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Quantum Energy Inequalities

Energy density (and its positivity) has a primary role in classical and quantum physics
(Fewster 2012):

In general relativity, energy conditions on the stress-energy tensor (connected to
energy density positivity) imply constrains on the geometry of space-time.

Arbitrary negative values of energy density could lead to the violation of the second
law of thermodynamics.

When classical fields are quantised (QFT), the necessity to avoid divergences in the
definition of the energy density (Wick ordering), turns out to be incompatible with the
positiveness request (Fewster 2012),(Epstein et al. 1965).

=⇒ Necessity to find lower bounds on the expectation value of the (time averaged)
quantised version of the energy density.
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Algebraic Quantum Field Theory

AQFT provides a fundamental tool to study the inequivalent representations of systems
with infinite degrees of freedom (e.g. thermal sector can not be studied in the vacuum
representation).

In the real scalar case (Pϕ = (□+m2)ϕ = 0), the fundamental object is the abstract
∗-algebra A, polynomially generated by the smeared fields ϕ(f ), f ∈ C∞

0 (M), that satisfy:

linearity, ϕ(λf + g) = λϕ(f ) + ϕ(g), λ ∈ C.

hermiticity, ϕ(f )∗ = ϕ(f ).

weak solution of field equation, ϕ(Pf ) = 0.

commutation relations, [ϕ(f ), ϕ(g)] = i∆(f , g)1.

States ω are positive, normalised linear functionals over A.
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Thermal field theory

Quantum field theories at finite temperature can be studied with different approaches
(Matsubara formalism (Matsubara 1955), Real time formalism (Keldysh 1964),
Thermo field dynamics (Umezawa et al. 1982)).

In the algebraic approach to QFT the thermal aspects are encoded at the level of the
states. Therefore, we need a way to describe a thermal equilibrium state for a system
with infinitely many degrees of freedom.

Definition

A state ωβ satisfies the KMS condition with respect to the time evolution τt if:

ωβ((τtA)B) = ωβ(B(τt+iβA)),

and the function z ∈ C → ωβ(Bτz(A)) is analytic inside the strip ℑz ∈ [0, β] and
continuous on the border.
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General program

Do QEIs hold for a scalar real massive free field in the thermal representation?

KMS states model an equilibrium state at finite temperature for an infinite volume
system (finite density of particles at finite temperature).
=⇒ We expect symmetry between the particles (excitations of the thermal bath) and
the holes (de-excitations of the thermal bath).

We construct the representation induced by the KMS state (purification
procedure).

We identify therein the energy density operator.

We study the expectation value of this operator in this representation. =⇒ necessity
to introduce mathematical tools as modular theory and non-commutative Lp

spaces.
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One particle structure

Given a ∗-algebra A (e.g. associated to the symplectic space (C∞
0 (M),∆)) and a state ω

over A =⇒ representation πω(A) via GNS construction.

If ω is quasi-free, i.e. completely determined by its two point function (e.g. ωβ that we
are considering), a characterization result holds for the corresponding GNS representation
(Kay and Wald 1991).
The GNS representation induced by ωβ is the Fock representation over the symmetrised
Fock space F s (purification procedure):

F s(L2 ⊕ L2) ≃ F s(L2)⊗F s(L2),

where F s(L2) is the usual bosonic Fock space over the Hilbert space of L2 functions on
the mass hyperboloid.
Real valued test functions are mapped into the Hilbert space via the map K :

K(f )(k) =
f̂ |H+

m
(k)

√
eβωk − 1

⊕
f̂ |H+

m
(k)

√
1− e−βωk

=: B−
k f̂ |H+

m
(k)⊕ B+

k f̂ |H+
m
(k).
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Thermal representation

We get explicit expression for the smeared field ϕ(f ) (and for its commuting ϕ̃(g)) in
terms of the usual particles (and holes) creation and annihilation ”operators” b# (a#):

[ak, a
†
p] = (2π)3δ3(p− k); [bk, b

†
p ] = (2π)3δ3(p− k);

ϕ(x) =

∫
d3k

(2π)3
1√
2ωk

[
B−

k ake
ikx+ B−

k a†ke
−ikx + B+

k bke
−ikx + B+

k b
†
ke

ikx
]
;

ϕ̃(y) = ϕ(y)|a↔b,a†↔b† ; [ϕ(x), ϕ̃(y)] ≡ 0.

