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A — Preamble (A.1)

This talk is based on the following articles:

1 J. Tolksdorf, RV, Quantum physics, fields and closed timelike curves:
The D-CTC condition in quantum field theory
Commun. Math. Phys. 357, 319-351 (2018)

2 J. Tolksdorf, RV, The D-CTC condition is generically fulfilled in classical
(non-quantum) statistical systems
Found. Phys. 51, 93 (2021)

3 A. Much, RV, Superluminal local operations in quantum field theory:
A ping-pong ball test
Universe 9, 447 (2023)

Rainer Verch 2 / 27



A — Preamble (A.2)

Statistical (Physical) Theories

Set of random variables X ∈ X

Describe observations and measurements by correlation functions C ∈ C

C(X1,X2, . . . ,Xn) ∈ C (Xj ∈ X )

E.g. expectation values, (conditional) probabilities

Typically:
X ↔ set of observables C ↔ set of states

Positive probabilities and multi-linearity in the Xj =⇒

X ' A a *-algebra

C ' S ⊂ A∗+ positive linear functionals onA
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A — Preamble (A.3)

Example 1 – classical statistical theories

A = C0(T ) commutative algebra , T = topological space

X ↔ f : T → C

C(X1,X2, . . . ,Xn) = C(f1, f2, . . . , fn) = 〈f1 · f2 · · · fn〉µ

=

∫
T

f1(ξ1) f2(ξ2) · · · fn(ξn)dµ(ξ1, ξ2, . . . , ξn)

µ = any probability measure on (the Borel sets of) T

〈f〉µ =

∫
T

f dµ is a state on A = C0(T )

〈f∗f〉µ ≥ 0 with f∗ = f , 〈1〉µ = 1

set of states S ↔ set of probability measures on (Borel sets of) T
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A — Preamble (A.4)

Example 2 – quantum statistical theories

A = a non-commutative *-algebra (or C∗-algebra) , with unit 1

X ↔ A ∈ A

C(X1,X2, . . . ,Xn) = C(A1,A2, . . . ,An) = 〈A1 · A2 · · ·An〉ω
= ω(A1 · A2 · · ·An)

ω = any (sufficiently regular) state on A, where a state is a linear functional
ω : A → C with

ω(A∗A) ≥ 0 and ω(1) = 1

Standard example in quantum physics:

A ⊂ B(H) , ω(A) = 〈A〉% = Tr(%A) , % = any density matrix

set of states S ↔ set of density matrices on H
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A — Preamble (A.5)

Some key points:

In both classical and quantum case:

The set of states S is closed under convex combinations and
(suitable types of) limits.

A convex combination of states ω1, . . . , ωn in S with weights λ1, . . . λn ≥ 0
is the state

λ1ω1 + λ2ω2 + . . .+ λnωn ∈ S (λ1 + . . .+ λn = 1)

The theorems by Gelfand, Naimark, Segal and Wightman establish
correspondences

(1) set of all states on A ↔ set of all Hilbert space
representations of A for C∗-algebras

(2) A = C0(T ) for commutative C∗-algebra A X
then: set of pure states on A ↔ set of points ξ ∈ T
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1 — Introduction (1.1)

Algebraic /quantum/ field theory on a fixed spacetime manifold

M = a (4-dim) spacetime manifold, e.g. Minkowski spacetime
(or any globally hyperbolic spacetime)

J±(p) = set of all q ∈ M on any future(+)/past(–) directed worldline
emanating from p ∈ M

J±(S) =
⋃
p∈S

J±(p) for S ⊂ M

O = open interior of J+(p) ∩ J−(p′) for p′ ∈ J+(p) “double cone”

  

picture source: F. Bellaiche,
  www.quantum-bits.org

picture source: T. Jacobson, M. Visser,
              arXiv: 1812.01598v1
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1 — Introduction (1.2)

In algebraic quantum field theory (or algebraic classical field theory), there is
a local structure for the observables:

A = *-algebra of (or: generated by) observables,

formed by *-subalgebras
A(O) = algebra of observables that can be

measured in the spacetime region O

with the properties:

O1 ⊂ O2 =⇒ A(O1) ⊂ A(O2)

O2 ∩ J±(O1) = ∅ =⇒ [A1,A2] = 0 for all Aj ∈ A(Oj)

For every symmetry (isometry) L : M → M of the spacetime, there is an
automorphism αL : A → A so that

