
New modular Hamiltonians

New modular Hamiltonians

Markus B. Fröb
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Tomita–Takesaki modular theory

Tomita–Takesaki modular theory (1/2)

Tomita–Takesaki theory gives information on structure of von Neumann algebra of
operators A ⊂ B(H) acting on Hilbert space H, given a cyclic and separating vector
Ω ∈ H
Tomita operator S is the closure of the map S0 : aΩ → a†Ω for a ∈ A

Polar decomposition S = J∆ 1
2 gives positive modular operator ∆ = S†S ≥ 0 and

antilinear modular conjugation J
Modular flow σs(a) = ∆isa ∆−is ∈ A for a ∈ A

State ω defined by Ω is a thermal (KMS) state: ω(σs(a)b) = (Ω, σs(a)bΩ) satisfies
ω(σs−i(a)b) = ω(b σs(a)), with inverse temperature normalised to β = 1
Modular flow is an internal “time evolution”, with respect to which the state ω is
thermal
Both J and ∆ 1

2 map A to commutant A′ = {b ∈ B(H) : [b, a] = 0 ∀ a ∈ A}
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Tomita–Takesaki modular theory (2/2)

Relative Tomita operator SΦ|Ψ is closure of map aΦ 7→ a†Ψ for a ∈ A and cyclic and
separating vectors Φ, Ψ ∈ H, relative modular operator ∆Φ|Ψ and relative modular
conjugation JΦ|Ψ defined by polar decomposition SΦ|Ψ = JΦ|Ψ ∆1/2

Φ|Ψ
Application: Araki formula relates relative modular Hamiltonian ln ∆Φ|Ψ to relative
entropy: S(Φ∥Ψ) = −

(
Φ, ln ∆Φ|ΨΦ

)
(well-defined and finite)

Important case: Φ = uu′Ω and Ψ = vv ′Ω for unitary operators u, v ∈ A and u′, v ′ ∈ A′

commuting with u and v
⇒ ∆Φ|Ψ = u′v∆Ωv †(u′)† and S(Φ∥Ψ) = −

(
v †uΩ, ln ∆Ωv †uΩ

)
Relative entropy between two “excited” states relative to a “vacuum” state Ω can be
computed using only the modular Hamiltonian ln ∆Ω of the “vacuum” state, e.g., for
coherent state with u = u′ = v ′ = 1 and v = exp[iϕ(f )]
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Known modular Hamiltonians (1/5)

(Relative) modular Hamiltonian ln ∆Ω only known in
special cases
Minkowski vacuum state Ω and algebra A generated by
fields restricted to (right) Minkowski wedge
W1 = {x1 ≥

∣∣x0∣∣}: ln ∆Ω = iM01, the generator of
boosts
Modular conjugation maps fields between left and right
wedge
Result for arbitrary (Wightman) quantum fields,
including interacting ones

x

t

AA′

J

∆is

(Bisognano/Wichmann, On the duality condition for a Hermitian scalar field 1975,
On the duality condition for quantum fields 1976)
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Known modular Hamiltonians (2/5)

Minkowski vacuum state Ω and algebra A generated by
free massless scalar fields restricted to future lightcone
with tip (τ, 0): ln ∆Ω = 2π(D − τH), a linear
combination of time translations and dilations
Modular conjugation maps to past lightcone

x

t

A

A′

J

∆is

(Buchholz, On the structure of local quantum fields with non-trivial interaction 1977,
for τ = 0)
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Known modular Hamiltonians (3/5)

Minkowski vacuum state Ω and algebra A generated by
free massless scalar fields restricted to diamond of size ℓ
with center (τ, 0): ln ∆Ω = π

ℓ

[
(ℓ2 − τ2)H + 2τD + K

]
, a

linear combination of time translations, dilations and
special conformal transformations
Modular conjugation maps in future/past lightcone and
spacelike separated region

J

∆is

u v

J

J

(Hislop/Longo, Modular structure of the local algebras associated with the free
massless scalar field theory 1982,
Hislop, Conformal Covariance, Modular Structure, and Duality for Local Algebras in
Free Massless Quantum Field Theories 1988, for τ = 0)
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Known modular Hamiltonians (4/5)

