is the direct poset of compact subsets K ⊂ Rn. By Remark 6.4.7, 4. it is given by

lim
→
Hk(Rn,Rn \ −;R) =

⊕
K⊂Rn

compact

Hn(Rn,Rn \K;R)/ ∼

[z] ∼ Hk(iKL)[z] ∀[z] ∈ Hk(Rn,Rn \ L;R) and L ⊂ K ⊂ Rn.

As every compact subset K ⊂ Rn is contained in a closed ball Br = {x ∈ Rn | ||x|| ≤ r}
of integer radius r ∈ N0, every element [z] ∈ Hk(Rn,Rn \ K;R) is equivalent to an element
Hk(iKBr)[z] ∈ Hk(Rn,Rn \Br;R), and we can replace the direct poset K by the direct poset B
whose objects are balls Br of integer radius r ∈ N in Rn.

As Br ⊂ Rn is compact and convex, we can show analogously to Example 6.3.8 that we have a
commuting diagram, in which all arrows are isomorphisms

Hk(Rn,Rn \Br;R)
Hk(iBrBr+1

)
// Hk(Rn,Rn \Br+1;R)

Hk(Rn,Rn \ {0};R)
Hk(iRn\{0}Br )

∼=
jj

Hk(iRn\{0}Br+1
)

∼=
44

and obtain with Proposition 6.3.4

lim
→
Hk(Rn,Rn \ −;R) ∼= Hk(Rn,Rn \ {0};R) ∼=

{
R k = n

0 k 6= n.

2

Lemma 6.4.12: Let X be a connected topological n-manifold and {[zx]}x∈X an R-orientation
of X. For each compact subset K ⊂ X denote by [zK ] ∈ Hn(X,X \ K;R) the associated
orientation along K from Proposition 6.3.11 with Hn(iKx)[zK ] = [zx] for all x ∈ K.
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Then the maps − ∩ [zK ] : Hn−k(X,X \K;R)→ Hk(X;R) induce group homomorphisms

PDk : Hn−k
c (X;R)→ Hk(X;R) for k ∈ {0, . . . , n},

with PDk ◦Hn−k(iKX) = − ∩ [zK ] for all compacta K ⊂ X, the Poincaré duality maps.

Proof:
By Proposition 6.4.10 we have lim→H

n−k(X,X \ −;R) ∼= Hn−k
c (X;R). The direct limit is

characterised by the maps Hn−k(iKX) : Hn−k(X,X \ K;R) → Hn−k
c (X;R). By Proposition

6.3.11 we have Hn(iLK)[zK ] = [zL] for all compact subsets L ⊂ K ⊂ X. With the naturality
property of the cap product from Proposition 6.2.17 it follows that the maps

fK = − ∩ [zK ] : Hn−k(X,X \K;R)→ Hk(X;R)

satisfy for all [φ] ∈ Hn−k(X,X \K;R)

fK ◦Hn−k(iLK)[φ] = (Hn−k(iLK)[φ]) ∩ [zK ] = Hk(iLK)(Hn−k(iLK)[φ] ∩ [zK ])
6.2.17
= [φ] ∩ (Hn(iLK)[zK ])

6.3.11
= [φ] ∩ [zL] = fL[φ].

By the universal property of the direct limit of Hn−k(X,X \ −;R) : K → Ab, there is a
unique group homomorphism PDk : Hn−k

c (X;R) ∼= lim→H
n−k(X,X \ −;R)→ Hk(X;R) with

PDk ◦Hn−k(iKX) = − ∩ [zK ] for all compact subsets K ⊂ X. 2

Theorem 6.4.13: Let X be a connected topological n-manifold. Then for all k ∈ Z the
Poincaré duality map is a group isomorphism.

PDk : Hn−k
c (X;R)

∼=−→ Hk(X;R).

Proof:
1. We show: If X = U ∪ V with U, V ⊂ X open, and the claim holds for U , V and U ∩ V , then
it holds for X.

Suppose U, V ⊂ X are open and equipped with the R-orientations induced by the R-orientation
of X and that the Poincaré duality maps for U , V and U ∩ V are isomorphisms. For compact
K ⊂ U and L ⊂ V , we consider the relative Mayer-Vietoris sequence for cohomology for
A1 = X \K and A2 = X \L with A1 ∪A2 = X \ (K ∩L) and A1 ∩A2 = X \ (K ∪L). Excising
the closed subspaces X \ U ⊂ X \K and X \ V ⊂ X \ L yields

Hk(X,X \K;R) ∼= Hk(U,U \K;R) Hk(X,X \ L;R) ∼= Hk(V, V \ L;R).

Excision of the closed subspace X \ (U ∩ V ) ⊂ X \ (K ∩ L) gives

Hk(X,X \ (K ∩ L);R) ∼= Hk(U ∩ V, (U ∩ V ) \ (K ∩ L);R).
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so that we have a long exact sequence of cohomology groups

. . .

∂k−1

��

. . .

∂k−1

��
Hk(X,X \ (K ∩ L);R)

��

∼= // Hk(U ∩ V, (U ∩ V ) \ (K ∩ L);R)

��
Hk(X,X \K;R)⊕Hk(X,X \ L;R)

��

∼= // Hk(U,U \K;R)⊕Hk(V, V \ L;R)

��
Hk(X,X \ (K ∪ L);R)

∂k

��

id // Hk(X,X \ (K ∪ L);R)

∂k

��
Hk+1(X,X \ (K ∩ L);R)

∼= //

��

Hk(U ∩ V, (U ∩ V ) \ (K ∩ L);R)

��. . . . . .

Taking the direct limit over the column on the right and applying the Poincaré duality maps
for U , V , U ∩ V and X yields the following commuting diagram with exact columns, in which
the right-hand-side is the relative Mayer-Vietoris sequence from Proposition 3.5.5 for homology

. . .

��

. . .

��
Hn−k
c (U ∩ V ;R)

��

PDU∩Vk

∼=
// Hk(U ∩ V ;R)

��
Hn−k
c (U ;R)⊕Hn−k

c (V ;R)

��

PDUk +PDVk
∼=

// Hk(U ;R)⊕Hk(V ;R)

��
Hn−k
c (X;R)

��

PDXk //

��

Hk(X;R)

��
Hn−k+1
c (U ∩ V ;R)

��

PDU∩Vk−1

∼=
// Hk−1(U ∩ V ;R)

��
Hn−k+1
c (U ;R)⊕Hn−k+1

c (V ;R)

��

PDUk−1+PDVk−1

∼=
// Hk−1(U ;R)⊕Hk−1(V ;R)

��. . . . . .

As all horizontal arrows except the middle one are isomorphisms by assumption, the middle
one is an isomorphism as well by the 5-lemma.