In addition, the generator of time evolution :Ĥ: (thermal Hamiltonian or Liouvillian) and

its space density :T̂00:(x) are given by:

ˆ:H: =

∫
d3p

(2π)3
ωp

(
b†
pbp − a†pap

)
; :T̂00:(x) = :T00:(x)− :T̃00:(x),

where (and accordingly for :T̃00:(x)):

:T00: =
1

2
:(∂0ϕ)

2: +
1

2

3∑
i=1

:(∂iϕ)
2: +

1

2
m2:(ϕ)2:.
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Energy density quantum inequalities

Study the expectation value of :T̂00:(f ) = :T00:(f )− :T̃00:(f ), i.e. the Liouvillian density
smeared in space and time with a positive test function f ∈ C∞

0 (M):(
Ψ, :T̂00:(f )Ψ

)
, with Ψ ∈ F s(L2)⊗F s(L2), (Ψ,Ψ) = N2

Ψ.

State independent QEI for the term :T00:(f ) (analogous to (Fewster 2012),(Fewster
and Eveson 1998)). Smearing in time with a test function |g(t)|2 (at x = 0) we get:(

Ψ, :T00:(|g |2)Ψ
)
≥

−
∫ ∞

0

dω

π

∫
d3k

(2π)3
ωk

2

[
|ĝ(ω + ωk)|2(B+

k )
2 + |ĝ(ω − ωk)|2(B−

k )2
]
N2
ψ

where the integrals are convergent for every β ∈ R and g ∈ C∞
0 (R) (Hadamard

property of the KMS state ωβ).
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Energy density quantum inequalities

On the contrary, no state independent bound from below for the expectation value(
Ψ,−:T̃00:(f )Ψ

)
.

We look for a state dependent QEI for −:T̃00:(f ). We restrict our attention to the set
of vectors F , obtained perturbing the vacuum vector Ω (representing the KMS state ωβ)
with operators that belong to the ∗-algebra πβ(A):

F :=
{
Ψ ∈ F s(L2)⊗F s(L2) : Ψ = AΩ, for some A ∈ πβ(A)

}
.

We want to find a stronger norm ∥Ψ∥s (∥Ψ∥s ≥ NΨ) for the states Ψ ∈ F to define a
new state dependent inequality for the operator −:T̃00:(f ).

Remark: If a state dependent inequality exists for −:T̃00:(f ) in terms of ∥ · ∥s , than it

extends to the operator :T̂00:(f ) .
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Modular theory in a nutshell

Let H be a Hilbert space, M a von Neumann algebra (with commutant M′) and Ω be
a cyclic and separating vector (MΩ,M′Ω are dense in H). =⇒ modular theory can
be constructed Review: (Borchers 2000):

The antilinear, unbounded, closable Tomita operator S is well defined on the dense
subspace MΩ by:

SaΩ = a†Ω ∀a ∈ M.

Let S = J∆1/2 be the polar decomposition of S . ∆ (modular operator) defines an
automorphism for M via the adjoint action of the unitary group ∆it , t ∈ R :

Ad∆itM = M, ∀t ∈ R.

J is a conjugation (antilinear and J = J† = J−1) and its adjoint action satisfies:

AdJM = M′.

The state defined by the vector Ω (via ω(·) = (Ω, ·Ω)) is KMS respect to the
modular evolution implemented by Ad∆it(·). The opposite is also true.

Leonardo Sangaletti (ITP Leipzig) QEIs in TFT 08th November 2024, LQP49 FAU 13 / 20



Modular theory in a nutshell

Let H be a Hilbert space, M a von Neumann algebra (with commutant M′) and Ω be
a cyclic and separating vector (MΩ,M′Ω are dense in H). =⇒ modular theory can
be constructed Review: (Borchers 2000):

The antilinear, unbounded, closable Tomita operator S is well defined on the dense
subspace MΩ by:

SaΩ = a†Ω ∀a ∈ M.

Let S = J∆1/2 be the polar decomposition of S . ∆ (modular operator) defines an
automorphism for M via the adjoint action of the unitary group ∆it , t ∈ R :

Ad∆itM = M, ∀t ∈ R.

J is a conjugation (antilinear and J = J† = J−1) and its adjoint action satisfies:

AdJM = M′.

The state defined by the vector Ω (via ω(·) = (Ω, ·Ω)) is KMS respect to the
modular evolution implemented by Ad∆it(·). The opposite is also true.

