Driven conformal field theory and circuit complexity

Jani Kastikainen

University of Würzburg

November 8, 2024

Based on

2409.08319 with Johanna Erdmenger and Tim Schuhmann 2306.00099 with Jan de Boer, Victor Godet and Esko Keski-Vakkuri

Introduction

• Quantum systems interacting with external classical background fields are *driven* systems

3/37

- Quantum systems interacting with external classical background fields are *driven* systems
- They are characterized by a time-dependent Hamiltonian (in the Schrödinger picture)

$$H(t) = \sum_{n} \lambda_n(t) \mathcal{O}_n \tag{1}$$

with a set of operators \mathcal{O}_n and time-dependent parameters $\lambda_n(t)$ controlled externally

• Driven systems are examples of non-equilibrium systems without well defined ground states

- Driven systems are examples of non-equilibrium systems without well defined ground states
- The driving generates novel phases of matter that are inaccessible in equilibrium

- Driven systems are examples of non-equilibrium systems without well defined ground states
- ٠ The driving generates novel phases of matter that are inaccessible in equilibrium
- A lot of focus has been on periodically driven quantum many-body systems (Floquet systems)

$$\lambda_n(t+T) = \lambda_n(t) \tag{2}$$

where such phases have topological characterization

[Kitagawa–Berg–Rudner–Demler '10]

• In the continuum limit, many-body systems are described by quantum field theories

- In the continuum limit, many-body systems are described by quantum field theories
- It follows that \mathcal{O}_n form an infinite-dimensional algebra

- In the continuum limit, many-body systems are described by quantum field theories
- It follows that \mathcal{O}_n form an infinite-dimensional algebra
- Conformal field theory driven by classical background fields is a tractable example

- In the continuum limit, many-body systems are described by quantum field theories
- It follows that \mathcal{O}_n form an infinite-dimensional algebra
- Conformal field theory driven by classical background fields is a tractable example
- Related to quantum gravity via the AdS/CFT correspondence

- In the continuum limit, many-body systems are described by quantum field theories
- It follows that \mathcal{O}_n form an infinite-dimensional algebra
- Conformal field theory driven by classical background fields is a tractable example
- Related to quantum gravity via the AdS/CFT correspondence
- Connection to black holes and holographic complexity

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

2D CFTs driven by classical background fields

• We will focus on 1+1-dimensional CFTs driven by classical background fields on $S^1 \times \mathbb{R}$

[De Boer–Godet–JK–Keski-Vakkuri '23]

[Erdmenger–JK–Schuhmann '24 and on-going work]

Ja	ni K	asti	kainen ((U.	Wi	irzl	burg)
----	------	------	----------	-----	----	------	------	---

1. Driven systems as quantum circuits

2. CFTs driven by a background metric

3. CFTs driven by a scalar source

7/37

1. Driven systems as quantum circuits

State evolution in a driven system

• In a closed driven system, state evolution is governed by the Schrödinger equation

 $i \partial_t |\Psi(t)\rangle = H(t) |\Psi(t)\rangle$ (3)

9/37

State evolution in a driven system

• In a closed driven system, state evolution is governed by the Schrödinger equation

$$i \partial_t |\Psi(t)\rangle = H(t) |\Psi(t)\rangle$$
 (3)

• Solution given by

$$|\Psi(t)\rangle = U(t)|R\rangle , \quad U(t) = \overleftarrow{\mathcal{T}}\exp\left(-i\int_0^t ds \,H(s)\right).$$
 (4)

State evolution in a driven system

• In a closed driven system, state evolution is governed by the Schrödinger equation

$$i \partial_t |\Psi(t)\rangle = H(t) |\Psi(t)\rangle$$
 (3)

• Solution given by

$$|\Psi(t)\rangle = U(t)|R\rangle , \quad U(t) = \overleftarrow{\mathcal{T}}\exp\left(-i\int_0^t ds \,H(s)\right).$$
 (4)

• Here the time-ordered exponential

$$\overleftarrow{\mathcal{T}}\exp\left(-i\int_{0}^{t}ds\,H(s)\right) \equiv \lim_{N\to\infty}e^{-i\delta s_{N}H(s_{N-1})}\cdots e^{-i\delta s_{1}H(s_{0})} \tag{5}$$

with $s_{N-1} \equiv t$ and $s_0 \equiv 0$

Jani Kastikainen (U. Würzburg)	Workshop LQP49	November 8, 2024

イロト 不良 イヨト イヨト 回言 ろくの

Interpretation as a quantum circuit

• Let $t \in [0, t_f]$ and fix the final state

$$|\Psi(t_f)\rangle \equiv |\Psi_f\rangle , \quad |\Psi(0)\rangle = |R\rangle$$
(6)

10/37

Interpretation as a quantum circuit

• Let $t \in [0, t_f]$ and fix the final state

$$|\Psi(t_f)\rangle \equiv |\Psi_f\rangle , \quad |\Psi(0)\rangle = |R\rangle$$
(6)

• Driving generates a quantum circuit between $|R\rangle$ and $|\Psi_f\rangle$

$$|\Psi_f\rangle = \lim_{N \to \infty} e^{-i\delta s_N H(s_{N-1})} \cdots e^{-i\delta s_1 H(s_0)} |R\rangle \tag{7}$$

Interpretation as a quantum circuit

• Let $t \in [0, t_f]$ and fix the final state

Jani Kastika

$$|\Psi(t_f)\rangle \equiv |\Psi_f\rangle , \quad |\Psi(0)\rangle = |R\rangle$$
(6)

• Driving generates a quantum circuit between $|R\rangle$ and $|\Psi_f\rangle$

$$|\Psi_f\rangle = \lim_{N \to \infty} e^{-i\delta s_N H(s_{N-1})} \cdots e^{-i\delta s_1 H(s_0)} |R\rangle \tag{7}$$

• Final state constructed from the reference state by application of unitary quantum gates

inen (U. Würzburg)	Workshop LQP49	November 8, 2024	10/37

• We can associate a complexity to the circuit using quantum information geometry

11/37

- We can associate a complexity to the circuit using quantum information geometry
- Quantum information geometry is a Riemannian "manifold" $(\mathcal{D}, \mathcal{G})$ where

 $\mathcal{D} =$ space of all pure states, $\mathcal{G} =$ metric on pure states

[Helstrom '69, Uhlmann '93, ...]

