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Driven quantum systems

• Quantum systems interacting with external classical background fields are driven systems

• They are characterized by a time-dependent Hamiltonian (in the Schrödinger picture)

H(t) =
∑
n

λn(t)On (1)

with a set of operators On and time-dependent parameters λn(t) controlled externally
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Motivation

• Driven systems are examples of non-equilibrium systems without well defined ground states

• The driving generates novel phases of matter that are inaccessible in equilibrium

• A lot of focus has been on periodically driven quantum many-body systems (Floquet systems)

λn(t+ T ) = λn(t) (2)

where such phases have topological characterization

[Kitagawa–Berg–Rudner–Demler ’10]
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Driven quantum field theories

• In the continuum limit, many-body systems are described by quantum field theories

• It follows that On form an infinite-dimensional algebra

• Conformal field theory driven by classical background fields is a tractable example

• Related to quantum gravity via the AdS/CFT correspondence

• Connection to black holes and holographic complexity
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2D CFTs driven by classical background fields

• We will focus on 1+1-dimensional CFTs driven by classical background fields on S1 × R

t

g

ϕ

[De Boer–Godet–JK–Keski-Vakkuri ’23]

t

g, J

ϕ

[Erdmenger–JK–Schuhmann ’24 and on-going work]

Jani Kastikainen (U. Würzburg) Workshop LQP49 November 8, 2024 6 / 37

https://arxiv.org/abs/2306.00099
https://arxiv.org/abs/2409.08319


Outline

1. Driven systems as quantum circuits

2. CFTs driven by a background metric

3. CFTs driven by a scalar source
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1. Driven systems as quantum circuits
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State evolution in a driven system

• In a closed driven system, state evolution is governed by the Schrödinger equation

i ∂t |Ψ(t)⟩ = H(t) |Ψ(t)⟩ . (3)

• Solution given by

|Ψ(t)⟩ = U(t) |R⟩ , U(t) =
←−
T exp

(
−i

∫ t

0

dsH(s)

)
. (4)

• Here the time-ordered exponential

←−
T exp

(
−i

∫ t

0

dsH(s)

)
≡ lim

N→∞
e−iδsNH(sN−1) · · · e−iδs1H(s0) (5)

with sN−1 ≡ t and s0 ≡ 0
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Interpretation as a quantum circuit

• Let t ∈ [0, tf ] and fix the final state

|Ψ(tf )⟩ ≡ |Ψf ⟩ , |Ψ(0)⟩ = |R⟩ (6)

• Driving generates a quantum circuit between |R⟩ and |Ψf ⟩

|Ψf ⟩ = lim
N→∞

e−iδsNH(sN−1) · · · e−iδs1H(s0) |R⟩ (7)

• Final state constructed from the reference state by application of unitary quantum gates
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Circuit complexity from quantum information geometry

• We can associate a complexity to the circuit using quantum information geometry

• Quantum information geometry is a Riemannian “manifold” (D,G) where

D = space of all pure states, G = metric on pure states (8)

[Helstrom ’69, Uhlmann ’93, ...]

• Quantum circuit |Ψ(t)⟩ traces a curve on D between the points |R⟩ and |Ψf ⟩
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Circuit complexity from quantum information geometry

• The length of the curve |Ψ(t)⟩ in the metric G may be interpreted as a computational cost

• The geodesic distance of |Ψf ⟩ from |R⟩ is then the circuit complexity of |Ψf ⟩
[Nielsen ’06]

• It measures how difficult it is to construct |Ψf ⟩ from |R⟩ using a set of quantum gates
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Fubini–Study cost and complexity

• The Fubini–Study metric on D is defined as

ds2 = ⟨dΨ|dΨ⟩ − ⟨Ψ|dΨ⟩⟨dΨ|Ψ⟩ (9)

• Line element along the curve |Ψ(t)⟩ = U(t) |R⟩ is

ds2 =
[
⟨Ψ(t)|H(t)2|Ψ(t)⟩ − ⟨Ψ(t)|H(t)|Ψ(t)⟩2

]
dt2 (10)

• Length of a curve = accumulated Fubini–Study cost

• Geodesic distance = Fubini–Study circuit complexity

[Caputa–Magan ’18, Flory–Heller ’20, Flory–Heller ’20]
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2. CFTs driven by a background metric
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Definition of a CFT

• Consider a CFT with a fundamental field Φ coupled to a Lorentzian background metric g

• Consider the group Diff⋉Weyl with elements ψ = (D,ω) under which

(ψg)ab(x) = e2ω(D(x)) ∂D
c

∂xa
∂Dd

∂xb
gcd(D(x)) (11)