Leonardo Sangaletti (ITP Leipzig) QEIs in TFT 08th November 2024, LQP49 FAU 13 / 20



Modular theory in a nutshell

Let H be a Hilbert space, M a von Neumann algebra (with commutant M′) and Ω be
a cyclic and separating vector (MΩ,M′Ω are dense in H). =⇒ modular theory can
be constructed Review: (Borchers 2000):

The antilinear, unbounded, closable Tomita operator S is well defined on the dense
subspace MΩ by:

SaΩ = a†Ω ∀a ∈ M.

Let S = J∆1/2 be the polar decomposition of S . ∆ (modular operator) defines an
automorphism for M via the adjoint action of the unitary group ∆it , t ∈ R :

Ad∆itM = M, ∀t ∈ R.

J is a conjugation (antilinear and J = J† = J−1) and its adjoint action satisfies:

AdJM = M′.

The state defined by the vector Ω (via ω(·) = (Ω, ·Ω)) is KMS respect to the
modular evolution implemented by Ad∆it(·). The opposite is also true.

Leonardo Sangaletti (ITP Leipzig) QEIs in TFT 08th November 2024, LQP49 FAU 13 / 20



Modular theory in a nutshell

Let H be a Hilbert space, M a von Neumann algebra (with commutant M′) and Ω be
a cyclic and separating vector (MΩ,M′Ω are dense in H). =⇒ modular theory can
be constructed Review: (Borchers 2000):

The antilinear, unbounded, closable Tomita operator S is well defined on the dense
subspace MΩ by:

SaΩ = a†Ω ∀a ∈ M.

Let S = J∆1/2 be the polar decomposition of S . ∆ (modular operator) defines an
automorphism for M via the adjoint action of the unitary group ∆it , t ∈ R :

Ad∆itM = M, ∀t ∈ R.

J is a conjugation (antilinear and J = J† = J−1) and its adjoint action satisfies:

AdJM = M′.

The state defined by the vector Ω (via ω(·) = (Ω, ·Ω)) is KMS respect to the
modular evolution implemented by Ad∆it(·). The opposite is also true.

Leonardo Sangaletti (ITP Leipzig) QEIs in TFT 08th November 2024, LQP49 FAU 13 / 20



Modular theory in a nutshell

Let H be a Hilbert space, M a von Neumann algebra (with commutant M′) and Ω be
a cyclic and separating vector (MΩ,M′Ω are dense in H). =⇒ modular theory can
be constructed Review: (Borchers 2000):

The antilinear, unbounded, closable Tomita operator S is well defined on the dense
subspace MΩ by:

SaΩ = a†Ω ∀a ∈ M.

Let S = J∆1/2 be the polar decomposition of S . ∆ (modular operator) defines an
automorphism for M via the adjoint action of the unitary group ∆it , t ∈ R :

Ad∆itM = M, ∀t ∈ R.

J is a conjugation (antilinear and J = J† = J−1) and its adjoint action satisfies:

AdJM = M′.

The state defined by the vector Ω (via ω(·) = (Ω, ·Ω)) is KMS respect to the
modular evolution implemented by Ad∆it(·). The opposite is also true.

Leonardo Sangaletti (ITP Leipzig) QEIs in TFT 08th November 2024, LQP49 FAU 13 / 20



Non commutative Lp spaces in a nutshell

Noncommutative Lp spaces generalize usual Lp spaces from integration theory
(commutative v.N. algebras) to general v.N. algebras. Given M over an Hilbert space H
with a cyclic and separating vector Ω, we can construct a family Lp(M), 1 ≤ p ≤ ∞ of
Banach spaces following different approaches ((Araki and Masuda 1982),(Haagerup
n.d.),(Kosaki 1984)).

The following properties hold:

L∞(M,Ω) ≡ M and L2(M,Ω) ≃ H with same norm.

For all 1 ≤ p′ ≤ p ≤ ∞

M ⊆ Lp(M,Ω) ⊆ Lp′(M,Ω) ⊆ M∗ with M dense in each Lp;

∥a∥∞ ≥ ∥a∥p ≥ ∥a∥p′ ≥ ∥a∥1, ∀a ∈ M

For a ∈ M (corresponding to aΩ ∈ L2), seen as an element of L4, it holds:

∥a∥4 := ∥∆1/4
Ω a∗aΩ∥1/2.