2. We show: If X = ∪∞i=1Ui with open subsets U1 ⊂ U2 ⊂ . . . ⊂ X and the claim holds for Ui,
then it holds for X.

For open subsets U ⊂ V ⊂ X and compact subsets L ⊂ K ⊂ U we denote by

iULK : (U,U \K)→ (U,U \ L), u 7→ u jUVK : (U,U \K)→ (V, V \K), u 7→ u

the associated morphism in Top(2). By the excision axiom, applied to V \U ⊂ V \K, the map

Hn−k(jUVK ) : Hn−k(V, V \K;R)→ Hn−k(U,U \K;R)
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is an isomorphism. If we equip all open subsets of X with the induced orientations, we have
the following commuting diagram, where we suppress R for better legibility

Hn−k(U,U \ L)fUL =−∩[zL]

yy

Hn−k(iULU )

vv
Hn−k(iULK)

��

Hn−k(V, V \ L)
Hn−k(jUVL )

∼=
oo

Hn−k(iVLK)

��

Hn−k(iVLV )

((

fVL =−∩[zL]

%%
Hk(U) Hn−k

c (U)
PDUkoo Hn−k

c (V )
PDVk // Hk(V )

Hn−k(U,U \K)fUK=−∩[zK ]

ee

Hn−k(iUKU )

hh

Hn−k(V, V \K)
Hn−k(jUVK )

∼=oo
Hn−k(iVKV )

66

fVK=−∩[zK ]

99

The commutativity of the diagram implies

ψUVK ◦Hn−k(iULK) = ψUVL for ψUVL := Hn−k(iVLV ) ◦Hn−k(jUVL )−1

and hence induce a unique map

ψn−kUV : Hn−k
c (U ;R) = lim

→
Hn−k(U,U \ −;R)→ Hn−k

c (V,R)

with ψn−kUV ◦ Hn−k(iUKU) = ψUVK for all compact subsets K ⊂ U . By composing two such com-
muting diagrams for open subsets U ⊂ V ⊂ W and by setting U = V we obtain the identities

ψn−kUW = ψn−kVW ◦ ψ
n−k
UV ψn−kUU = idHn−k

c (U). (63)

The diagram still commutes if we add arrows labelled by Hk(ιUV ) : Hk(U ;R) → Hk(V ;R),
where ιUV : U → V is the inclusion. The universal property of the direct limit then yields
commuting diagrams for all open subsets U ⊂ V ⊂ X and k ∈ {0, . . . , n}

Hn−k
c (U ;R)

PDUk
��

ψn−kUV // Hn−k(V ;R)

PDVk
��

Hk(U ;R)
Hk(ιUV )

// Hk(V ;R).

Suppose now that X = ∪∞i=1Ui with U1 ⊂ U2 ⊂ . . . open and PDUi
k : Hn−k

c (Ui;R)→ Hk(Ui;R)
an isomorphism for all n ∈ N. Then from (63) and the properties of the inclusion we have

Hk(ιUjX) = Hk(ιUiX) ◦Hk(ιUjUi) ψn−kUjX
= ψn−kUiX

◦ ψn−kUjUi
1 ≤ j < i ∈ N.

Thus, we have a direct systems Hk(U−;R) : N → Ab and Hn−k
c (U−;R) : N → Ab with

commuting diagrams, in which the left arrow is an isomorphism by assumption

Hn−k
c (Ui;R)

PD
Ui
k

∼=
��

ψn−kUiX // Hn−k
c (X;R)

PDXk
��

Hk(Ui;R)
Hk(ιUiX)

// Hk(X;R).
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Taking the direct limit yields a commuting diagram

lim→H
n−k
c (U−;R)

∼=
��

lim→ PD
U−
k
��

ψn−k

∼=
''

Hn−k
c (Ui;R)

fi
oo

PD
Ui
k

∼=
��

ψn−kUiX

// Hn−k
c (X;R)

PDXk
��

lim→Hk(U−;R)

φk

∼=

77
Hk(Ui;R)

gioo
Hk(ιUiX)

// Hk(X;R)

where the maps fi and gi characterise the direct limits and the curved arrows are induced by
the universal property of the limit. The upper curved arrow is an isomorphism, because every
compact subset K ⊂ X is contained in some subset Ui ⊂ X and then in all subsequent subsets
K ⊂ Ui ⊂ Ui+1 ⊂ . . ..

The lower curved arrow is an isomorphism, because every cocycle z = Σr
j=1zjσj ∈ Zk(X;R) is

a linear combination of k-simplexes σj : ∆k → X and ∪rj=1σj(∆
k) is compact. Thus, its open

cover X = ∪∞j=1Uj has a finite subcover, and ∪rj=1σj(∆
k) ⊂ Ui ⊂ Ui+1 ⊂ . . . for some i ∈ N.

The left vertical arrow is an isomorphism, because PDk is an isomorphism for all i ∈ N, and
this shows that PDX

k : Hn−k
c (X)→ Hk(X) is an isomorphism as well.

3. We show that the claim holds for X = Rn.

Because Rn is contractible and by Example 6.4.11 we have

Hk(Rn;R) =

{
R k = 0

0 k 6= 0
Hk
c (Rn;R) = Hk

c (Rn,Rn \ {0};R) ∼=

{
R k = n

0 k 6= n.

Thus, we only need to show that the map PD0 : Hn
c (Rn;R) → H0(Rn;R) is an isomorphism.

By Exercise 77 it is induced by the maps

fr = − ∩ [zr] : Hn(Rn,Rn \Br;R)→ H0(Rn;R),

where Br = {x ∈ Rn | ||x|| ≤ r} is the closed ball of radius r > 0 and [zr] ∈ Hn(Rn,Rn \Br) the
induced orientation along Br. By the universal coefficient theorem in Corollary 6.1.7 we have

Hn(Rn,Rn \Br;R) ∼= HomAb(Hn(Rn,Rn \Br), R)⊕ Ext(Hn−1(Rn,Rn \Br), R).

By Example 6.4.11 we have Hn−1(Rn,Rn \ Br) ∼= Hn−1(Rn,Rn \ {0}) = 0, which shows that
the second summand is trivial. Combining this with Example 6.2.15, 2. gives

fr = − ∩ [zr] : HomAb(Hn(Rn,Rn \Br), R)→ H0(Rn;R), φ 7→ φ([zr]).

As H0(Rn, R) ∼= R and Hn(Rn,Rn\Br) = 〈[zr]〉Z ∼= Z, this map is an isomorphism for all r > 0.
With Exercise 76 it follows that they induce an isomorphism PD0 : Hn

c (Rn;R)→ H0(Rn;R).

4. We show that the claim holds for open subsets U ⊂ Rn.

Let U ⊂ Rn be an open subset. As Rn is second countable, U is a countable union

U =
∞⋃
i=1

B̊i =
∞⋃
j=1

Uj Uj =

j⋃
k=1

B̊k.
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of open n-balls B̊i ⊂ Rn. As each open n-ball B̊i is homeomorphic to Rn, the claim holds for
B̊i by 3. With 1. it follows that the claim holds for the open sets Uj for all j ∈ N and with 2. it
follows that the claim holds for U .

5. We show that the claim holds in general:
Let X be a connected n-manifold with a fixed R-orientation.

5.(a) We show that X is covered by a countable set of coordinate charts:

As X is second countable there is a countable family (Bi)i∈N of open subsets Bi ⊂ X such that
for every open subset U ⊂ X and every point x ∈ U , there is an i ∈ N with x ∈ Bi ⊂ U .