(ψΦ)a1...an
(x) = e−∆Φω(D(x)) ∂D

b1

∂xa1
· · · ∂D

bn

∂xan
Φb1...bn(D(x)) (12)

• The action of the CFT is Diff⋉Weyl invariant

I[ψΦ, ψg] = I[Φ, g] (13)
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CFT driven by a background metric

• We will endow the cylinder (ϕ, t) ∈ S1 × R with a general (curved) metric g

gab(x) dx
adxb = eω (dϕ+ νdt)(dϕ+ νdt) (14)

with three arbitrary functions ω(ϕ, t), ν(ϕ, t) and ν(ϕ, t)

[De Boer–Godet–JK–Keski-Vakkuri ’23]

• Hamiltonian operator of the CFT (in the Heisenberg picture)

H(t) = −
∫ 2π

0

dϕ
√
−g T t

t (ϕ, t) (15)

• Stress tensor of the CFT

Tab(x) = −
2√
−g

δI[Φ, g]

δgab(x)
(16)
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Hamiltonian operator in the background metric

• There exists a coordinate system x± such that

gab(x) dx
adxb = eφ dx−dx+ (17)

• Diff⋉Weyl invariance implies

T±±(x
−, x+) = T±±(x

±), T−+(x
−, x+) = 0 (18)

• Hamiltonian operator of the CFT becomes (in the Schrödinger picture)

H(t) =

∫ 2π

0

dϕ ν(ϕ, t)T−−(ϕ)−
∫ 2π

0

dϕ ν(ϕ, t)T++(ϕ) (19)

[Erdmenger–JK–Schuhmann on-going work]

[De Boer–Godet–JK–Keski-Vakkuri ’23]
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Hamiltonian operator in the background metric

• Expand in Fourier modes

T−−(ϕ) =

∞∑
n=−∞

(Ln ⊗ 1) einϕ , T++(ϕ) =

∞∑
n=−∞

(1⊗ Ln) e
−inϕ

• Ln are generators of the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n3 δn,−m (20)

• The CFT is an example of a driven quantum system

H(t) =

∞∑
n=−∞

νn(t) (Ln ⊗ 1)−
∞∑

n=−∞
νn(t) (1⊗ Ln) (21)
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State evolution in the background metric

• Consider the Lie group of orientation-preserving diffeomorphisms of the circle

Diff+S
1 ≡ {f : R→ R | f(ϕ+ 2π) = f(ϕ) + 2π, f ′(ϕ) > 0} (22)

• Then we may parametrize

ν(ϕ, t) ≡ −(ḟt ◦ f−1
t )(ϕ) , ν(ϕ, t) ≡ −(ḟ t ◦ f−1

t )(ϕ) . (23)

• Unitary evolution can be computed explicitly

U(t) =
←−
T exp

(
−i

∫ t

0

dsH(s)

)
= Vft ⊗ V ft

(24)

[De Boer–Godet–JK–Keski-Vakkuri ’23]

• Vft ⊗ V ft
is a projective unitary representation of the conformal transformation (ft, f t)

[Fewster–Hollands ’04, Oblak ’16]
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t )(ϕ) , ν(ϕ, t) ≡ −(ḟ t ◦ f−1
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Conformal group in 1 + 1 dimensions

• Conformal transformations in 2D are diffeomorphisms

D(x−, x+) = (f(x−), f(x+)) (25)

• The flat metric transforms as

dx−dx+ → f ′(x−) f ′(x+) dx−dx+ (26)

• Orientation-preservation and spatial periodicity imply

(f, f) ∈ Diff+S
1 ×Diff+S

1 (27)

[Kong–Runkel ’09, Schottenloher ’08]

• Diff+S
1 ×Diff+S

1 is the classical symmetry group of a 2D CFT on a flat cylinder
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Unitary projective representations

• On the Hilbert space of the CFT, a conformal diffeo (f, f) is represented by a unitary operator

Vf,f = Vf ⊗ V f (28)

• Vf is a projective representation of Diff+S
1

Vf1Vf2 = eiB(f1,f2) Vf1◦f2 (29)

• Non-trivial Thurston–Bott 2-cocycle

B(f1, f2) =
c

48π

∫ 2π

0

dϕ
f ′′2 (ϕ)

f ′2(ϕ)
log f ′1(f2(ϕ)) (30)

[Fewster–Hollands ’04, Oblak ’16]
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Virasoro circuits

• Take the reference state to be a highest-weight state

L0 |h⟩ = h |h⟩ , Ln>0 |h⟩ = 0 (31)