(8)

- We can associate a complexity to the circuit using quantum information geometry
- Quantum information geometry is a Riemannian "manifold" $(\mathcal{D}, \mathcal{G})$ where

 \mathcal{D} = space of all pure states, \mathcal{G} = metric on pure states

```
[Helstrom '69, Uhlmann '93, ...]
```

• Quantum circuit $|\Psi(t)\rangle$ traces a curve on \mathcal{D} between the points $|R\rangle$ and $|\Psi_f\rangle$

(8)

• The length of the curve $|\Psi(t)\rangle$ in the metric \mathcal{G} may be interpreted as a computational cost

- The length of the curve $|\Psi(t)\rangle$ in the metric \mathcal{G} may be interpreted as a computational cost
- The geodesic distance of $|\Psi_f\rangle$ from $|R\rangle$ is then the *circuit complexity* of $|\Psi_f\rangle$

[Nielsen '06]

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

- The length of the curve $|\Psi(t)\rangle$ in the metric \mathcal{G} may be interpreted as a computational cost
- The geodesic distance of $|\Psi_f\rangle$ from $|R\rangle$ is then the *circuit complexity* of $|\Psi_f\rangle$

[Nielsen '06]

• It measures how difficult it is to construct $|\Psi_f\rangle$ from $|R\rangle$ using a set of quantum gates

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

• The Fubini–Study metric on \mathcal{D} is defined as

$$ds^{2} = \langle d\Psi | d\Psi \rangle - \langle \Psi | d\Psi \rangle \langle d\Psi | \Psi \rangle \tag{9}$$

13/37

• The Fubini–Study metric on \mathcal{D} is defined as

$$ds^{2} = \langle d\Psi | d\Psi \rangle - \langle \Psi | d\Psi \rangle \langle d\Psi | \Psi \rangle \tag{9}$$

• Line element along the curve $|\Psi(t)\rangle = U(t) |R\rangle$ is

$$ds^{2} = \left[\langle \Psi(t) | H(t)^{2} | \Psi(t) \rangle - \langle \Psi(t) | H(t) | \Psi(t) \rangle^{2} \right] dt^{2}$$

$$\tag{10}$$

13/37

• The Fubini–Study metric on \mathcal{D} is defined as

$$ds^{2} = \langle d\Psi | d\Psi \rangle - \langle \Psi | d\Psi \rangle \langle d\Psi | \Psi \rangle \tag{9}$$

• Line element along the curve $|\Psi(t)\rangle = U(t) |R\rangle$ is

$$ds^{2} = \left[\langle \Psi(t) | H(t)^{2} | \Psi(t) \rangle - \langle \Psi(t) | H(t) | \Psi(t) \rangle^{2} \right] dt^{2}$$

$$(10)$$

• Length of a curve = accumulated Fubini–Study cost

• The Fubini–Study metric on \mathcal{D} is defined as

$$ds^{2} = \langle d\Psi | d\Psi \rangle - \langle \Psi | d\Psi \rangle \langle d\Psi | \Psi \rangle \tag{9}$$

• Line element along the curve $|\Psi(t)\rangle = U(t) |R\rangle$ is

$$ds^{2} = \left[\langle \Psi(t) | H(t)^{2} | \Psi(t) \rangle - \langle \Psi(t) | H(t) | \Psi(t) \rangle^{2} \right] dt^{2}$$

$$\tag{10}$$

- Length of a curve = accumulated Fubini–Study cost
- Geodesic distance = Fubini–Study circuit complexity

[Caputa–Magan '18, Flory–Heller '20, Flory–Heller '20]

A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D

Jani Kastikainen (U. Würzburg)	Workshop LQP49	November 8, 2024	13 / 37

2. CFTs driven by a background metric

Definition of a CFT

 $\bullet\,$ Consider a CFT with a fundamental field Φ coupled to a Lorentzian background metric g

Definition of a CFT

- $\bullet\,$ Consider a CFT with a fundamental field Φ coupled to a Lorentzian background metric g
- Consider the group $\text{Diff} \ltimes \text{Weyl}$ with elements $\psi = (D, \omega)$ under which

$$(\psi g)_{ab}(x) = e^{2\omega(D(x))} \frac{\partial D^c}{\partial x^a} \frac{\partial D^d}{\partial x^b} g_{cd}(D(x))$$
(11)

$$(\psi\Phi)_{a_1\dots a_n}(x) = e^{-\Delta_{\Phi}\omega(D(x))} \frac{\partial D^{b_1}}{\partial x^{a_1}} \cdots \frac{\partial D^{b_n}}{\partial x^{a_n}} \Phi_{b_1\dots b_n}(D(x))$$
(12)

- $\bullet\,$ Consider a CFT with a fundamental field Φ coupled to a Lorentzian background metric g
- Consider the group $\text{Diff} \ltimes \text{Weyl}$ with elements $\psi = (D, \omega)$ under which

$$(\psi g)_{ab}(x) = e^{2\omega(D(x))} \frac{\partial D^c}{\partial x^a} \frac{\partial D^d}{\partial x^b} g_{cd}(D(x))$$
(11)

$$(\psi\Phi)_{a_1\dots a_n}(x) = e^{-\Delta_{\Phi}\omega(D(x))} \frac{\partial D^{b_1}}{\partial x^{a_1}} \cdots \frac{\partial D^{b_n}}{\partial x^{a_n}} \Phi_{b_1\dots b_n}(D(x))$$
(12)