Many examples for free, massless fermions and CFTs in 1+1 dimensions
(Casini/Huerta/Rehren/Hollands/Tonni/Peschel/...), Schwarzschild
(Kay/Sewell/Wald), de Sitter, see Fröb arXiv:2308.14797 for list
Massive fields (even free) much more complicated, various (unsuccessful) attempts:
Brunetti/Moretti arXiv:1009.4990: free massive bosons, approached the problem by
investigating the algebra on the boundary of the diamond (issue: leading term of the
near-boundary expansion is mass-independent, but subleading terms are not)
Longo/Morsella arXiv:2012.00565: free massive bosons, approached the problem by
generalizing the free-field modular Hamiltonian expressed using the stress tensor (issue:
candidate expression not symmetric with respect to certain scalar product)
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Known modular Hamiltonians (5/5)

Numerical approach (Bostelmann/Cadamuro/Minz arXiv:2209.04681): one component
of ln ∆Ω (acting on Cauchy data) is quite probably a mass-dependent multiplication
operator, which with increasing mass interpolates between the massless modular
Hamiltonian for diamonds and the mass-independent one for wedges
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Modular Hamiltonian for fermions of small mass (1/5)

Cadamuro/Fröb/Minz arXiv:2312.04629: algebra A of free fermions of small mass in
1+1 dimensions inside diamond of size ℓ, Minkowski vacuum state Ω
Simpler than bosons because fermion creation and annihilation operators are bounded
ln ∆Ω =

∑2
a,b=1

∫∫
Hab(x , y):ψa(x)ψb(y): dx dy (on Cauchy hypersurface t = 0)

Massless fermions: conformal result ln ∆Ω = π
ℓ

(
ℓ2H + K

)
, evaluating at t = 0 gives

H11(x , y) = −H22(x , y) = iπ
ℓ

(
ℓ2 − xy

)
δ′(x − y), H12(x , y) = H21(x , y) = 0

For free fermions with two-point function G: general formula H = − ln
(
G−1|V − 1

)
,

understood as equality between integral kernels on the interval V = [−ℓ, ℓ]
(Araki, On Quasifree States of CAR and Bogoliubov Automorphisms 1970,
Peschel, arXiv:cond-mat/0212631, Casini/Huerta arXiv:0903.5284)
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Modular Hamiltonian for fermions of small mass (2/5)

Two-point function of free fermions of mass m:
G11(x , y) = [G22(x , y)]∗ = 1

2πi

(
limϵ→0+ 1

x−y−iϵ + m|x−y | K1(m|x−y |)−1
x−y

)
,

G12(x , y) = [G21(x , y)]∗ = 1
2πim K0(m|x − y |)

Massless case diagonalizes: G11(x , y) = [G22(x , y)]∗ = 1
2πiPf 1

x−y + 1
2δ(x − y),

G12(x , y) = [G21(x , y)]∗ = 0
Explicit spectral decomposition of the massless case: GabΨ(k)

b (s) = λ(k)(s)Ψ(k)
a (s) with

generalized orthonormal eigenvectors Ψ(k)
a (s, x) = δk

a

√
ℓ
π (ℓ+ x)− 1

2 −is(ℓ− x)− 1
2 +is ,

s ∈ R, eigenvalues λ(1)(s) = λ(2)(−s) = (1 + e−2πs)−1 ∈ (0, 1)
(Koppelman/Pincus, Spectral representations for finite Hilbert transformations 1959)
Kernel of modular Hamiltonian Hab = −

∑2
k=1

∫
ln
(

1
λ(k)(s) − 1

)
Ψ(k)

a (s)Ψ(k)∗
b (s) ds

gives the correct result
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Modular Hamiltonian for fermions of small mass (3/5)

First-order perturbation: use resolvent calculus
ln
(
A−1 − 1

)
=
∫∞

0
[
(A + µ1)−1 − (1 − A + µ1)−1] dµ with A = G |V

δ ln
(
A−1 − 1

)
= −

∫∞
0

[
(A+µ1)−1δA(A+µ1)−1+(1−A+µ1)−1δA(1−A+µ1)−1

]
dµ

δA11 = δA22 = O
(
m2 ln m

)
, δA21 = −δA12 = m

2πi ln
(

m|x−y |
2 eγ

)
+ O

(
m3 ln m

)
H11(x , y) = [H22(x , y)]∗ = iπ ℓ2−xy

ℓ δ′(x − y) + O
(
m2 ln m

)
H12(x , y) = [H21(x , y)]∗ = 2πimℓK12(x , y) + O

(
m2 ln m

)
K12(x , y) = ln

(
mℓ ℓ2−x2

2ℓ µ
)