As X is an n-manifold, every point x ∈ X has an open neighbourhood Ux homeomorphic
to an open subset Vx ⊂ Rn. Any choice of such open neighbourhoods defines an open cover
X = ∪x∈XUx. Consider the set J = {i ∈ N | ∃x ∈ X : Bi ⊂ Ux} ⊂ N and choose for each j ∈ J
a point xj ∈ X with Bj ⊂ Uxj . As Ux is open for all x ∈ X, there is an ix ∈ N and a basis
element Bix with x ∈ Bix ⊂ Ux for all x ∈ X, and ix ∈ J ⊂ N by assumption. Then we have
X = ∪x∈XBix ⊂ ∪j∈JBj, and every Bj for j ∈ J is a domain of a coordinate chart.

5.(b) Suppose X = ∪∞i=1Ui, where Ui ⊂ X is open and homeomorphic to an open subset
Vi ⊂ Rn. By adjusting the subset Vi ⊂ Rn we may assume that the homeomorphism preserves
R-orientations. Then the claim holds for Vi by 4. and hence for Ui for all i ∈ N. By 1. it also
holds for the sets Wj = ∪ji=1Ui for j ∈ N and by 2. for X = ∪∞j=1Wj. 2

Corollary 6.4.14: Let X be a compact connected R-oriented topological n-manifold with
associated fundamental class [X] ∈ Hn(X;R).

Then for all k ∈ Z the Poincaré duality map is given by the group isomorphism

PDk = − ∩ [X] : Hn−k(X;R)
∼=−→ Hk(X;R).

In particular, one has H0(X;R) ∼= Hn(X;R) ∼= R.

Example 6.4.15: By Example 5.4.8, 4. and and Example 6.1.8 the singular homologies and
cohomologies of RPn with coefficients in a commutative unital ring R are given by

Hk(RPn;R) =


R k = 0 or k = n odd

R/2R 1 ≤ k < n odd

Tor2(R) 1 ≤ k ≤ n even

0 k ≥ n+ 1,

Hk(RPn;R) =


R k = 0 or k = n odd

Tor2(R) 1 ≤ k < n odd

R/2R 2 ≤ k ≤ n even

0 k < n.

For n odd, these formulas imply together with Theorem 6.3.12 and Remark 6.3.16 that RPn is
R-orientable for any commutative unital ring R, as we have Hn(RPn;R) = R for n odd. In this
case, k ∈ {1, . . . , n} is odd if and only if n − k ∈ {1, . . . , k} is even. Comparing the formulas
for homologies and cohomologies then shows the Poincaré duality isomorphisms.

For n even, these formulas imply together with Theorem 6.3.12 and Remark 6.3.16 that RPn

is R-orientable if and only if Tor2(R) = R, as Hn(RPn;R) = Tor2(R). In this case the formulas
for the homologies and cohomologies reduce to

Hk(RPn;R) = Hk(RPn, R) =

{
R 0 ≤ k ≤ n

0 else.
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7 Exercises

7.1 Exercises for Section 1

Exercise 1: Let A be an abelian group.

(a) Show that A defines a functor Hom(−, A) : Abop → Ab, if we equip the sets HomAb(B,A)
with the pointwise addition of group homomorphisms.

(b) Show that Hom(Z/nZ, A) gives the n-torsion elements of A and Hom(Z, A) ∼= A.

(c) Show that Hom(−, A) : Abop → Ab sends direct sums of abelian groups to direct products

Hom(⊕i∈IBi, A) ∼= Πi∈IHom(Bi, A).

Exercise 2: Let A,B,C be sets.

• A relation between A and B is a subset R ⊂ A×B.

• A relation R ⊂ A× B is called a map from A to B, if for every a ∈ A there is a unique
b ∈ B with (a, b) ∈ R.

• The composite of two relations R ⊂ A×B and S ⊂ B × C is the relation

S ◦R = {(a, c) ∈ A× C | ∃b ∈ B : (a, b) ∈ R, (b, c) ∈ S} ⊂ A× C.

(a) Show that sets and relations form a category Rel with HomRel(A,B) = P(A×B).

(b) Determine the isomorphisms in Rel.

(c) Show that the disjoint union of sets defines both, a product and a coproduct in Rel.

Exercise 3: Let G be a group. The commutator subgroup of G is the normal subgroup

[G,G] = {[g, h] | g, h ∈ G} ⊂ G [g, h] := g · h · g−1 · h−1.

(a) Show that the commutator subgroup is indeed a normal subgroup of G and that the factor
group Ab(G) = G/[G,G] is abelian.

(b) Denote by πG : G→ G/[G,G], g → g[G,G] the canonical surjection.
Show that for every group homomorphism f : G → H there is a unique group homomor-
phism Ab(f) : G/[G,G]→ H/[H,H] with Ab(f) ◦ πG = πH ◦ f .

(c) Show that this defines a functor Ab : Grp→ Ab, the abelisation functor.

(d) Let I : Ab → Grp be the inclusion functor. Show that the canonical surjections
πG : G → Ab(G) define a natural transformation between idGrp : Grp → Grp and the
functor IAb : Grp→ Grp.

Exercise 4: Give a presentation of the following abelian groups in terms of generators and
relations:
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(a) Z× Z,
(b) Z/nZ× Z/mZ with n,m ∈ N,
(c) the abelianisation Ab(Sn) for n ∈ N.

Exercise 5: Let (Ai)i∈I a family of objects in Ab. Show with the universal property of the
product and coproduct that there is a canonical morphism I : qi∈IAi → Πi∈IAi. Is there an
analogous morphism in Top or Set?

Exercise 6: Let G be a group and C = BG be the groupoid with a single object • and
HomC(•, •) = G, where the composition of morphisms is given by the group multiplication.

(a) Show that functors F : C → Set correspond to G-sets, sets with an action of G.
(b) Show that a functors F : C → VectF correspond to representations of G
(c) Characterise functors F : C → Grp in a similar way.
(d) For (a), (b), (c), characterise the natural transformations between such functors.

Exercise 7: Let G be a group and � : G × X → X an action of G on a set X. Show that
the category C with ObC = X, with HomC(x, y) = {(x, g) | g ∈ G with g � x = y} and the
composition of morphisms given by the multiplication in G is a groupoid.

7.2 Exercises for Section 2

Exercise 8: One says a short exact sequence 0→ A
ι−→M

p−→ B → 0 of abelian groups splits
if there is a group isomorphism φ : M → A⊕B such that the following diagram commutes

0 // A

ι′ ##

ι //M

φ
��

p // B // 0

A⊕B
p′

;; ,

where ι′ : A → A ⊕ B, a 7→ (a, 0) and p′ : A ⊕ B → B, (a, b) → b. Show that the following
statements are equivalent:

(i) The short exact sequence 0→ A
ι−→M

p−→ B → 0 splits.
(ii) The projection p : M → B has a right inverse, a section of p.
(iii) the injection ι : A→M has a left inverse, a retraction of r.