• The action of the CFT is $\text{Diff} \ltimes \text{Weyl}$ invariant

$$I[\psi\Phi,\psi g] = I[\Phi,g] \tag{13}$$

Jani Kastikainen (U. Würzburg)	Workshop LQP49	November 8, 2024	15 / 37

CFT driven by a background metric

• We will endow the cylinder $(\phi, t) \in S^1 \times \mathbb{R}$ with a general (curved) metric g

$$g_{ab}(x) dx^a dx^b = e^{\omega} \left(d\phi + \nu dt \right) \left(d\phi + \bar{\nu} dt \right)$$
(14)

with three arbitrary functions $\omega(\phi, t)$, $\nu(\phi, t)$ and $\bar{\nu}(\phi, t)$

[De Boer–Godet–JK–Keski-Vakkuri '23]
CFT driven by a background metric

• We will endow the cylinder $(\phi,t)\in S^1\times\mathbb{R}$ with a general (curved) metric g

$$g_{ab}(x) dx^a dx^b = e^{\omega} \left(d\phi + \nu dt \right) \left(d\phi + \bar{\nu} dt \right)$$
(14)

with three arbitrary functions $\omega(\phi, t)$, $\nu(\phi, t)$ and $\bar{\nu}(\phi, t)$

[De Boer–Godet–JK–Keski-Vakkuri '23]

• Hamiltonian operator of the CFT (in the Heisenberg picture)

$$H(t) = -\int_{0}^{2\pi} d\phi \sqrt{-g} T_{t}^{-t}(\phi, t)$$
(15)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のQ@

CFT driven by a background metric

• We will endow the cylinder $(\phi,t)\in S^1\times\mathbb{R}$ with a general (curved) metric g

$$g_{ab}(x) dx^a dx^b = e^{\omega} \left(d\phi + \nu dt \right) \left(d\phi + \bar{\nu} dt \right)$$
(14)

with three arbitrary functions $\omega(\phi, t)$, $\nu(\phi, t)$ and $\bar{\nu}(\phi, t)$

[De Boer–Godet–JK–Keski-Vakkuri '23]

・ロト ・(日)・ (日)・ (日)・ (日)・

• Hamiltonian operator of the CFT (in the Heisenberg picture)

$$H(t) = -\int_{0}^{2\pi} d\phi \sqrt{-g} T_{t}^{-t}(\phi, t)$$
(15)

• Stress tensor of the CFT

Jani Kastika

$$T_{ab}(x) = -\frac{2}{\sqrt{-g}} \frac{\delta I[\Phi, g]}{\delta g^{ab}(x)}$$
(16)

inen (U. Würzburg)	Workshop LQP49	November 8, 2024	16 / 37

• There exists a coordinate system x^{\pm} such that

$$g_{ab}(x) dx^a dx^b = e^{\varphi} dx^- dx^+ \tag{17}$$

• There exists a coordinate system x^{\pm} such that

$$g_{ab}(x) dx^a dx^b = e^{\varphi} dx^- dx^+ \tag{17}$$

• Diff \ltimes Weyl invariance implies

$$T_{\pm\pm}(x^-, x^+) = T_{\pm\pm}(x^{\pm}), \quad T_{-+}(x^-, x^+) = 0$$
(18)

・ロト ・日本・モート ・日本・クタマ

• There exists a coordinate system x^{\pm} such that

$$g_{ab}(x) dx^a dx^b = e^{\varphi} dx^- dx^+ \tag{17}$$

• Diff \ltimes Weyl invariance implies

$$T_{\pm\pm}(x^-, x^+) = T_{\pm\pm}(x^{\pm}), \quad T_{-+}(x^-, x^+) = 0$$
(18)

• Hamiltonian operator of the CFT becomes (in the Schrödinger picture)

$$H(t) = \int_0^{2\pi} d\phi \,\nu(\phi, t) \,T_{--}(\phi) - \int_0^{2\pi} d\phi \,\bar{\nu}(\phi, t) \,T_{++}(\phi) \tag{19}$$

[Erdmenger-JK-Schuhmann on-going work]

[De Boer–Godet–JK–Keski-Vakkuri '23]

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

• Expand in Fourier modes

$$T_{--}(\phi) = \sum_{n=-\infty}^{\infty} (L_n \otimes \mathbf{1}) e^{in\phi}, \quad T_{++}(\phi) = \sum_{n=-\infty}^{\infty} (\mathbf{1} \otimes L_n) e^{-in\phi}$$

• Expand in Fourier modes

$$T_{--}(\phi) = \sum_{n=-\infty}^{\infty} (L_n \otimes \mathbf{1}) e^{in\phi}, \quad T_{++}(\phi) = \sum_{n=-\infty}^{\infty} (\mathbf{1} \otimes L_n) e^{-in\phi}$$

• L_n are generators of the Virasoro algebra

$$[L_n, L_m] = (n-m) L_{n+m} + \frac{c}{12} n^3 \delta_{n,-m}$$
(20)

• Expand in Fourier modes

$$T_{--}(\phi) = \sum_{n=-\infty}^{\infty} (L_n \otimes \mathbf{1}) e^{in\phi}, \quad T_{++}(\phi) = \sum_{n=-\infty}^{\infty} (\mathbf{1} \otimes L_n) e^{-in\phi}$$

• L_n are generators of the Virasoro algebra

$$[L_n, L_m] = (n-m) L_{n+m} + \frac{c}{12} n^3 \delta_{n,-m}$$
(20)

• The CFT is an example of a driven quantum system

$$H(t) = \sum_{n=-\infty}^{\infty} \nu_n(t) \left(L_n \otimes \mathbf{1} \right) - \sum_{n=-\infty}^{\infty} \bar{\nu}_n(t) \left(\mathbf{1} \otimes L_n \right)$$
(21)

• Consider the Lie group of orientation-preserving diffeomorphisms of the circle

$$\text{Diff}_{+}S^{1} \equiv \{ f \colon \mathbb{R} \to \mathbb{R} \mid f(\phi + 2\pi) = f(\phi) + 2\pi, \, f'(\phi) > 0 \}$$
(22)