ℓ2−x2

2ℓ2 δ(x+y)− ℓ2−x2

2ℓ2 δ(x−y)+ 1
8ℓ2 |x − y |− 2ℓ2−x2−y2

8ℓ2 Pfµ 1
|x+y |

Generically a non-local operator, contrary to the wedge or massless fields
Agrees with numerical results for small mass (Bostelmann/Cadamuro/Minz in
preparation)
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Modular Hamiltonian for fermions of small mass (4/5)
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Figure: Massless integral kernel iH11(x , y)
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Modular Hamiltonian for fermions of small mass (5/5)

Relation with standard subspaces (Figliolini/Guido, On the type of second quantization
factors 1994, Longo arXiv:2111.11266)
Complex structure (I2 = −1, I† = −I) on one-particle Hilbert space H of real-valued
initial data (Majorana fermions) is I = −i(1 − 2G)
Orthogonal projector E on standard subspace L = EH is multiplication by
characteristic function of V , L is separating: L ∩ IL = {0} and cyclic: L + IL = H
Relation E = (1 + S)(1 + ∆)−1 to Tomita operator S and modular operator ∆ = S†S
(recall: S(h + Ik) = h − Ik for h, k ∈ L) ⇒ ln ∆ = 2 artanh(1 − E + IEI)
Define R = −I + IE + EI = I(1 − ∆)(1 + ∆)−1, with spectrum σ(R) ⊂ [−i, i]
⇒ ln ∆ = 2I arctan(R) by spectral calculus and artanh(iz) = i arctan(z) ∀ z ̸= ±i
Restriction to subspace fulfills (I ln ∆)|V = −2E arctan(R)E = −2 arctan(EIE ) and
with complex structure −2 arctan(EIE ) = 2 arctan[i(1 − 2G|V )] = −iHV
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Modular Hamiltonian for massless fermions on a cylinder (1/10)

Cadamuro/Fröb/Pérez-Nadal arXiv:2406.19360: algebra A of free massless fermions in
1+1 dimensions inside diamond of size ℓ on cylinder of size L > 2ℓ
Antiperiodic (Neveu–Schwarz) boundary conditions ψ(x + L) = −ψ(x): unique ground
state ωNS

(
ψ(f )[ψ(g)]†

)
= 1

2iL limϵ→0+
∫∫ L

0

[
f1(x)g∗

1 (y)
sin[ π

L (x−y−iϵ)] − f2(x)g∗
2 (y)

sin[ π
L (x−y+iϵ)]

]
dx dy

Periodic (Ramond) boundary conditions ψ(x + L) = ψ(x): four-parameter family of
quasi-free ground (zero-energy) states
ωR,h

(
ψ(f )[ψ(g)]†

)
= 1

2iL limϵ→0+
∫∫ L

0

[
f1(x)g∗

1 (y)
tan[ π

L (x−y−iϵ)] − f2(x)g∗
2 (y)

tan[ π
L (x−y+iϵ)]

]
dx dy +

∑2
a,b=1 hab

∫ L
0 fa(x) dx

∫ L
0 g∗

b (y) dy with h = h1+h2
2 1 + h1−h2

2

(
cosψ sinψ eiϕ

sinψ e−iϕ − cosψ

)
,

|hi | ≤ 1
2L for i ∈ {1, 2}, ϕ ∈ [0, 2π) and ψ ∈ [0, π]
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Modular Hamiltonian for massless fermions on a cylinder (2/10)
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Figure: Quasi-free zero-energy states with
h = α1 + β · σ, |α| + |β| ≤ 1

2L .
h1 and h2 are eigenvalues of h.

State is pure for |h1| = |h2| = 1
2L , mixed

otherwise
Pure states correspond to extreme points
of the double cone (two tips and rim), all
other points correspond to mixed states
Zero-temperature limit of thermal state
(white dot) has h1 = h2 = 0
Massless limit of massive vacuum (black
dot) has ϕ = ψ = π

2 and h2 = −h1 = 1
2L

Other black dots are zero-momentum
excitations of massive vacuum (one or two
chiralities)
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Modular Hamiltonian for massless fermions on a cylinder (3/10)

Computation of modular Hamiltonian and modular flow via spectral calculus
Stone’s formula for absolutely continuous spectrum:
dEA(µ) = 1

2πi limϵ→0+

[
RA(µ+ iϵ) − RA(µ− iϵ)