αL(A(O)) = A(L(O)) and αL1 ◦ αL2 = αL1L2

The algebra A may be non-commutative (quantum case) or commutative
(classical case)
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1 — Introduction (1.3)

Typical situation in QFT:

A(O) are weakly closed *-subalgebras of B(H) (“von Neumann
algebras”)

Set of (physical) states ω ∈ S given by density matrices % on H:

ω(A) = 〈A〉% = Tr(%A)

αL(A) = ULAU∗L with continuous unitary group repr L 7→ UL

There is a unit vector ψ0 ∈ H with ULψ0 = ψ0

static and geodesic time-translations have positive generators: I.e. if
Ut = eitH implements time-shifts of an inertial time-coordinate, then
H ≥ 0.

This is the setting we will adopt in the following, mainly for M = Minkowski
spacetime.
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2 — The D-CTC Condition by David Deutsch, 1991 (2.1)

A very simple quantum circuit

  T 

System part  A System part  B

View this as bipartite quantum system with
Hilbert spaces HA and HB

H = HA ⊗HB

U : H → H unitary

−T symbolizes “step backward in time”, meaning that partial state of full
system after applying U is the same as before applying U on system part B

Given a unitary U on H and a partial state (density matrix) %A on system part
A, a state (density matrix) % of the full system is said to fulfill the D-CTC
condition if the restriction of % to system part A coincides with %A and if
U%U∗ and % agree when restricted to system part B.
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2 — The D-CTC Condition (2.2)

Given a unitary U on H and a partial state (density matrix) %A on system part
A, a state (density matrix) % of the full system is said to fulfill the D-CTC
condition if the restriction of % to system part A coincides with %A and if
U%U∗ and % agree when restricted to system part B.

Given: U unitary on H, %A density matrix on HA

A density matrix % on H fulfills the D-CTC condition if

TrB% = %A ⇔ Tr(%(a⊗ 1)) = TrHA(%Aa)

TrAU%U∗ = TrA% ⇔ Tr(%(1⊗ b)) = Tr(U%U∗(1⊗ b))

David Deutsch has shown: If HA and HB are finite dimensional, then for any
given U and %A there is a % fulfilling the D-CTC condition.

His argument rests on compactness of the state space = set of density
matrices for finite-dimensional Hilbert spaces. This permits to employ a
fixed-point argument.
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2 — The D-CTC Condition (2.3)

Some (including David Deutsch) have claimed that D-CTC provides a form
(or analog) of a time travel scenario —

“...quantum mechanics therefore allows for causality violation without
paradoxes whilst remaining consistent with relativity”

Ringbauer et al., Nature Communications 5 (2014) 4145

...it has also recently gained popularity in pop culture...

 Tony Stark – aka Iron Man

  dixit:

“Quantum fluctuation messes

with the Planck scale, which

then triggers the 

Deutsch Proposition”
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2 — The D-CTC Condition (2.4)

Questions:

Is the D-CTC condition characteristic for quantum processes involving
CTCs?

Or is it merely an analogy of certain aspects of CTCs?

Can the claim by Ringbauer et al. be substantiated or refuted?

The original version of the D-CTC condition makes no reference to spacetime
structure (deliberately). To check on the previous questions, translate the
setting into algebraic quantum field theory on Minkowski spacetime M with its
built-in local and causal structure of the local observable algebras A(O).
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2 — The D-CTC Condition (2.5)

In algebraic QFT:
Bipartite systems are represented by operator algebras A(OA) and A(OB) for
causally separated spacetime regions OA and OB

D-CTC Problem: Given a unitary U on H and a density matrix state

ωA(a) = Tr(%Aa) on A(OA) ,

is there a density matrix state ω(c) = Tr(%c) on B(H) whose partial state on
A(OA) agrees with ωA and which is U-invariant in restriction to A(OB), i.e.

ω(a) = ωA(a) on A(OA) and ω(U∗bU) = ω(b) on A(OB)) ?
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2 — The D-CTC Condition (2.6)

Theorem 1 (JT & RV, CMP 357)
Assume that the QFT fulfills the split property (⇔ density matrix states ωA and
ωB are always restrictions of a density matrix state on H without correlations
across A(OA) and A(OB)).