• Consider the Lie group of orientation-preserving diffeomorphisms of the circle

$$Diff_{+}S^{1} \equiv \{f \colon \mathbb{R} \to \mathbb{R} \mid f(\phi + 2\pi) = f(\phi) + 2\pi, \, f'(\phi) > 0\}$$
(22)

• Then we may parametrize

$$\nu(\phi,t) \equiv -(\dot{f}_t \circ f_t^{-1})(\phi), \qquad \bar{\nu}(\phi,t) \equiv -(\dot{\bar{f}}_t \circ \bar{f}_t^{-1})(\phi).$$
(23)

• Consider the Lie group of orientation-preserving diffeomorphisms of the circle

$$Diff_{+}S^{1} \equiv \{f \colon \mathbb{R} \to \mathbb{R} \mid f(\phi + 2\pi) = f(\phi) + 2\pi, \, f'(\phi) > 0\}$$
(22)

• Then we may parametrize

$$\nu(\phi, t) \equiv -(\dot{f}_t \circ f_t^{-1})(\phi) , \qquad \bar{\nu}(\phi, t) \equiv -(\dot{\bar{f}}_t \circ \bar{f}_t^{-1})(\phi) .$$
(23)

• Unitary evolution can be computed explicitly

$$U(t) = \overleftarrow{\mathcal{T}} \exp\left(-i \int_0^t ds \, H(s)\right) = V_{f_t} \otimes \overline{V}_{\overline{f}_t} \tag{24}$$

[De Boer–Godet–JK–Keski-Vakkuri '23]

イロト 不良 イヨト イヨト 回言 ろくの

• Consider the Lie group of orientation-preserving diffeomorphisms of the circle

$$Diff_{+}S^{1} \equiv \{f \colon \mathbb{R} \to \mathbb{R} \mid f(\phi + 2\pi) = f(\phi) + 2\pi, \, f'(\phi) > 0\}$$
(22)

• Then we may parametrize

$$\nu(\phi, t) \equiv -(\dot{f}_t \circ f_t^{-1})(\phi) , \qquad \bar{\nu}(\phi, t) \equiv -(\dot{\bar{f}}_t \circ \bar{f}_t^{-1})(\phi) .$$
(23)

• Unitary evolution can be computed explicitly

$$U(t) = \overleftarrow{\mathcal{T}} \exp\left(-i \int_0^t ds \, H(s)\right) = V_{f_t} \otimes \overline{V}_{\overline{f}_t} \tag{24}$$

[De Boer–Godet–JK–Keski-Vakkuri '23]

• $V_{f_t} \otimes \overline{V}_{\overline{f}_t}$ is a projective unitary representation of the conformal transformation (f_t, \overline{f}_t) [Fewster_Hollands '04, Objak '16]

• Conformal transformations in 2D are diffeomorphisms

$$D(x^{-}, x^{+}) = (f(x^{-}), \overline{f}(x^{+}))$$
(25)

• Conformal transformations in 2D are diffeomorphisms

$$D(x^{-}, x^{+}) = (f(x^{-}), \overline{f}(x^{+}))$$
(25)

• The flat metric transforms as

$$dx^- dx^+ \to f'(x^-) \,\bar{f}'(x^+) \, dx^- dx^+$$
 (26)

• Conformal transformations in 2D are diffeomorphisms

$$D(x^{-}, x^{+}) = (f(x^{-}), \overline{f}(x^{+}))$$
(25)

• The flat metric transforms as

Jani Kastikainen

$$dx^- dx^+ \to f'(x^-) \,\bar{f}'(x^+) \, dx^- dx^+$$
 (26)

• Orientation-preservation and spatial periodicity imply

$$(f, \bar{f}) \in \operatorname{Diff}_+ S^1 \times \operatorname{Diff}_+ S^1$$
 (27)

[Kong–Runkel '09, Schottenloher '08]

イロト 不良 イヨト イヨト 回言 ろくの

U. Würzburg) Workshop LQP49

November 8, 2024 20 / 37

• Conformal transformations in 2D are diffeomorphisms

$$D(x^{-}, x^{+}) = (f(x^{-}), \overline{f}(x^{+}))$$
(25)

• The flat metric transforms as

$$dx^- dx^+ \to f'(x^-) \,\bar{f}'(x^+) \, dx^- dx^+$$
 (26)

• Orientation-preservation and spatial periodicity imply

$$(f,\bar{f}) \in \operatorname{Diff}_+S^1 \times \operatorname{Diff}_+S^1$$
 (27)

[Kong–Runkel '09, Schottenloher '08]

• $\text{Diff}_+S^1 \times \text{Diff}_+S^1$ is the classical symmetry group of a 2D CFT on a flat cylinder

			_≣ ≡ *)Q(4
Jani Kastikainen (U. Würzburg)	Workshop LQP49	November 8, 2024	20 / 37

Unitary projective representations

• On the Hilbert space of the CFT, a conformal diffeo (f, \overline{f}) is represented by a unitary operator

$$V_{f,\bar{f}} = V_f \otimes \overline{V}_{\bar{f}} \tag{28}$$

Unitary projective representations

• On the Hilbert space of the CFT, a conformal diffeo (f, \overline{f}) is represented by a unitary operator

$$V_{f,\overline{f}} = V_f \otimes \overline{V}_{\overline{f}} \tag{28}$$

• V_f is a projective representation of Diff_+S^1

$$V_{f_1}V_{f_2} = e^{iB(f_1,f_2)} V_{f_1 \circ f_2}$$
(29)

Unitary projective representations

• On the Hilbert space of the CFT, a conformal diffeo (f, \overline{f}) is represented by a unitary operator

$$V_{f,\overline{f}} = V_f \otimes \overline{V}_{\overline{f}} \tag{28}$$

• V_f is a projective representation of Diff_+S^1

$$V_{f_1}V_{f_2} = e^{iB(f_1,f_2)} V_{f_1 \circ f_2}$$
(29)