]
dµ with EA spectral measure of A,

RA(µ) = (A − µ1)−1 resolvent of A, limit taken in strong topology
Araki–Peschel–Casini–Huerta formula for modular flow inside V = [−ℓ, ℓ]:
∆itψ(f )Ω =

∫ 1
0

(
µ

1−µ

)it
dEG|V (µ)ψ(f )Ω = ψ(ft)Ω ⇔ ln ∆ = − ln

(
G−1|V − 1

)
Modular Hamiltonian ln ∆ obtained from derivative at t = 0
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Modular Hamiltonian for massless fermions on a cylinder (4/10)

Computation of resolvent via Riemann–Hilbert problem (Carleman’s method)
(Carleman, Über die Abelsche Integralgl. mit konstanten Integrationsgrenzen 1922)

Rewrite resolvent equation
[
G|V − µ1

]
R(µ)f = f as[

R(µ)f
]
1(x) = 1

µ

[
limy→0+ S1(x − iy) − f1(x)

]
and[

R(µ)f
]
2(x) = 1

µ

[
limy→0+ S2(x + iy) − f2(x)

]
with S = HR(µ)f

(Hf )(z) defined on CL \ [−ℓ, ℓ] with cylinder CL = S1 × R(
HNSf

)
a
(z) = 1

2iL
∫ ℓ

−ℓ
δa1f1(y)−δa2f2(y)

sin[ π
L (z−y)] dy(

HRf
)

a
(z) =

∫ ℓ
−ℓ

[
1

2iL
δa1f1(y)−δa2f2(y)

tan[ π
L (z−y)] +

∑2
b=1 habfb(y)

]
dy

Convolution with two-point function obtained as boundary value:
(G|V f )1(x) = limy→0+(Hf )(x − iy) and (G|V f )2(x) = limy→0+(Hf )(x + iy)
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Modular Hamiltonian for massless fermions on a cylinder (5/10)

Determine function F on cylinder CL = S1 × R such that (Ramond boundary
conditions):
F is analytic on CL \ [−ℓ, ℓ],

lim
z→±ℓ

[
(z ∓ ℓ)F (z)

]
= 0, where the limit is taken in CL \ Mℓ,α for arbitrary but fixed

angle α ∈
(
0, π

2
)

and Mℓ,α ≡ {z : |ℜz | + |ℑz | cotα ≤ ℓ} is a rhombus with angle 2α at
the points z = ±ℓ,
limy→0+

[
F (x − iy) − F (x + iy)

]
= (f1(x),−f2(x)) for x ∈ [−ℓ, ℓ],

lim
y→∞

[
ĥ+F (x + iy) − ĥ−F (x − iy)

]
= 0, where ĥ± ≡

(
h11 ± 1

2L −h12
h21 −h22 ± 1

2L

)
.

Solution is unique: F (z) = (Hf )(z)
Similar characterization for Neveu–Schwarz boundary conditions
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Modular Hamiltonian for massless fermions on a cylinder (6/10)

For S = HR(µ)f same conditions except jump

limy→0+

[
S1(x − iy) − S1(x + iy)

]
=
[
RG(µ)f

]
1(x) = 1

µ

[
limy→0+ S1(x − iy) − f1(x)

]
limy→0+

[
S2(x − iy)−S2(x +iy)

]
= −

[
RG(µ)f

]
2(x) = − 1

µ

[
limy→0+ S2(x + iy) − f2(x)

]
Non-standard RH problem, since function itself appears on RHS of jump condition
Let M(z) a fixed analytic function with jump limy→0+

M(x−iy)
M(x+iy) = 1 − µ−1, then

A1 = S1M and A2 = S2M−1 satisfy standard RH problem with jump
limy→0+

[
A1(x − iy) − A1(x + iy)

]
= 1

1−µ f1(x) limy→0+ M(x − iy) = a1(x) and

limy→0+

[
A2(x − iy) − A2(x + iy)

]
= − 1

1−µ f2(x) limy→0+ M−1(x + iy) = −a2(x)

Magic happens: we know that the unique solution is A(z) = (Ha)(z)!
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Modular Hamiltonian for massless fermions on a cylinder (7/10)

Explicit solution for resolvent (Ramond boundary conditions):
RR

ab(µ; x , y) = − 1−2µ
2µ(1−µ)δabδ(x − y) +

1
µ(1−µ)

[
1

2iL

(
1 0
0 −1

)
ab

Pf cot
[

π
L (x − y)

]
+ gab(µ)

](
1 − 1

µ

) i
2π

[Ωa(x)−Ωb(y)]