Then, given any unitary U on H and any density matrix state ωA(a) = Tr(%Aa)
on A(OA), there is an approximate solution to the D-CTC problem in the
following sense:

Given arbitrary R > 0 (large) and ε > 0 (small), there is a density matrix state
ω = ωR,ε on B(H) such that

ω(a) = ωA(a) (a ∈ A(OA))

|ω(U∗bU)− ω(b)| < ε (b ∈ A(OB) , ||b|| < R)

This indicates that the D-CTC condition is not characteristic for occurrence of
CTCs since it can be fulfilled to arbitrary precision in QFT on Minkowski
spacetime. The proof rests on convexity and approximate completeness
(relates to insisting on density matrix states) of the state space in QFT.
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2 — The D-CTC condition (2.7)

Operations

Given: Statistical theory, with observable algebra A, set of states S

An operation is a convex (and weak*-continuous) map τ : S → S

Typical example: If U ∈ A is unitary, then

τU : ω 7→ ωU , ωU(a) = ω(U∗aU)

is an operation (unitary operation).

Definition of operation applies both for non-commutative
or commutative A

If A is commutative, then unitary operations are trivial: ωU = ω for every
unitary U ∈ A.

Concept of operation defined here is non-selective, or probability
preserving. Could generalize to selective operations. That would include
measurements.
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2 — The D-CTC Condition (2.8)

Formulating the D-CTC condition for classical statistical systems, with the
following given data:

(i) T = TA × TB with locally compact Hausdorff spaces TA, TB;
A = Cb(T ) , AA = Cb(TA) , AB = Cb(TB)

(ii) An operation τ : S → S (S = states(A))

(iii) ωA ∈ SA (SA = states(AA))

We say that the D-CTC condition can be fulfilled in the system if for any
given τ and for any given ωA ∈ SA there is some ω ∈ S so that

ω(fA ⊗ 1B) = ωA(fA) (fA ∈ AA = Cb(TA))

τ(ω)(1A ⊗ fB) = ω(1A ⊗ fB) (fB ∈ AB = Cb(TB))

Also want: ω is a probability measure if ωA is prob. measure and if τ maps
prob. measures to prob. measures (always fulfilled if T is compact).
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2 — The D-CTC Condition (2.9)

Theorem 2 (JT & RV, Found. Phys. 51)
Assumptions:

? TA and TB are locally compact metric spaces,

? τ maps probability measures to probability measures,

? ωA = µA is a tight probability measure,

? there is a probability measure µ◦B on TB so that

τn(µA × µ◦B) , n ∈ N , is tight

(µA × µ◦B is the product measure)

Then the D-CTC condition can be fulfilled for the given ωA and τ and the state
ω fulfilling it is given by a Borel probability measure µ.

A sequence of Borel probability measures {µn}n∈N is called tight if:

For any ε > 0 there is a compact set K ⊂ T so that

µn(T \K) ≤ ε (n ∈ N)
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3 — Impossible measurements/operations in QFT (3.1)

For a QFT with local observable algebras A(O):

If OA and OB are causally separated (OB ∩ J±(OA) = ∅) then any unitary
operation τU with U ∈ A(OA) has no effect on A(OB):

ωU(b) = ω(U∗BU) = ω(U∗Ub) = ω(b) (b ∈ A(OB))

Therefore, such τU is called a local operation, localized in OA.

Can all such local operations be physically performed?
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3 — Impossible measurements/operations in QFT (3.2)

If they could – for any unitaries in the local observable algebras – that may
lead to superluminal signalling (a violation of causality) as pointed out by
Raphael Sorkin (1993):

Consider 3 spacetime regions, named after experimenters carrying out
measurements/operations therein:
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3 — Impossible measurements/operations in QFT (3.3)

Since OAlice and OCharlie are causally separated, Charlie cannot know

by measuring in OCharlie if Alice has carried out a unitary operation

τUAlice with UAlice ∈ A(OAlice):

τUAlice(ω)(c) = ω(U∗AlicecUAlice) = ω(c) for all c ∈ A(OCharlie) , ω ∈ S

But if first Alice carries out a unitary operation, and then Bob, we have:

τUBob ◦ τUAlice(ω)(c) = ω(U∗AliceU
∗
BobcUBobUAlice) for all c ∈ A(OCharlie)

In general, UBob ∈ A(OBob) won’t commute with all c ∈ A(OCharlie)

nor with all UAlice ∈ A(OAlice) since

OAlice causally overlaps with OBob and OBob causally overlaps with OCharlie
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3 — Impossible measurements/operations in QFT (3.4)

Hence, one can choose UAlice, UBob, c and ω such that

τUBob ◦ τUAlice(ω)(c) 6= τUBob(ω)(c)

This means, Charlie can determine by measuring the observable c in OCharlie

if Alice has carried out an operation τUAlice in OAlice, if Bob carries out a
suitable operation τUBob in OBob.