• Non-trivial Thurston–Bott 2-cocycle

Jar

$$B(f_1, f_2) = \frac{c}{48\pi} \int_0^{2\pi} d\phi \, \frac{f_2''(\phi)}{f_2'(\phi)} \, \log f_1'(f_2(\phi)) \tag{30}$$

[Fewster–Hollands '04, Oblak '16]

DEVALENTEE DE OOG

			=1- 240
i Kastikainen (U. Würzburg)	Workshop LQP49	November 8, 2024	21 / 37

• Take the reference state to be a highest-weight state

$$L_0 |h\rangle = h |h\rangle$$
, $L_{n>0} |h\rangle = 0$ (31)

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● ● ● ●

• Take the reference state to be a highest-weight state

$$L_0 |h\rangle = h |h\rangle , \quad L_{n>0} |h\rangle = 0$$
 (31)

• CFT time-evolution coincides with a Virasoro circuit

$$\left|f_{t}, \overline{f}_{t}\right\rangle \equiv V_{f_{t}} \otimes \overline{V}_{\overline{f}_{t}} \left|h\right\rangle \tag{32}$$

[Caputa–Magan '18, Flory–Heller '20, Flory–Heller '20]

• Take the reference state to be a highest-weight state

$$L_0 |h\rangle = h |h\rangle , \quad L_{n>0} |h\rangle = 0$$
(31)

• CFT time-evolution coincides with a Virasoro circuit

$$\left|f_{t}, \overline{f}_{t}\right\rangle \equiv V_{f_{t}} \otimes \overline{V}_{\overline{f}_{t}} \left|h\right\rangle \tag{32}$$

[Caputa–Magan '18, Flory–Heller '20, Flory–Heller '20]

A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D

• A curve in the infinite-dimensional space of *Virasoro pure states*

$$|f\rangle = V_f |h\rangle \quad \leftrightarrow \quad f \in \text{Diff}_+ S^1 / U(1)$$
 (33)

			$= 1 = 10$ \times C
Jani Kastikainen (U. Würzburg)	Workshop LQP49	November 8, 2024	22/37

• Take the reference state to be a highest-weight state

$$L_0 |h\rangle = h |h\rangle , \quad L_{n>0} |h\rangle = 0$$
(31)

• CFT time-evolution coincides with a Virasoro circuit

$$\left|f_{t}, \overline{f}_{t}\right\rangle \equiv V_{f_{t}} \otimes \overline{V}_{\overline{f}_{t}} \left|h\right\rangle \tag{32}$$

[Caputa–Magan '18, Flory–Heller '20, Flory–Heller '20]

• A curve in the infinite-dimensional space of *Virasoro pure states*

$$|f\rangle = V_f |h\rangle \quad \leftrightarrow \quad f \in \text{Diff}_+ S^1 / U(1)$$
 (33)

• Fubini–Study metric becomes the Kähler metric on $\text{Diff}_+S^1/U(1)$ (a Virasoro coadjoint orbit) [Kirillov–Juriev '87, Erdmenger–JK–Schuhmann '24]

Jani Kastikainen (U. Würzburg)

Workshop LQP49

November 8, 2024

3. CFTs driven by a scalar source

• So far the discussion has been about Virasoro circuits generated by

$$H(t) = \int_0^{2\pi} d\phi \,\nu(\phi, t) \,T_{--}(\phi) - \int_0^{2\pi} d\phi \,\bar{\nu}(\phi, t) \,T_{++}(\phi) \tag{34}$$

• Unitary state evolution is restricted to a single Verma module $\mathcal{H}_h \otimes \mathcal{H}_{h'}$ (irrep of the Virasoro algebra)

$$\mathcal{H}_{\rm CFT} = \bigoplus_{h,h'} \mathcal{H}_h \otimes \mathcal{H}_{h'} \tag{35}$$

Jani Kastik	ainen (U.	Würz	burg)
-------------	-----------	------	-------

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

• Generalize to *primary-deformed Virasoro circuits* generated by

$$H(t) = \int_{0}^{2\pi} d\phi \,\nu(\phi, t) \,T_{--}(\phi) - \int_{0}^{2\pi} d\phi \,\bar{\nu}(\phi, t) \,T_{++}(\phi) + \int_{0}^{2\pi} d\phi \,J(\phi, t) \,\mathcal{O}_{h}(\phi) \otimes \mathcal{O}_{\bar{h}}(-\phi)$$
(36)

[Erdmenger–JK–Schuhmann '24]

• Generalize to *primary-deformed Virasoro circuits* generated by

$$H(t) = \int_{0}^{2\pi} d\phi \,\nu(\phi, t) \,T_{--}(\phi) - \int_{0}^{2\pi} d\phi \,\bar{\nu}(\phi, t) \,T_{++}(\phi) + \int_{0}^{2\pi} d\phi \,J(\phi, t) \,\mathcal{O}_{h}(\phi) \otimes \mathcal{O}_{\bar{h}}(-\phi)$$
(36)

[Erdmenger–JK–Schuhmann '24]

• Local primary operator $\mathcal{O}_h(\phi)$ of weight h:

$$V_f \mathcal{O}_h(\phi) V_f^{\dagger} = f'(\phi)^h \mathcal{O}_h(f(\phi))$$
(37)

• Generalize to *primary-deformed Virasoro circuits* generated by

$$H(t) = \int_{0}^{2\pi} d\phi \,\nu(\phi, t) \,T_{--}(\phi) - \int_{0}^{2\pi} d\phi \,\bar{\nu}(\phi, t) \,T_{++}(\phi) + \int_{0}^{2\pi} d\phi \,J(\phi, t) \,\mathcal{O}_{h}(\phi) \otimes \mathcal{O}_{\bar{h}}(-\phi)$$
(36)