Exercise 9: Let (An)n∈Z be a family of abelian groups. Is there a chain complex X• such that
is a Xn a free abelian group for all n ∈ Z and Hn(X•) = An for all n ∈ Z?

Exercise 10: Show that the following chain complexes are not chain homotopy equivalent

. . .
z 7→2̄z−−−→ Z/4Z z 7→2̄z−−−→ Z/4Z z 7→2̄z−−−→ . . . . . .→ 0→ 0→ . . . .
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Exercise 11: Prove the 5-Lemma: For any commutative diagram of abelian groups and
group homomorphisms of the form

A
f //

α
��

B
g //

β
��

C

γ
��

h // D

δ
��

k // E

ε
��

A′
f ′ // B′

g′ // C ′ h′ // D′ k′ // E ′

with exact rows, the following implications hold:

(i) If β, δ are injective and α surjective, then γ is injective.

(ii) If β, δ are surjective and ε injective, then γ is surjective.

(iii) If α is surjective, ε injective and β, δ are isomorphisms, then γ is an isomorphism.

Exercise 12: Prove the 9-Lemma: Consider the following commutative diagram of abelian
groups with exact rows

0

��

0

��

0

��
0 // A1

ιA //

ι1
��

A2
πA //

ι2
��

A3
//

ι3
��

0

0 // B1
ιB //

π1

��

B2
πB //

π2

��

B3
//

π3

��

0

0 // C1
ιC //

��

C2
πC //

��

C3
//

��

0

0 0 0

Show:

(a) If the first two columns are short exact sequences, the third column is also a short exact
sequence.

(b) If the last two columns are short exact sequences, the first column is also a short exact
sequence.

Exercise 13: Let k ∈ Z and X• a chain complex. Consider the subcomplex A• ⊂ X• with
An = Xn for n ≤ k and An = 0 for n > k.

(a) Express the homologies of the chain complexes A• and X•/A• in terms of data for X•.
(b) Compute the long exact homology sequence and all connecting homomorphisms for the

short exact sequence 0→ A•
ι•−→ X•

π•−→ X•/A• → 0.

Exercise 14: Let X• the chain complex whose non-trivial abelian groups are

X2 = 〈a, b〉Z X1 = 〈c, d, e〉Z X0 = 〈f, g, h〉Z
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and with boundary operators given by

d2(a) = d2(b) = e, d1(c) = f − g, d1(d) = h− g, d1(e) = 0.

and A• ⊂ X• the subcomplex given by

A2 = 〈a〉 ⊂ X2 A1 = 〈c, e〉 ⊂ X1 A0 = 〈f, g〉 ⊂ X0.

Compute the homologies of X• and A• and use the long exact homology sequence to compute
the homologies of X•/A•.

Exercise 15: Let X• be a chain complex. Show that this defines exact sequences

0• → Z•
f•−→ X•

g•−→ B(−1)
• → 0•

0• → H•
h•−→ X•/B•

k•−→ Z(−1)
•

l•−→ H(−1)
• → 0•,

where Z• = (Zn(X•))n∈Z, B• = (Bn(X•))n∈Z and H• = (Hn(X•))n∈Z and Y
(−1)
• = (Yn−1)n∈Z

denotes the shifted chain complex. Determine the boundary operators of Z•, B• and H• and the
chain maps f•, g•, h•, k•, l•. Determine the long exact homology sequence for the first sequence.

Exercise 16: Let f• : X• → Y• be a chain map. The mapping cone of f• is the chain
complex C•(f•) = (Cn)n∈Z with Cn = Xn−1 + Yn and boundary operator

dn : Cn → Cn−1, (x, y) 7→ (−dn−1(x), dn(y)− fn−1(x)).

(a) Show that C•(f•) is a chain complex and the inclusions ιn : Yn → Cn define a chain map
i• : Y• → C•(f•).

(b) Show that f• ∼ 0•, if and only if there is a chain map g• : C•(idX•)→ Y• with g• ◦ i• = f•.

7.3 Exercises for Section 3

Exercise 17: Let X, Y be topological spaces with associated singular chain complexes S•(X)
and S•(Y ). Is every chain map g• : S•(X) → S•(Y ) of the form g• = S•(f) for a continuous
map f : X → Y ?

Exercise 18: Let X = qi∈IXi be a topological sum. Show that the inclusions ιi : Xi → X
induce isomorphisms

In : ⊕i∈IHn(Xi)
∼−→ Hn(X) n ∈ N0.

Exercise 19: Let X = T \ D̊2 be the torus with an open disc D̊2 removed and A ⊂ T \ D̊2

the boundary of the disc. The fundamental group of X is the free group with two generators

π1(X) = F2 = 〈a, b〉.

Show that there is no retraction r : X → A.
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a

b

A

Hint: A retraction r : X → A is a continuous map with r ◦ ιA = idA, where ιA : A → X is
the inclusion. Consider the group homomorphism H1(ιA) : H1(A)→ H1(X).

Exercise 20: A ∆-complex or semisimplicial complex is a topological space X, together
with a family {σα}α∈I of continuous maps σα : ∆nα → X such that:

(S1) The maps σα|∆̊nα : ∆̊nα → X are injective for all α ∈ I.

(S2) For every point x ∈ X there is a unique α ∈ I with x ∈ σα(∆̊nα).

(S3) For every α ∈ I and i ∈ {0, ..., nα} there is a β ∈ I with σα ◦ fnαi = σβ : ∆nα−1 → X.

(S4) The topology on X is the final topology induced by the family {σα}α∈I :
A subset A ⊂ X is open if and only if σ−1

α (A) ⊂ ∆nα is open for all α ∈ I.

The abelian group of simplicial n-chains is is trivial for n < 0 and the free abelian group

Sn(∆, k) = 〈{σα | α ∈ I, nα = n}〉Z n ∈ N0.

The simplicial boundary operators are

dn : Sn(∆, k)→ Sn−1(∆, k), σα 7→
n∑
i=0

(−1)i σα ◦ fni

The nth simplicial homology of ∆ is

Hn(∆, k) =
ker (dn)

im (dn+1)
.

(a) Specify a semisimplicial complex structure on the topological space X formed by the edges
and vertices of the standard 3-simplex. Compute its simplicial homologies.

(b) Specify a semisimplicial complex structure on the Klein bottle K and compute its simplicial
homologies.

Hint: The Klein bottle is the quotient space [0, 1] × [0, 1] ∼ with respect to the equivalence
relation (x, 0) ∼ (x, 1) for all x ∈ [0, 1] and (0, y) ∼ (1, 1− y) for all y ∈ [0, 1].

Exercise 21: Let n ∈ N. Show that Hk(Rn,Rn \ {x}) ∼= Hk(D
n, Sn−1) for all k ∈ Z, but the

pairs (Rn,Rn \ {0}) and (Dn, Sn−1) are not homotopy equivalent in Top(2).
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Exercise 22: Let I be an index set, (Xi, Ai)i∈I a family of objects in Top(2). Show that the
relative homologies of the pair (qi∈IXi,qi∈IAi) are given by

Hn(qi∈IXi,qi∈IAi) ∼= ⊕i∈IHn(Xi, Ai).