• CFT time-evolution coincides with a Virasoro circuit∣∣ft, f t〉 ≡ Vft ⊗ V ft
|h⟩ (32)

[Caputa–Magan ’18, Flory–Heller ’20, Flory–Heller ’20]

• A curve in the infinite-dimensional space of Virasoro pure states

|f⟩ = Vf |h⟩ ↔ f ∈ Diff+S
1/U(1) (33)

• Fubini–Study metric becomes the Kähler metric on Diff+S
1/U(1) (a Virasoro coadjoint orbit)

[Kirillov–Juriev ’87, Erdmenger–JK–Schuhmann ’24]
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3. CFTs driven by a scalar source
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Deformations of Virasoro circuits

• So far the discussion has been about Virasoro circuits generated by

H(t) =

∫ 2π

0

dϕ ν(ϕ, t)T−−(ϕ)−
∫ 2π

0

dϕ ν(ϕ, t)T++(ϕ) (34)

• Unitary state evolution is restricted to a single Verma module Hh ⊗Hh′

(irrep of the Virasoro algebra)

HCFT =
⊕
h,h′

Hh ⊗Hh′ (35)
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Deformations of Virasoro circuits

• Generalize to primary-deformed Virasoro circuits generated by

H(t) =

∫ 2π

0

dϕ ν(ϕ, t)T−−(ϕ)−
∫ 2π

0

dϕ ν(ϕ, t)T++(ϕ) +

∫ 2π

0

dϕ J(ϕ, t)Oh(ϕ)⊗Oh(−ϕ) (36)

[Erdmenger–JK–Schuhmann ’24]

• Local primary operator Oh(ϕ) of weight h:

Vf Oh(ϕ)V
†
f = f ′(ϕ)hOh(f(ϕ)) (37)

• Mode expansion

Oh(ϕ) =
1

2π

∞∑
n=−∞

Oh,n e
inϕ , [Ln,Oh,m] = [(h− 1)n−m]Oh,n+m (38)

• Commutation relations

[Oh,n,Oh,m] =

(
n+ h− 1

2h− 1

)
δn,−m +

∑
k

Dk(n,m)Ohk, n+m , (39)
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Realization in a driven CFT

• When h = h = 1, the deformed Hamiltonian H(t) arises from the action

S[Φ, g, J ] = I[Φ, g] +

∫
d2x
√
−g J(x)O(x) (40)

• O(x) is an exactly marginal scalar field with dimension ∆ = 2 given by

O(x−, x+) ∝ O1(x
−)⊗O1(x

+) (41)

• More generally, renormalization group flow modifies the Hamiltonian H(t)

[Erdmenger–JK–Schuhmann on-going]

Jani Kastikainen (U. Würzburg) Workshop LQP49 November 8, 2024 26 / 37



Realization in a driven CFT

• When h = h = 1, the deformed Hamiltonian H(t) arises from the action

S[Φ, g, J ] = I[Φ, g] +

∫
d2x
√
−g J(x)O(x) (40)

• O(x) is an exactly marginal scalar field with dimension ∆ = 2 given by

O(x−, x+) ∝ O1(x
−)⊗O1(x

+) (41)

• More generally, renormalization group flow modifies the Hamiltonian H(t)

[Erdmenger–JK–Schuhmann on-going]

Jani Kastikainen (U. Würzburg) Workshop LQP49 November 8, 2024 26 / 37



Realization in a driven CFT

• When h = h = 1, the deformed Hamiltonian H(t) arises from the action

S[Φ, g, J ] = I[Φ, g] +

∫
d2x
√
−g J(x)O(x) (40)

• O(x) is an exactly marginal scalar field with dimension ∆ = 2 given by

O(x−, x+) ∝ O1(x
−)⊗O1(x

+) (41)

• More generally, renormalization group flow modifies the Hamiltonian H(t)

[Erdmenger–JK–Schuhmann on-going]

Jani Kastikainen (U. Würzburg) Workshop LQP49 November 8, 2024 26 / 37



Fubini–Study circuit complexity

• State along the primary-deformed Virasoro circuit

|Ψ(t)⟩ = U(t) |h′⟩ , U(t) =
←−
T exp

(
−i

∫ t

0

dsH(s)

)
(42)

where the deformed Hamiltonian

H(t) =

∫ 2π

0

dϕ ν(ϕ, t)T−−(ϕ)−
∫ 2π

0

dϕ ν(ϕ, t)T++(ϕ) +

∫ 2π

0

dϕ J(ϕ, t)Oh(ϕ)⊗Oh(−ϕ) (43)