This would mean a superluminal transfer of information since OAlice and
OCharlie are causally separated.

Examples are given in: R. Sorkin (1993); L. Bosten, I. Jubb, G. Kells, PRD
104 (2021); I. Jubb, PRD 105 (2022).

The issue is that τUBob amounts to a superluminal communication channel
between OAlice and OCharlie which is unphysical.

But such superluminal communication channels arise also in classical field
theory, e.g. by local, kinematical symmetries.
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3 — Impossible measurements/operations in QFT (3.5)

Theorem 3 (AM & RV, Universe (2023))
Let A(O) be the local observable algebras of the classical or the quantized
Klein-Gordon field on Minkowski spacetime M, with field equation
(�+ m2)ϕ = 0.

Then there are states ω and operations τAlice and τBob together with
observables c ∈ A(OCharlie) so that

τBob ◦ τAlice(ω)(c) 6= τBob(ω)(c)

τAlice and τBob are localized in OAlice and OBob, i.e. τBob(ω̃)(d) = ω̃(d) if
d ∈ A(Od ) with Od causally separated from OBob.

Specifically, τBob can be chosen so that it corresponds to an instantaneous
rotation around the x3-axis by 180 degrees, flipping O(−) ↔ O(+) (local
kinematical symmetry).

For the quantized Klein-Gordon field, there is a unitary UBob ∈ A(OBob) so
that

τBob(ω)( . ) = ω(U∗Bob .UBob)
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3 — Impossible measurements/operations in QFT (3.6)

τBob has the effect of flipping O(−) instantaneously to O(+) and vice versa.
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3 — Impossible measurements/operations in QFT (3.7)

Remarks

The approach of describing classical field theory in terms of a local
algebra framework has been developed by Brunetti, Duetsch,
Fredenhagen and Rejzner (and co-authors). See:

K. Rejzner: Perturbative Algebraic Quantum Field Theory, Springer,
2016

M. Duetsch: From Classical Field Theory to Perturbative Quantum Field
Theory, Birkhäuser, 2019

In the classical case, τBob and τAlice are not implemented by unitaries in
the local algebras since the local algebras are commutative — they are
formed by (certain) functions on the phase space.

The generator of τBob can be obtained with the help of a Peierls bracket,
generalising the Poission bracket of Hamiltonian mechanics.
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4 — Conclusion (4.1)

Original setting for D-CTC condition does not refer to spacetime
structure; does not relate to CTCs in the sense of GR

Thm 1 shows that D-CTC is not characteristic for occurrence of CTCs in
the sense of GR.

Thm 2 shows that D-CTC can always be fulfilled in classical
(non-quantum) statistical systems – it is more a generalized ergodic
theorem than related to quantum mechanics.

Put bluntly: The D-CTC condition has nothing to with quantum
mechanics (uncertainty relations, interference, entanglement) but only
relates to the basic statistical setting of quantum mechanics.

The impossible measurements/impossible operations scenario does not only
arise in QFT, but also in classical field theory.

There are “superluminal” local operations also in classical field theory, e.g. by
local kinematical symmetries. Not all local operations in quantum or classical
field theory can be “actively” carried out.
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4 — Conclusion (4.2)

We have carried out the ping-pong ball test∗ on “D-CTC” and “impossible
operations/measurements” (and it failed in both cases) —

When someone presents a paradox as being rooted in quantum physics,

replace the term quantum mechanical particle by ping-pong ball everywhere.

If the paradox persists, it is unrelated to quantum physics.

But this does not mean that “D-CTC” and “impossible
operations/measurements” are not interesting. They point to issues that need
to be better understood in QFT.

The “impossible measurements scenario” can be avoided in more recent
approaches towards QFT measurements:
C.J. Fewster, RV, Comm. Math. Phys. 378 (2020);
H. Bostelmann, C.J. Fewster, M. Ruep, PRD 103 (2021);
M. Papageorgiou, D. Fraser, Found. Phys. 53 (2024)

∗ Due to Reinhard Werner (oral version)
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