Exercise 23:
Let X be a topological space and x ∈ X. Use the long exact homology sequence to show

(a) Hn(X) ∼= Hn(X, {x}) for all n ∈ N.

(b) H0(X, {x}) ∼= ker ε, where ε : H0(X) → Z with ε([x]) = 1 and ε([x′]) = 0, if x′ ∈ X is not
in the same path component as x ∈ X.

Exercise 24:
Show that H0(R,Q) = 0 and that H1(R,Q) is a free abelian group. Give a basis of H1(R,Q).

Exercise 25: Let (X,A) be a pair of topological spaces.

(a) Show that H0(X,A) = 0 if and only if every path-component of X contains a point in A.
(b) Show that H1(X,A) = 0 if and only if the map H1(ι) : H1(A) → H1(X) is surjective and

every path-component of X contains at most one path-component of A.

Exercise 26: Let D̊n = {x ∈ Rn | ||x|| < 1} the open n-disc and K ⊂ D̊n a compact convex
subset with 0 ∈ K. Show that the inclusion i : D̊n \K → D̊n \ {0} is a homotopy equivalence.

Exercise 27: The cone over a topological space X is the space

C(X) = (X × [0, 1])/ ∼ (x, 0) ∼ (x′, 0) for x, x′ ∈ X.

True or false?

(a) Sn−1 × {0} is a strong deformation retract of Sn \ {en+1,−en+1}.
(b) S2 \ {e2,−e2} is a retract of S2 \ {e2}.
(c) For all topological spaces X the space X × {1} is a retract of C(X).
(d) For all topological spaces X the space C(X) is contractible.

Exercise 28: We consider the subspace

X = ([0, 1]× {0}) ∪ ({0} × [0, 1]) ∪
∞⋃
n=1

{ 1
n
} × [0, 1] ⊂ R2 A = {e2} ⊂ X

X

1
2

1
3

1
4

1
5

. . .

. . .

A

x

y

1

1

0
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(a) Show that A is a deformation retract of X.
(b) Show that A is not a strong deformation retract of X.

Exercise 29: Show that that for any affine-linear simplex σ = [v0, . . . , vn] : ∆n → ∆p the
barycentric subdivision is given by

Bn(σ) =
∑

π∈Sn+1

(−1)nsgn(π)[vπ0 , . . . , v
π
n] vπr =

1

r + 1

r∑
j=0

vπ(j),

where we identify Sn+1 = Aut{0, . . . , n}.

Exercise 30: Compute the relative homologies Hk(R, T ) for k ∈ N0 and

R = {x ∈ Rn | 1 ≤ ||x|| ≤ 3}
T = {x ∈ Rn | 1 ≤ ||x|| ≤ 3

2
} ∪ {x ∈ Rn | 5

2
≤ ||x|| ≤ 3} n ∈ N.

Exercise 31: Consider the map f : R2 → R, (x, y) 7→ x2 − y2 and for a ∈ R the sets

Ma = {(x, y) ∈ R2 | f(x, y) ≤ a}.

Compute the relative homologies Hn(M1,M−1) for n ∈ N0.

Exercise 32: Give an example of a pair (X,A) of topological spaces that is not a good pair.

Exercise 33:
Let ∅ 6= U ⊂ Rn be an open subset. Compute for x ∈ U the relative homologies Hk(U,U \{x}).

Exercise 34: Prove that the wedge sum has the following universal property:

The maps ij = π ◦ ιj : Xj
ιj−→ qi∈IXi

π−→ ∨i∈IXi are continuous for all j ∈ I.
For every family (fi)i∈I of continuous maps fi : Xi → Y with fi(xi) = fj(xj) for all i, j ∈ I
there is a unique continuous map f : ∨i∈IXi → Y with f ◦ ij = fj for all j ∈ I.

Exercise 35: Compute the homology groups of an oriented surface Σg of genus g ≥ 1 without
using any results on fundamental groups.

You can realise Σg as the quotient Σg = D2/ ∼, where D2 = {z ∈ C | |z| ≤ 1} and

e2πi(4k+x)/4g ∼ e2πi(4k+3−x)/4g, e2πi(4k+1+x)/4g ∼ e2πi(4k+4−x)/4g für x ∈ [0, 1], k ∈ {0, ..., g − 1}.
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x1

x2

a1

a′1

b1

b′1

a2

a′2

b2

b′2
a3

a′3
b3

b′3

Exercise 36: Show that every continuous map f : RP2m → RP2m, m ∈ N, has a fixed point.

Exercise 37: Show that for any continuous map f : Sn → Sn the map f ′ : Dn+1 → Dn+1

f ′(x) =

{
0 x = 0

||x|| · f
(

x
||x||

)
x 6= 0

is continuous and induces a continuous map f̃ : Sn+1 ∼= Dn+1/∂Dn+1 → Sn+1 ∼= Dn+1/∂Dn+1

with deg(f̃) = deg(f).

Exercise 38: The Riemann sphere S2 = Ĉ = C∪{∞} is the one-point compactification of
C. Any normalised complex polynomial p = a0 + . . .+ an−1z

n−1 + zn defines a continuous map

fp : Ĉ→ Ĉ, z 7→ a0 + . . .+ an−1z
n−1 + zn

with fp(∞) =∞ for n > 0 and fp(∞) = 1 for n = 0.

(a) Show that for any normalised complex polynomial p = a0 + . . . + an−1z
n−1 + zn the map

fp : Ĉ→ Ĉ is homotopic to fzn .

(b) Show that the mapping degree of the map fp for p = a0 + . . .+an−1z
n−1 +zn is deg(p) = n.

Hint: In (b) you can assume without proof that the map f : S1 → S1, z 7→ zn has mapping
degree deg(f) = n. This follows from Huréwicz’s Theorem.

Exercise 39: An action of a group G on a topological space X is a group homomorphism
ρ : G→ Homeo(X) into the group of homeomorphisms of X. It is called free if ρ(g) : X → X
has no fixed points for all g ∈ G \ {e}.

(a) Show: an action of a group G on Sn, n ≥ 1, induces a group homomorphism φ : G→ Z/2Z.

(b) Show: for even n ∈ N the group Z/2Z is the only non-trivial group that acts freely on Sn.
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Exercise 40: A continuous map f : Sn → Sn is called even if f(−x) = f(x) for all x ∈ Sn.
Prove the following claims:

(a) For n even: if f is even then deg(f) = 0.
(b) For n odd: if f is even then deg(f) even.
(c) For n odd: for any even k ∈ Z there is an even map f : Sn → Sn with deg(f) = k.

Hint: Use that any even map f : Sn → Sn can be expressed as f = h ◦ f̄ with continuous
maps f̄ : Sn → RPn and h : RPn → Sn. Consider the group homomorphism Hn(f) :
Hn(Sn)→ Hn(Sn).

Exercise 41: In this exercise we prove that the Mayer-Vietoris sequence can be derived
directly from the excision axiom.