• Goal: calculate the accumulated Fubini–Study cost

L(t) =
∫ t

0

ds
√
F(s) =

∫ t

0

ds
√
⟨Ψ(s)|H(s)2|Ψ(s)⟩ − ⟨Ψ(s)|H(s)|Ψ(s)⟩2 (44)
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State evolution in the deformed circuit

• We will decompose the Hamiltonian as

H(t) = C(t) + λP (t) , P (t) ≡
∫ 2π

0

dϕ J(ϕ, t)Oh(ϕ)⊗Oh(−ϕ) (45)

• The unitary operator factorizes

U(t) = V (t) UP (t) (46)

• The factors are given by

V (t) =
←−
T exp

(
−i

∫ t

0

dsC(s)

)
= Vft ⊗ V ft

, UP (t) =
←−
T exp

(
−i

∫ t

0

ds V (s)† λP (s)V (s)

)
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Expansion of the Fubini–Study cost

• The complete form of UP (t) depends on details of the algebra [On,h,Om,h]

• But turns out that the cost is universal up to second order in λ

F(t) = F (0)(t) + λF (1)(t) + λ2 F (2)(t) +O(λ3) (47)

[Erdmenger–JK–Schuhmann ’24]

• We will focus on simple circuits of the form

C(t) = L0 ⊗ 1+ 1⊗ L0 , J(ϕ, t) = S(ϕ) j(t) , |R⟩ = |0⟩ (48)

• In this case, the cost is given by

F(t) = λ2 F (2)(t) +O(λ3) (49)
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Expansion of the Fubini–Study cost

• We derive the explicit formula (assuming h = h for simplicity)

F (2)(t) = j(0)2 Re ⟨Rhh(0)
2⟩+ 2 j(0)

∫ t

0

ds ∂sj(s)Re ⟨Rhh(t)Rhh(s)⟩ (50)

+

∫ t

0

ds1

∫ t

0

ds2 ∂s1j(s1) ∂s2j(s2)Re ⟨Rhh(s1)Rhh(s2)⟩ ,

• Vacuum 2-point function of a ring operator

Rhh(t) =

∫ 2π

0

dϕS(ϕ)Oh(ϕ− t)⊗Oh(−ϕ− t) (51)

• Important point: only the real part contributes (imaginary part is UV divergent)

[Erdmenger–JK–Schuhmann ’24]
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Expansion of the Fubini–Study cost

• Primary operator vacuum 2-point function

⟨0| Oh(ϕ1)Oh(ϕ2) |0⟩ = lim
ε→0+

1

(2π)2
1[

2i sin
(
ϕ1−ϕ2+iε

2

)]2h (52)

• Real part of the ring operator 2-point function

Re ⟨0|Rhh(t1)Rhh(t2) |0⟩ (53)

=
1

(2π)2

∞∑
m=h

(−1)h+m (m+ h)!

(2h− 1)! (m− h)!

[
|S2m|2

2 (m+ h)
2F1

(
h−m,h−m;

1

2
; cos2 (∆t)

)
+|S2m+1|2 cos (∆t) 2F1

(
h−m+ 1, h−m;

3

2
; cos2 (∆t)

)]
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Source profiles

• We consider spatial sources

S(ϕ) = cos (nϕ) , n = 0, 1, 2, . . . (54)

• And temporal profiles j(t) of the form
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Behavior of Fubini–Study cost and accumulated cost

• Switch on profile for n = 1 (blue), n = 2 (red), n = 3 (green), n = 4 (purple), n = 5 (brown)
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Behavior of Fubini–Study cost and accumulated cost

• Switch on-off profile for n = 1 (blue), n = 2 (red), n = 3 (green), n = 4 (purple), n = 5 (brown)
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Conclusions

• We studied quantum circuits generated by infinite-dimensional Lie algebras

• May be realized as physical time evolution in a CFT driven by background fields

• Accumulated FS cost of a simple primary-deformed Virasoro circuit exhibits linear growth

(at leading order in the deformation)
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Future directions

• Understand better the information geometry explored by primary-deformed Virasoro circuits

• Conformal field theory realization of primary-deformed circuits

[Erdmenger–JK–Schuhmann on-going]

• Gravity interpretation as black hole formation using the AdS/CFT correspondence
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Thank you
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Details of UV divergences

• For h = h = 1, the 2-point function is explicitly (∆t = t1 − t2)

⟨0|R11(t1)R11(t2) |0⟩ =
1

4

1

(2π)2

∞∑
n=−∞

|Sn|2 e−i|n|∆t (−|n|+ i cot∆t) csc2 ∆t , (55)

• The imaginary part diverges in the coincidence limit
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