Ω1(x) = −Ω2(x) = ln
(

sin[ π
L (ℓ+x)]

sin[ π
L (ℓ−x)]

)
,

g(µ) =
2h−trh 1+ (1+2Lh1)(1+2Lh2)

4L

(
1− 1

µ

)2w
1− (1−2Lh1)(1−2Lh2)

4L

(
1− 1

µ

)−2w
1

1−4L2h1h2+ 1
2 (1+2Lh1)(1+2Lh2)

(
1− 1

µ

)2w + 1
2 (1−2Lh1)(1−2Lh2)

(
1− 1

µ

)−2w , w = ℓ/L

Agrees with Neumann series solution R(µ) = −µ−1
1 − µ−2G|V + O

(
µ−3)

Similar expression for Neveu–Schwarz boundary conditions
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Modular Hamiltonian for massless fermions on a cylinder (8/10)

Modular flow ∆itψ(f )Ω = ψ(ft)Ω with ft,a(x) =
∑2

b=1
∫ ℓ

−ℓ Kab(t, x , y)fb(y) dy
Neveu–Schwarz boundary conditions: local flow with integral kernel

KNS
ab (t, x , y) = 2π

L
sinh(πt)

sin[ π
L (x−y)]δ

[
2πt − Ωa(x) + Ωa(y)

](1 0
0 −1

)
ab

Ramond boundary conditions: generically non-local flow with integral kernel
KR,h

ab (t, x , y) = KNS
ab (t, x , y) + 1

4ℓ sinh(πt) Pf 1
sinh
[

L
4ℓ

[
2πt−Ωa(x)+Ωb(y)

]]
×
[(

1+2Lh1
1−2Lh1

) i
[

2πt−Ωa(x)+Ωb (y)
]

L
4πℓ

(
1 + cosψ sinψ eiϕ

sinψ e−iϕ 1 − cosψ

)
ab

+
(

1+2Lh2
1−2Lh2

) i
[

2πt−Ωa(x)+Ωb (y)
]

L
4πℓ

(
1 − cosψ − sinψ eiϕ

− sinψ e−iϕ 1 + cosψ

)
ab

]
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Modular Hamiltonian for massless fermions on a cylinder (9/10)

(Anti-)Local limit of flow for pure states also for Ramond boundary conditions
States at the tip:
limh1=h2→± 1

2L
KR,h

ab (t, x , y) = KNS
ab (t, x , y) ± 2πi

L sinh(πt) δ
[
2πt − Ωa(x) + Ωa(y)

]
δab

States at the rim: limh1=−h2→± 1
2L

KR,h
ab (t, x , y) =

KNS
ab (t, x , y) ± 2πi

L sinh(πt) δ
[
2πt − Ωa(x) + Ωb(y)

]( cosψ sinψ eiϕ

sinψ e−iϕ − cosψ

)
ab

Recall that Ω1(x) = −Ω2(x) = ln
(

sin[ π
L (ℓ+x)]

sin[ π
L (ℓ−x)]

)
Need distributional limit:
lima→0

[
ait Pf 1

sinh(πt) − ia−1
a+1δ(t)

]
= lima→∞

[
ait Pf 1

sinh(πt) − ia−1
a+1δ(t)

]
= 0
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Modular Hamiltonian for massless fermions on a cylinder

(10/10)
Modular Hamiltonian obtained by expanding for small t
Neveu–Schwarz boundary conditions:

HNS
ab (x , y) = 2iL sin2( π

L ℓ)−sin( π
L x) sin( π

L y)
sin( 2πℓ

L ) δ′(x − y)
(

1 0
0 −1

)
ab

Ramond boundary conditions: HR,h
ab (x , y) = HNS

ab (x , y) + iπ
4ℓ Pf 1

sinh
[

L
4ℓ

[
Ωa(x)−Ωb(y)

]]
×
[(

1+2Lh1
1−2Lh1

)−i
[

Ωa(x)−Ωb (y)
]

L
4πℓ

(
1 + cosψ sinψ eiϕ

sinψ e−iϕ 1 − cosψ

)
ab

+
(

1+2Lh2
1−2Lh2

)−i
[

Ωa(x)−Ωb (y)
]

L
4πℓ

(
1 − cosψ − sinψ eiϕ

− sinψ e−iϕ 1 + cosψ

)
ab

]
Again (anti-)local limit for pure states
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Thank you for your attention

Questions?
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