(a) Consider a commuting diagram of abelian groups with exact rows, in which all group
homomorphisms φ′′n are isomorphisms

. . .
pn+1 // A′′n+1

∂n+1 //

φ′′n+1
∼=
��

An
in //

φn

��

A′n
pn //

φ′n
��

A′′n
∂n //

φ′′n∼=
��

An−1

φn−1

��

in−1 // . . .

. . . qn+1

// B′′n+1 ∂n+1

// Bn jn
// B′n qn

// B′′n ∂′n

// Bn−1 jn−1

// . . .

Show that this defines a long exact sequence

. . .→ An
(in,φn)−−−−→ A′n ⊕Bn

φ′n−jn−−−→ B′n
∂n◦(φ′′n)−1◦qn−−−−−−−−→ An−1 → . . .

(b) Let X be a topological space and U1, U2 ⊂ X open with X = U1 ∪ U2. Apply (a) and the
excision axiom to derive the associated Mayer-Vietoris sequence.

Hint: Consider the long exact homology sequences of the pairs (X,U1) and (U2, U1 ∩ U2)

7.4 Exercises for Section 4

Exercise 42: Show that pushouts of topological spaces are determined uniquely up to unique
homeomorphisms by their universal property:

If (X1 qA X2, i1, i2) and (X1 qA X2, i
′
1, i
′
2) are both pushouts of continuous maps f1 : A → X1

and f2 : A→ X2, then is a unique continuous map φ : X1 qA X2 → X1 q′A X2 with φ ◦ ij = i′j
and φ is a homeomorphism.

Exercise 43: Consider the following commuting diagram in Top

Y Y1

i′1oo X1
i1oo

Y2

i′2

OO

X2g2

oo

i2

OO

A
f2

oo

f1

OO

and suppose that the right square is a pushout. Show that the left square is a pushout if and
only if the outer rectangle is a pushout.
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Exercise 44: Let I be an index set and suppose we have for all i ∈ I pushouts

Zi Yi
hioo

Xi

ki

OO

Ai.fi
oo

gi

OO

Show that this defines a pushout

qi∈IZi qi∈IYihoo

qi∈IXi

k

OO

qi∈IAi.f
oo

g

OO

Exercise 45: Let X be a CW complex. True or false?

(a) Each n-cell of X is open in X.
(b) The closure of an n-cell σ = ci(D̊

n) in X is σ = ci(D
n).

(c) if σ is an n-cell of X and τ an m-cell of X with n 6= m, then σ and τ are not homeomorphic.

Exercise 46: The Möbius strip is the quotient space M = [0, 1]×2/ ∼ with (0, x) ∼ (1, 1−x)
for all x ∈ [0, 1]. Show that it has a CW complex structure with a single 0-cell, two 1-cells and
a single 2-cell.

x2

x1
1

1

Exercise 47: Let X0 ⊂ X1 ⊂ X2 ⊂ . . . a sequence of subspaces. Suppose that Xi is a strong
deformation retract of Xi+1 for all i ∈ N0. Show that X0 is a strong deformation retract of Xi

for all i ∈ N0.

Exercise 48: Let X0 ⊂ X1 ⊂ . . . be a family of subspaces and X = ∪∞n=0Xn equipped with
the final topology induced by the inclusions ιn : Xn → X.

Show that X has the following universal property: for every family (fn)n∈N of continuous maps
fn : Xn → Y with fn+1|Xn = fn for all n ∈ N0, there is a unique continuous map f : X → Y
with f ◦ ιn = fn for all n ∈ N0.
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Exercise 49: Let X0 ⊂ X1 ⊂ . . . be a sequence of subspaces and X = ∪∞n=0Xn their union
with the final topology induced by the inclusions ιn : Xn → X. Let A ⊂ X be an open subspace
and An = A∩Xn for all n ∈ N0. Show that the topology on A is the final topology induced by
the inclusions ι′n : An → A.

Exercise 50: Let X, Y be CW-complexes and f : X → Y a cellular map: a continuous
map f : X → Y with f(Xn) ⊂ Y n for all n ∈ N0. Show that f induces a chain map C•(f) :
C•(X) → C•(Y ) between the cellular complexes C•(X) and C•(Y ) such that the following
diagram commutes for all n ∈ N0

Hn(C•(X))

∼=
��

Hn(C•(f))// Hn(C•(Y ))

∼=
��

Hn(X)
Hn(f)

// Hn(Y ).

Exercise 51:

(a) Let f : Sn → Sn be a continuous map of degree deg(f) = m and X the topological space
obtained by attaching Dn+1 to Sn with f . Compute the homologies of X.

(b) Let (An)n∈N be a family of finitely generated abelian groups An. Show that there is a
path-connected topological space X with Hn(X) = An for all n ∈ N.

Exercise 52: Let X be the CW complex obtained from the following bouquet S1 ∨ S1

ab

by attaching two 2-discs D2 with the attaching maps given by the words a5b−3 and b3(ab)−2.

(a) compute the homologies Hn(X) for n = 1, 2.
(b) bonus exercise: show that X is not contractible.

Exercise 53: The rank of a finitely generated abelian group is

A ∼= Zn × Z/pn1
1 Z× . . .× Z/pnkk Z ⇒ rk(A) = n.

The Euler characteristic of a finite CW complex X is

χ(X) =
∑
n∈N0

(−1)nrk(Hn(X)).

(a) Let In(X) be the set of n-cells of X. Show that

χ(X) =
∑
n∈N0

(−1)n|In(X)|.

(b) Compute the Euler characteristic of an oriented surface of genus g ≥ 0 and of RP2.
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7.5 Exercises for Section 5

Exercise 54: Let m,n ∈ N, m,n ≥ 2, denote by gcd(m,n) the greatest common divisor of
m and n and by Torn(A) = {a ∈ A | n · a = 0} the n-torsion subgroup of an abelian group A.

(a) Show that the tensor product of the abelian groups Z/mZ and Z/nZ is given by

Z/mZ⊗Z/nZ ∼= Z/gcd(m,n)Z.

(b) Show that Torn(Z/mZ) ∼= Torm(Z/nZ) ∼= Z/gcd(n,m)Z.

Exercise 55: True or False?

(a) If A,B are free abelian groups, then A⊗B is a free abelian group.
(b) For every non-trivial abelian group A there is an abelian group B with A⊗B ∼= Z.
(c) If A,B are finite abelian groups then |A⊗B| ≤ |A| · |B|.
(d) There is a non-trivial abelian group A with A⊗B = 0 for all finite abelian groups B.

Exercise 56: Give an example of an abelian group A and a family (Bi)i∈I of abelian groups
with A⊗(Πi∈IBi) not isomorphic to Πi∈I(A⊗Bi).

Exercise 57: For a chain complex X• and an abelian group A, we consider the chain complex

X•⊗A = . . .
dn+2⊗idA−−−−−→ Xn+1⊗A

dn+1⊗idA−−−−−→ Xn⊗A
dn⊗idA−−−−→ Xn−1⊗A

dn−1⊗idA−−−−−→ . . .