[Erdmenger–JK–Schuhmann '24]

• Local primary operator $\mathcal{O}_h(\phi)$ of weight h:

$$V_f \mathcal{O}_h(\phi) V_f^{\dagger} = f'(\phi)^h \mathcal{O}_h(f(\phi))$$
(37)

• Mode expansion

$$\mathcal{O}_{h}(\phi) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \mathcal{O}_{h,n} e^{in\phi}, \quad [L_{n}, \mathcal{O}_{h,m}] = [(h-1)n - m] \mathcal{O}_{h,n+m}$$
(38)

• Generalize to *primary-deformed Virasoro circuits* generated by

$$H(t) = \int_{0}^{2\pi} d\phi \,\nu(\phi, t) \,T_{--}(\phi) - \int_{0}^{2\pi} d\phi \,\bar{\nu}(\phi, t) \,T_{++}(\phi) + \int_{0}^{2\pi} d\phi \,J(\phi, t) \,\mathcal{O}_{h}(\phi) \otimes \mathcal{O}_{\bar{h}}(-\phi)$$
(36)

[Erdmenger–JK–Schuhmann '24]

• Local primary operator $\mathcal{O}_h(\phi)$ of weight h:

$$V_f \mathcal{O}_h(\phi) V_f^{\dagger} = f'(\phi)^h \mathcal{O}_h(f(\phi))$$
(37)

• Mode expansion

$$\mathcal{O}_{h}(\phi) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \mathcal{O}_{h,n} e^{in\phi}, \quad [L_{n}, \mathcal{O}_{h,m}] = [(h-1)n - m] \mathcal{O}_{h,n+m}$$
(38)

• Commutation relations

$$\left[\mathcal{O}_{h,n},\mathcal{O}_{h,m}\right] = \binom{n+h-1}{2h-1} \delta_{n,-m} + \sum_{k} D_k(n,m) \mathcal{O}_{h_k,n+m}, \tag{39}$$

Jani Kastikainen (U. Würzburg)

Workshop LQP49

November 8, 2024 25 / 37

• When $h = \overline{h} = 1$, the deformed Hamiltonian H(t) arises from the action

$$S[\Phi, g, J] = I[\Phi, g] + \int d^2x \sqrt{-g} J(x) \mathcal{O}(x)$$

$$\tag{40}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 = ◆ ○ へ ()

• When $h = \overline{h} = 1$, the deformed Hamiltonian H(t) arises from the action

$$S[\Phi, g, J] = I[\Phi, g] + \int d^2x \sqrt{-g} J(x) \mathcal{O}(x)$$

$$\tag{40}$$

• $\mathcal{O}(x)$ is an exactly marginal scalar field with dimension $\Delta = 2$ given by

$$\mathcal{O}(x^-, x^+) \propto \mathcal{O}_1(x^-) \otimes \mathcal{O}_1(x^+)$$
 (41)

Jani	Kastikainen	(U	. W	ürz	burg)
------	-------------	----	-----	-----	------	---

• When $h = \overline{h} = 1$, the deformed Hamiltonian H(t) arises from the action

$$S[\Phi, g, J] = I[\Phi, g] + \int d^2x \sqrt{-g} J(x) \mathcal{O}(x)$$

$$\tag{40}$$

• $\mathcal{O}(x)$ is an exactly marginal scalar field with dimension $\Delta = 2$ given by

$$\mathcal{O}(x^-, x^+) \propto \mathcal{O}_1(x^-) \otimes \mathcal{O}_1(x^+) \tag{41}$$

More generally, renormalization group flow modifies the Hamiltonian H(t)

[Erdmenger-JK-Schuhmann on-going]

Fubini–Study circuit complexity

• State along the primary-deformed Virasoro circuit

$$|\Psi(t)\rangle = U(t)|h'\rangle , \quad U(t) = \overleftarrow{\mathcal{T}}\exp\left(-i\int_0^t ds \,H(s)\right)$$
 (42)

where the deformed Hamiltonian

$$H(t) = \int_{0}^{2\pi} d\phi \,\nu(\phi, t) \,T_{--}(\phi) - \int_{0}^{2\pi} d\phi \,\bar{\nu}(\phi, t) \,T_{++}(\phi) + \int_{0}^{2\pi} d\phi \,J(\phi, t) \,\mathcal{O}_{h}(\phi) \otimes \mathcal{O}_{\bar{h}}(-\phi)$$
(43)

Fubini–Study circuit complexity

• State along the primary-deformed Virasoro circuit

$$|\Psi(t)\rangle = U(t)|h'\rangle , \quad U(t) = \overleftarrow{\mathcal{T}}\exp\left(-i\int_0^t ds \,H(s)\right)$$
 (42)

where the deformed Hamiltonian

$$H(t) = \int_{0}^{2\pi} d\phi \,\nu(\phi, t) \,T_{--}(\phi) - \int_{0}^{2\pi} d\phi \,\bar{\nu}(\phi, t) \,T_{++}(\phi) + \int_{0}^{2\pi} d\phi \,J(\phi, t) \,\mathcal{O}_{h}(\phi) \otimes \mathcal{O}_{\bar{h}}(-\phi)$$
(43)

• Goal: calculate the accumulated Fubini–Study cost

$$\mathcal{L}(t) = \int_0^t ds \sqrt{\mathcal{F}(s)} = \int_0^t ds \sqrt{\langle \Psi(s) | H(s)^2 | \Psi(s) \rangle - \langle \Psi(s) | H(s) | \Psi(s) \rangle^2}$$
(44)

Jani Kastikainen (U. Würzburg)

State evolution in the deformed circuit

• We will decompose the Hamiltonian as

$$H(t) = C(t) + \lambda P(t), \quad P(t) \equiv \int_0^{2\pi} d\phi \, J(\phi, t) \, \mathcal{O}_h(\phi) \otimes \mathcal{O}_{\overline{h}}(-\phi) \tag{45}$$