Remark: ∆1/4a∗aΩ ∈ V
1/4
Ω , the positive cone defined in (Araki 1974). We have a

self contained proof that ∥ · ∥4 defines a norm and (MΩ, ∥ · ∥4)
∥·∥4 ⊆ H.
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Affiliated operator

We have stated modular theory and non commutative spaces for (v.N.) algebras of
bounded operators. We would like to extend this results to more general situations. We
want to extend them to unbounded affiliated operators (Bratteli and Robinson 1987):

Definition: Affiliated operator

A closed densely defined operator A is said to be affiliated to a v.N. algebra M (AηM),
if M′D(A) ⊆ D(A) and Aa′ ⊇ a′A for all a′ ∈ M′.

We can prove the following two technical lemma:

Lemma (Bostelmann, Cadamuro, S.)

Let be AηM and Ω ∈ D(A). If AΩ ∈ D(A∗), A belongs to the non-commutative L4

space and we have:
∥A∥24 = ∥∆1/4

Ω A∗AΩ∥,

Leonardo Sangaletti (ITP Leipzig) QEIs in TFT 08th November 2024, LQP49 FAU 15 / 20



Affiliated operator

We have stated modular theory and non commutative spaces for (v.N.) algebras of
bounded operators. We would like to extend this results to more general situations. We
want to extend them to unbounded affiliated operators (Bratteli and Robinson 1987):

Definition: Affiliated operator

A closed densely defined operator A is said to be affiliated to a v.N. algebra M (AηM),
if M′D(A) ⊆ D(A) and Aa′ ⊇ a′A for all a′ ∈ M′.

We can prove the following two technical lemma:

Lemma (Bostelmann, Cadamuro, S.)

Let be AηM and Ω ∈ D(A). If AΩ ∈ D(A∗), A belongs to the non-commutative L4

space and we have:
∥A∥24 = ∥∆1/4

Ω A∗AΩ∥,

Leonardo Sangaletti (ITP Leipzig) QEIs in TFT 08th November 2024, LQP49 FAU 15 / 20



Affiliated operator

We have stated modular theory and non commutative spaces for (v.N.) algebras of
bounded operators. We would like to extend this results to more general situations. We
want to extend them to unbounded affiliated operators (Bratteli and Robinson 1987):

Definition: Affiliated operator

A closed densely defined operator A is said to be affiliated to a v.N. algebra M (AηM),
if M′D(A) ⊆ D(A) and Aa′ ⊇ a′A for all a′ ∈ M′.

We can prove the following two technical lemma:

Lemma (Bostelmann, Cadamuro, S.)

Let be AηM and Ω ∈ D(A). If AΩ ∈ D(A∗), A belongs to the non-commutative L4

space and we have:
∥A∥24 = ∥∆1/4

Ω A∗AΩ∥,

Leonardo Sangaletti (ITP Leipzig) QEIs in TFT 08th November 2024, LQP49 FAU 15 / 20



Outline

1 Motivation and general framework

2 Thermal representation of a scalar field

3 Mathematical tools

4 Main result: L4 QEIs

5 Conclusion and outlook

Leonardo Sangaletti (ITP Leipzig) QEIs in TFT 08th November 2024, LQP49 FAU 16 / 20



L4 QEIs

We can now prove the main result of the work, in a general and abstract form:

Theorem (Bostelmann, Cadamuro, S.)

Let be T̃ symmetric and affiliated with the commutant M′ of the v.N. algebra M, and
suppose Ω ∈ D(T̃ ). Then, for every operator AηM s.t. Ω ∈ D(A), Ω ∈ D(A∗A) and
AΩ ∈ D(T̃ ), the following inequality is satisfied:

−
(
AΩ, T̃AΩ

)
≥ −C∥A∥24,

where C is the finite positive constant C = ∥∆− 1
4 T̃Ω∥.

(Naive) Proof : We have:∣∣∣(AΩ, T̃AΩ
)∣∣∣ = ∣∣∣(AΩ,AT̃Ω

)∣∣∣ = ∣∣∣(A∗AΩ, T̃Ω
)∣∣∣ = ∣∣∣(∆1/4A∗AΩ,∆−1/4T̃Ω

)∣∣∣ .
Using Cauchy–Schwarz inequality:∣∣∣(AΩ, T̃AΩ

)∣∣∣ ≤ ∥∥∥∆1/4A∗AΩ
∥∥∥ ∥∥∥∆−1/4T̃Ω

∥∥∥ = C∥A∥24.

This concludes the proof.
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Application to TFT

We define the v.N. algebra M as the double commutant of the algebra generated by the
Weyl operators e iϕ(g), with g ∈ C∞

0 .