Give an example of a chain complex X• with Hn(X•) = 0 for all n ∈ Z and an abelian group
A such that Hn(X•⊗A) 6= 0 for all n ∈ Z.

Exercise 58: Consider for a prime number p ∈ N and n,m, k ∈ N the short exact sequence

0→ Z/pmZ ι:z̄ 7→pnz̄−−−−→ Z/pm+nZ π:z̄ 7→z̄−−−→ Z/pnZ→ 0.

(a) Compute chain maps between free resolutions that extend ι and π.
(b) Compute for k ∈ N the induced maps

Tor(ι,Z/pkZ) : Tor(Z/pmZ,Z/pkZ)→ Tor(Z/pn+mZ,Z/pkZ)

Tor(π,Z/pkZ) : Tor(Z/pm+nZ,Z/pkZ)→ Tor(Z/pnZ,Z/pkZ).

Exercise 59: Let 0 → A
ι−→ B

π−→ C → 0 a short exact sequence of abelian groups and

A• = 0 → KA
iA−→ FA

pA−→ A → 0 and C• = 0 → KC
iC−→ FC

pC−→ C → 0 free resolutions of A
and B. Show that there is a free resolution B• of B such that the short exact sequence lifts to
a short exact sequence of chain complexes 0→ A•

ι•−→ B•
π•−→ C• → 0.
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Exercise 60: Let 0→ A
ι−→ B

π−→ C → 0 a short exact sequence of abelian groups. Show that
for any abelian group D there is an exact sequence

0→ Tor(A,D)→ Tor(B,D)→ Tor(C,D)→ A⊗D → B⊗D → C⊗D → 0.

Hint: Use Exercise 59.

Exercise 61: Let X• be a chain complex in Ab. Show that there is a free chain complex F•
with Hn(F•) = Hn(X•).

Exercise 62: Let I• be the cellular chain complex for [0, 1] with two 0-cells and one 1-cell
and S• the cellular chain complex for [0, 1]×2 with four 0-cells, four 1-cells and one 2-cell.

e

0 1

f

e1

e2

e3

e4

(0, 0) (1, 0)

(0, 1) (1, 1)

Show that there is a chain isomorphism f• : I•⊗I• → S•.

Exercise 63: Let f•, f
′
• : X• → X ′• and g•, g

′
• : Y• → Y ′• chain maps.

(a) Show that every pair (h•, k•) of chain homotopies h• : f• ⇒ f ′• and k• : g• ⇒ g′• induces a
chain homotopy h•⊗k• : f•⊗g• ⇒ f ′•⊗g′•.

(b) Show that for chain homotopy equivalent chain complexes X• ' X ′• and Y• ' Y ′• the chain
complexes X•⊗Y• and X ′•⊗Y ′• are chain homotopy equivalent.

Exercise 64: The Klein bottle is the quotient space K = [0, 1]×2/ ∼ with (x, 0) ∼ (x, 1) and
(0, y) ∼ (1, 1− y) for all x, y ∈ [0, 1].

x

y

1

1

(a) Compute the homologies of K with coefficients in Z using cellular homology.
(b) Compute the homologies of K with coefficients in a general abelian group M .
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Exercise 65: Let X be a CW complex of finite type and M a torsion free abelian group.
Show that Hn(X;M) = Hn(X)⊗M for all n ∈ N0.

Exercise 66: Prove the third claim of the Eilenberg-Zilber Theorem.

Exercise 67: Let A be a free abelian group and X a finite CW complex with

Hk(X) =


Z k = 0

A k = n

0 else

for some n ∈ N. Compute the homologies of the space X×m = X × . . . X︸ ︷︷ ︸
m×

for all m ∈ N.

7.6 Exercises for Section 6

Exercise 68: Show that for all abelian groups M and families (Ai)i∈I of abelian groups

Ext(⊕i∈IAi,M) = Πi∈IExt(Ai,M) Ext(M,Πi∈IAi) ∼= Πi∈IExt(M,Ai).

Exercise 69: An abelian group M is called injective, if for every injective group homomor-
phism ι : X → Y and group homomorphism f : X → M there is a group homomorphism
f ′ : Y →M with f ′ ◦ ι = f

M

Y

∃f ′
>>

X? _ιoo

f

OO

0.oo

(a) Show that Ext(A,M) = 0 for every abelian group A and injective abelian group M .
(b) Show that if M is injective, every short exact sequence 0→ m

ι−→ N
π−→ P → 0 splits.

(c) Show that every injective abelian group M is divisible.
(d) Show that the axiom of choice implies that every divisible abelian group M is injective.

Hint: In (c) consider the poset of all pairs (W, f ′W ) of subgroups W ⊂ Y and group homomor-
phisms fW : W →M with fW ◦ ι = f . Apply Zorn’s Lemma.

Exercise 70: Compute the cohomology rings H•(T,Z) and H•(K,Z) of the torus T and of
the Klein bottle K with coefficients in Z.

Exercise 71: Let X be a finite path-connected CW complex with only even-dimensional cells
and F a field with charF = 0. Show that the cohomology ring H•(X,F) of X is a quotient of
a polynomial algebra F[x1, . . . , xk] for some k ∈ N.

Hint: Use the universal property of the polynomial ring over a field F:

For any commutative algebra A over F and any k-tuple (a1, . . . , ak) of elements ai ∈ A, there
is a unique algebra homomorphism φ : F[x1, . . . , xn]→ A with f(xi) = ai for all i = 1, . . . , k.
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Exercise 72: Let F be a commutative unital ring and n ∈ N.

(a) Show that the cohomology ring H•(CPn,F) is isomorphic to F[x]/(xn+1).

(b) Show that the topological spaces CP2 and S2 ∨ S4 have isomorphic cohomology groups
Hk(CP2;F) ∼= Hk(S2 ∨ S4;F) for all k ∈ N0, but that they are not homotopy equivalent.

Hint: In (a) assume without proof that the 2nth cohomology group H2n(CPn,F) is generated
by a cup product of elements in lower-dimensional cohomology groups.

Exercise 73: Compute the cohomology ring of the Lie group

U(2) = {M ∈ Mat(2× 2,C) |M † = M−1}.

Exercise 74: Let (I,�) be a direct poset and C a category such that the direct limit lim
→
F

exists for all direct systems F : I → C.

Show that the direct limit defines a functor lim
→

: CI → C that assigns

• to a direct system F : I → C its direct limit lim
→
F ,

• to a map γ : F ⇒ F ′ of direct systems the map lim
→
γ : lim

→
F → lim

→
F ′.

Exercise 75: Let (I,�) be a direct poset and F : I → Ab a direct system in Ab for some
unital ring R.

Show that the direct limit of F is the quotient module

lim
→
F = (⊕i∈IFi) /U U = 〈∪i�j∈I{ιj ◦ fji(m)− ιi(m) | m ∈ Fi}〉

where ιi : Fi → ⊕i∈IFi are the inclusions for the direct sum

Exercise 76: Let R be a unital ring and F : I → Ab be a direct system with direct limit
lim→ F . Suppose that (gi)i∈I is a family of R-linear isomorphisms gi : Fi →M . Show that the
induced R-linear map g : lim→ F →M is an isomorphism as well.