State evolution in the deformed circuit

• We will decompose the Hamiltonian as

$$H(t) = C(t) + \lambda P(t), \quad P(t) \equiv \int_0^{2\pi} d\phi \, J(\phi, t) \, \mathcal{O}_h(\phi) \otimes \mathcal{O}_{\bar{h}}(-\phi) \tag{45}$$

• The unitary operator factorizes

$$U(t) = V(t) U_P(t)$$
(46)

Jani Kasti	kainen ((U. W	/ürz	burg)
------------	----------	-------	------	------	---
State evolution in the deformed circuit

• We will decompose the Hamiltonian as

$$H(t) = C(t) + \lambda P(t), \quad P(t) \equiv \int_0^{2\pi} d\phi \, J(\phi, t) \, \mathcal{O}_h(\phi) \otimes \mathcal{O}_{\bar{h}}(-\phi) \tag{45}$$

• The unitary operator factorizes

$$U(t) = V(t) U_P(t)$$
(46)

• The factors are given by

$$V(t) = \overleftarrow{\mathcal{T}} \exp\left(-i \int_0^t ds \, C(s)\right) = V_{f_t} \otimes \overline{V}_{\overline{f}_t} \,, \quad U_P(t) = \overleftarrow{\mathcal{T}} \exp\left(-i \int_0^t ds \, V(s)^\dagger \, \lambda P(s) \, V(s)\right)$$

• The complete form of $U_P(t)$ depends on details of the algebra $[\mathcal{O}_{n,h}, \mathcal{O}_{m,h}]$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ●

- The complete form of $U_P(t)$ depends on details of the algebra $[\mathcal{O}_{n,h}, \mathcal{O}_{m,h}]$
- But turns out that the cost is universal up to second order in λ ٠

$$\mathcal{F}(t) = \mathcal{F}^{(0)}(t) + \lambda \mathcal{F}^{(1)}(t) + \lambda^2 \mathcal{F}^{(2)}(t) + \mathcal{O}(\lambda^3)$$
(47)

[Erdmenger–JK–Schuhmann '24]

- The complete form of $U_P(t)$ depends on details of the algebra $[\mathcal{O}_{n,h}, \mathcal{O}_{m,h}]$
- But turns out that the cost is universal up to second order in λ ٠

$$\mathcal{F}(t) = \mathcal{F}^{(0)}(t) + \lambda \mathcal{F}^{(1)}(t) + \lambda^2 \mathcal{F}^{(2)}(t) + \mathcal{O}(\lambda^3)$$
(47)

[Erdmenger–JK–Schuhmann '24]

• We will focus on simple circuits of the form

$$C(t) = L_0 \otimes \mathbf{1} + \mathbf{1} \otimes L_0, \quad J(\phi, t) = S(\phi) j(t), \quad |R\rangle = |0\rangle$$
(48)

- The complete form of $U_P(t)$ depends on details of the algebra $[\mathcal{O}_{n,h}, \mathcal{O}_{m,h}]$
- But turns out that the cost is universal up to second order in λ

$$\mathcal{F}(t) = \mathcal{F}^{(0)}(t) + \lambda \mathcal{F}^{(1)}(t) + \lambda^2 \mathcal{F}^{(2)}(t) + \mathcal{O}(\lambda^3)$$
(47)

[Erdmenger–JK–Schuhmann '24]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ●

• We will focus on simple circuits of the form

$$C(t) = L_0 \otimes \mathbf{1} + \mathbf{1} \otimes L_0, \quad J(\phi, t) = S(\phi) j(t), \quad |R\rangle = |0\rangle$$
(48)

• In this case, the cost is given by

$$\mathcal{F}(t) = \lambda^2 \,\mathcal{F}^{(2)}(t) + \mathcal{O}(\lambda^3) \tag{49}$$

Jani Kastikainen (U. Würzburg)	Workshop LQP49	November 8, 2024	29 / 37

• We derive the explicit formula (assuming $\bar{h} = h$ for simplicity)

$$\mathcal{F}^{(2)}(t) = j(0)^2 \operatorname{Re} \langle \mathcal{R}_{hh}(0)^2 \rangle + 2 j(0) \int_0^t ds \,\partial_s j(s) \operatorname{Re} \langle \mathcal{R}_{hh}(t) \,\mathcal{R}_{hh}(s) \rangle$$

$$+ \int_0^t ds_1 \int_0^t ds_2 \,\partial_{s_1} j(s_1) \,\partial_{s_2} j(s_2) \operatorname{Re} \langle \mathcal{R}_{hh}(s_1) \,\mathcal{R}_{hh}(s_2) \rangle ,$$
(50)

• We derive the explicit formula (assuming $\bar{h} = h$ for simplicity)

$$\mathcal{F}^{(2)}(t) = j(0)^2 \operatorname{Re} \langle \mathcal{R}_{hh}(0)^2 \rangle + 2 j(0) \int_0^t ds \, \partial_s j(s) \operatorname{Re} \langle \mathcal{R}_{hh}(t) \, \mathcal{R}_{hh}(s) \rangle$$

$$+ \int_0^t ds_1 \int_0^t ds_2 \, \partial_{s_1} j(s_1) \, \partial_{s_2} j(s_2) \operatorname{Re} \langle \mathcal{R}_{hh}(s_1) \, \mathcal{R}_{hh}(s_2) \rangle ,$$
(50)

• Vacuum 2-point function of a *ring operator*

$$\mathcal{R}_{hh}(t) = \int_0^{2\pi} d\phi \, S(\phi) \, \mathcal{O}_h(\phi - t) \otimes \mathcal{O}_h(-\phi - t) \tag{51}$$