Its commutant M′ is the Weyl algebra generated
by the smeared fields ϕ̃(g). Notice that in this case, the vacuum vector Ω (implementing
the KMS state) is both cyclic and separating for the Weyl algebra M defined on the
entire Minkowski space-time, since it is cyclic for the commutant M′.

We directly prove that −:T̃00:(f ) (smeared also in time) is affiliated to M′. =⇒ We get
a trivial state dependent inequality for −:T̃00:(f ):

−
(
AΩ, :T̃00:(f )AΩ

)
≥ −C 2

f ,β∥A∥24, with AηM.

However, the L4 inequality extends to the total smeared energy density :T̂00(f ):
(∥ · ∥ = ∥ · ∥2 ≤ ∥ · ∥4) as a non-trivial state dependent inequality:(

AΩ, :T̂00:(f )AΩ
)
≥ −C2

f ,β∥A∥24, with AηM.

The non triviality can be checked via direct examples and descends from the
unboundesness of the operator :T00:(f ).
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Conclusions and outlook

Starting point: rigorous construction of the representation induced by a KMS state
for a massive scalar quantum field (known from literature).

We have identified the space density of the generator of the time evolution.

We extended some results of modular theory and non-commutative Lp spaces to
operators affiliated to v.N. algebra.

We obtained a state dependent, non trivial QEIs in terms of the L4 norm:(
AΩ, :T̂00:(f )AΩ

)
≥ −C2

f ,β∥A∥24, AηM.

Possible future outlook: application of the abstract theorem to other situations in which
a similar structure in terms operator affiliated to an algebra and to their commutant is
manifest (e.g. double Schwarzschild wedge in Kruskal spacetime, entanglement aspects
in information theory).
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manifest (e.g. double Schwarzschild wedge in Kruskal spacetime, entanglement aspects
in information theory).
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L4 non-commutative space

Let L2 ≡ H = (MΩ, ∥ · ∥2). On the subspace MΩ we can define the map:

∥ · ∥4 : MΩ → R,

aΩ, a ∈ M 7→ ∥aΩ∥4 = ∥∆1/4a∗aΩ∥1/22 .

The map ∥ · ∥4 is a well defined function (Ω separating) and is a norm. Subadditivity
follows from the inequality:(

∆1/4b∗aΩ,∆1/4b∗aΩ
)
≤ ∥∆1/4a∗aΩ∥2∥∆1/4b∗bΩ∥2 = ∥aΩ∥24∥bΩ∥24.

Let us define the inclusion map:

ι : (MΩ, ∥ · ∥4) → (L2, ∥ · ∥2)
aΩ 7→ aΩ.

It is a continuous inclusion:

∥ι(aΩ)∥2 = (aΩ, aΩ)1/2 = (a∗aΩ,Ω)1/2 = (∆1/4a∗aΩ,Ω)1/2 ≤ ∥∆1/4a∗aΩ∥1/22 = ∥aΩ∥4.
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L4 non-commutative space

We can consider the closure L4 := (MΩ, ∥ · ∥4) and the extension (by continuity) of the
inclusion:

ι̂ : L4 → L2

ψ = L4 − lim
n→∞

ψn, ψn ∈ MΩ 7→ ι̂(ψ) := L2 − lim
n→∞

ι(ψn) = L2 − lim
n→∞

ψn.

Is ι̂ injective?
We can prove:

Proposition

Let be anΩ a Cauchy sequence in L4. Then, the sequence of vectors ∆1/4a∗nanΩ is
Cauchy in L2.

We now want to prove that, if anΩ → 0 in L2 and anΩ is Cauchy in L4, then
Ψ = L4 − lim anΩ = 0. By the proposition, this is equivalent to show that
Ψ′ = L2 − lim∆1/4a∗nanΩ = 0.
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L4 non-commutative space

We show that the vector ψ′ is orthogonal to the dense set of vectors generated acting on
Ω with M̃ ⊂ M′, the subset of analytic elements:

|(b′Ω,Ψ′)| = lim
n→∞

|(b′Ω,∆1/4a∗nanΩ)|

= lim
n→∞

|(an∆1/4b′∆−1/4Ω, anΩ)|

= lim
n→∞

|(∆1/4b′∆−1/4anΩ, anΩ)|

≤ lim
n→∞

∥∆1/4b′∆−1/4∥op∥anΩ∥2 = 0.

This concludes the proof.
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