Exercise 77: Let K be the direct poset of compact subsets K ⊂ Rn and B the direct poset
of closed r-balls Br = {x ∈ Rn | ||x|| ≤ r} ⊂ Rn for r > 0, both with the inclusions.

For a direct system F : K → Ab we denote by F ′ = FI : B → Ab the direct system induced
by the inclusion functor I : B → K. Show that

lim
→
F ∼= lim

→
F ′
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(n− 1)-connected, 40
R-orientable, 141
∆-complex, 158
U -small, 56
n-cells, 76
n-skeleta, 76
5-Lemma, 156
9-Lemma, 156

abelisation, 12, 37
abelisation functor, 154
acyclic, 110
acyclic models, 110
affine simplex, 31
Alexander-Whitney map, 124
atlas, 133
attaching, 75
attaching n-discs, 75
attaching map, 75
attaching maps, 75, 76

back face, 124
barycentre, 52
barycentric subdivision, 52
barycentric subdivision operator, 53
basis, 5
boundaries, 18
boundary operators, 18

cellular, 88
simplicial homology, 158

bounded above, chain complex, 18
bounded below, chain complex, 18
bounded chain complex, 18
Brouwer’s fixed point theorem, 66

cap product, 129
cartesian product of categories, 10
category, 9

concrete, 10
locally small, 9
small, 9

cell decomposition, 77
cellular boundary formula, 90
cellular boundary operators, 88
cellular chain complex, 88, 93
cellular chains, 88
cellular homology with coefficients, 93

cellular map, 164
chain complex, 18

free, 106
chain homotopic, 21
chain homotopy, 21
chain homotopy equivalence, 21
chain homotopy equivalent, 21
chain map, 18
chains, 18

cellular, 88
simplicial homology, 158

characteristic maps, 75, 76
chart, 133
classification

finite abelian groups, 6
finitely generated abelian groups, 6

coboundaries, 19
coboundary operators, 19
cochain complex, 19
cochain map, 19
cochains, 19
cocomplete, 145
cocycles, 19
coefficient group, 72, 120
coefficients in M , 93
cofinal object, 17
coherent, 134
cohomology, 20
cohomology cross product, 122
cohomology group with compact support, 142
cokernel, 101
combing the hedgehog, 71
commutator subgroup, 37, 154
complex projective space, 79
composition

functors, 11
morphisms, 9
natural transformation with functor, 14
natural transformations, 14

concrete category, 10
cone, 159
cone map, 50
connecting homomorphism, 27
contravariant functor, 11
coproduct in category, 15
cup product, 122
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CW complex, 76
cycles, 18

deformation retract, 48
degenerate, 31
delooping, 12
direct, 143
direct limit, 87, 144
direct product, 7
direct sum, 7

of chain complexes, 19
direct system, 144
discrete topology, 12
divisible, 117

edges, 31
Eilenberg-Steenrod axioms, 72, 120
Eilenberg-Zilber, 111
Eilenberg-Zilber map, 111
endofunctor, 11
endomorphism in category, 9
equivalence

of categories, 14
essentially surjective functor, 14
Euler characteristic, 164
even map, 162
excision, 58
extraordinary homology theories, 73

face, 31
face maps

standard n-simplex, 32
final object, 17
finite, 80
finite-dimensional, 80
fold map, 69
forgetful functor, 12
free abelian group, 8
free chain complex, 106
free group action, 161
free resolution, 101
front face, 124
full subcategory, 11
fully faithful functor, 14
functor, 11
functor category, 14
fundamental class, 136
fundamental group, 12

generating set, 5
gluing, 75

good pair, 59
graded commutative, 127
graded module, 131
graded ring, 127
group, 10
group commutator, 37
groupoid, 10

Hom-functors, 12
homology, 20
homology groups of spheres, 63
homology theory, 72
homotopic, 44

relative to subspace, 48
homotopy category of chain complexes, 22
homotopy equivalence, 44
Huréwicz isomorphism, 37
Huréwicz theorem, 40

identity morphism, 9
indiscrete topology, 12
injective, 167
inverse functor, 14
isomorphic, objects in category, 9
isomorphism

of categories, 14
in category, 9

Künneth formula, 107

left exact, 115
locally small category, 9
long exact homology sequence, 29
long exact sequence, 23
long exact sequence for relative homology, 46

Möbius strip, 163
map of direct systems, 144
mapping cone, 157
mapping degree, 67, 140
Mayer-Vietoris sequence, 61

relative, 62
monoid, 10
morphism, 9

natural isomorphism, 13
natural transformation, 13
naturally isomorphic, 13
negative chain complex, 18
null object, 17

object, 9
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of finite type, 80
open cover, 50
opposite category, 10
opposite orientation, 135
ordered affine simplex, 31
ordinal numbers, 15
orientable, 134
orientation, 134

along compact subset, 136
orientation class, 136

pairs of topological spaces, 9
partially ordered set, 143
pinch map, 69
Poincaré duality maps, 149
pointed topological spaces, 9
poset, 143
poset category, 143
positive chain complex, 18
presentation, 8
prism maps, 41
product

in category, 15
of chain complexes, 19

pushout, 74

quotient category, 11
quotient complex, 25

rank, 164
real projective space, 78
rear face, 124
reduced homology, 48
relation, 154
relative cell decomposition, 77
relative chain complex functor, 45
relative chain complex functor with coeffi-

cients, 99
relative CW complex, 76
relative homology functor, 46
relative Mayer-Vietoris sequence, 62
retract, 48
retraction, 48

short exact sequence, 155
Riemann sphere, 161
right exact, 100

section, 155
Seifert and van Kampen, 50, 60
semisimplicial complex, 158
sequential colimit, 87

short exact sequence, 23
simplicial homology, 158
singular n-chains, 33
singular n-simplex, 33
singular chain complex

coefficients in abelian group, 93
singular chain complex functor, 34
singular coboundaries, 115
singular cochain complex, 115

with coefficients in abelian group, 115
singular cochains, 115
singular cochains with compact support, 142
singular cocycles, 115
singular cohomology, 115
singular homology functor, 36
singular homology group, 36
singular homology with coefficients, 93
small category, 9
source of morphism, 9
split exact sequence, 100
standard n-simplex, 32
standard resolution, 101
strong deformation retract, 48
subcategory, 11
subcomplex, 24

target of morphism, 9
tensor product of abelian groups, 95
terminal object, 17
topological Künneth formula, 114
topological manifold, 133
torsion free, 6
torsion subgroup, 6
trivial morphism, 17

unique up to unique isomorphism, 15
universal coefficient theorem, 108
universal coefficients

cochain complexes, 118
singular cohomology, 119

universal property
coproduct, 15
direct limit, 144
direct sum, 7
product, 15
pushout, 74
tensor product of abelian groups, 95
wedge sum, 64

vertices, 31
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weak retract, 48
wedge sum, 64
well-pointed, 64

zero morphism, 17
zero object, 17
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