• We derive the explicit formula (assuming $\bar{h} = h$ for simplicity)

$$\mathcal{F}^{(2)}(t) = j(0)^2 \operatorname{Re} \langle \mathcal{R}_{hh}(0)^2 \rangle + 2 j(0) \int_0^t ds \, \partial_s j(s) \operatorname{Re} \langle \mathcal{R}_{hh}(t) \, \mathcal{R}_{hh}(s) \rangle$$

$$+ \int_0^t ds_1 \int_0^t ds_2 \, \partial_{s_1} j(s_1) \, \partial_{s_2} j(s_2) \operatorname{Re} \langle \mathcal{R}_{hh}(s_1) \, \mathcal{R}_{hh}(s_2) \rangle ,$$
(50)

• Vacuum 2-point function of a *ring operator*

$$\mathcal{R}_{hh}(t) = \int_0^{2\pi} d\phi \, S(\phi) \, \mathcal{O}_h(\phi - t) \otimes \mathcal{O}_h(-\phi - t) \tag{51}$$

• Important point: only the real part contributes (imaginary part is UV divergent)

[Erdmenger–JK–Schuhmann '24]

AN VAN VEN VEN ELE DOOD

Jani Kastikainen (U. Würzburg)	Workshop LQP49	November 8, 2024	30 / 37

• Primary operator vacuum 2-point function

$$\langle 0 | \mathcal{O}_h(\phi_1) \mathcal{O}_h(\phi_2) | 0 \rangle = \lim_{\varepsilon \to 0^+} \frac{1}{(2\pi)^2} \frac{1}{\left[2i\sin\left(\frac{\phi_1 - \phi_2 + i\varepsilon}{2}\right)\right]^{2h}}$$

(52)

• Primary operator vacuum 2-point function

$$\langle 0 | \mathcal{O}_h(\phi_1) \mathcal{O}_h(\phi_2) | 0 \rangle = \lim_{\varepsilon \to 0^+} \frac{1}{(2\pi)^2} \frac{1}{\left[2i\sin\left(\frac{\phi_1 - \phi_2 + i\varepsilon}{2}\right)\right]^{2h}}$$
(52)

• Real part of the ring operator 2-point function

$$\operatorname{Re} \langle 0 | \mathcal{R}_{hh}(t_1) \mathcal{R}_{hh}(t_2) | 0 \rangle$$

$$= \frac{1}{(2\pi)^2} \sum_{m=h}^{\infty} \frac{(-1)^{h+m} (m+h)!}{(2h-1)! (m-h)!} \left[\frac{|S_{2m}|^2}{2 (m+h)} {}_2F_1 \left(h-m, h-m; \frac{1}{2}; \cos^2 \left(\Delta t \right) \right) \right]$$

$$+ |S_{2m+1}|^2 \cos \left(\Delta t \right) {}_2F_1 \left(h-m+1, h-m; \frac{3}{2}; \cos^2 \left(\Delta t \right) \right) \right]$$
(53)

November 8, 2024	31 / 37

Source profiles

• We consider spatial sources

$$S(\phi) = \cos(n\phi), \quad n = 0, 1, 2, \dots$$
 (54)

(ロ)、<</p>

Source profiles

• We consider spatial sources

$$S(\phi) = \cos(n\phi), \quad n = 0, 1, 2, \dots$$
 (54)

• And temporal profiles j(t) of the form

			21 - 10 - 20
Jani Kastikainen (U. Würzburg)	Workshop LQP49	November 8, 2024	32 / 37

Behavior of Fubini–Study cost and accumulated cost

• Switch on profile for n = 1 (blue), n = 2 (red), n = 3 (green), n = 4 (purple), n = 5 (brown)

Jani Kastikainen (U. Würzburg)	Workshop LQP49	November 8, 2024	33 / 37

Behavior of Fubini–Study cost and accumulated cost

• Switch on-off profile for n = 1 (blue), n = 2 (red), n = 3 (green), n = 4 (purple), n = 5 (brown)

Jani Kastikainen (U. Würzburg)	Workshop LQP49	November 8, 2024	34 / 37

• We studied quantum circuits generated by infinite-dimensional Lie algebras

- We studied quantum circuits generated by infinite-dimensional Lie algebras
- May be realized as physical time evolution in a CFT driven by background fields

- We studied quantum circuits generated by infinite-dimensional Lie algebras
- May be realized as physical time evolution in a CFT driven by background fields
- Accumulated FS cost of a simple primary-deformed Virasoro circuit exhibits linear growth (at leading order in the deformation)

• Understand better the information geometry explored by primary-deformed Virasoro circuits

- Understand better the information geometry explored by primary-deformed Virasoro circuits
- Conformal field theory realization of primary-deformed circuits

[Erdmenger-JK-Schuhmann on-going]

- Understand better the information geometry explored by primary-deformed Virasoro circuits
- Conformal field theory realization of primary-deformed circuits

[Erdmenger–JK–Schuhmann on-going]

• Gravity interpretation as black hole formation using the AdS/CFT correspondence

Thank you

Jani Kastikainen (U. Würzburg)

Workshop LQP49

November 8, 2024

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ●

• For $h = \overline{h} = 1$, the 2-point function is explicitly $(\Delta t = t_1 - t_2)$

$$\langle 0 | \mathcal{R}_{11}(t_1) \mathcal{R}_{11}(t_2) | 0 \rangle = \frac{1}{4} \frac{1}{(2\pi)^2} \sum_{n=-\infty}^{\infty} |S_n|^2 e^{-i|n|\Delta t} \left(-|n| + i \cot \Delta t\right) \csc^2 \Delta t \,, \tag{55}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ●

• For $h = \overline{h} = 1$, the 2-point function is explicitly $(\Delta t = t_1 - t_2)$

$$\langle 0 | \mathcal{R}_{11}(t_1) \mathcal{R}_{11}(t_2) | 0 \rangle = \frac{1}{4} \frac{1}{(2\pi)^2} \sum_{n=-\infty}^{\infty} |S_n|^2 e^{-i|n|\Delta t} \left(-|n| + i \cot \Delta t\right) \csc^2 \Delta t \,, \tag{55}$$

• The imaginary part diverges in the coincidence limit