Modular Structure and Inclusions of Twisted Araki-Woods Algebras

Gandalf Lechner
joint work with Ricardo Correa da Silva
arXiv:2212.02298

UC Berkeley Probabilistic Operator Algebra Seminar January 30, 2023

Plan of the talk

(1) Define twisted Araki-Woods Algebras $\mathcal{L}_{T}(H)$ on T-twisted Fock spaces (mostly review)

Plan of the talk

(1) Define twisted Araki-Woods Algebras $\mathcal{L}_{T}(H)$ on T-twisted Fock spaces (mostly review)
(2) Motivation and questions (background: mathematical physics, QFT)

Plan of the talk

(1) Define twisted Araki-Woods Algebras $\mathcal{L}_{T}(H)$ on T-twisted Fock spaces (mostly review)
(2) Motivation and questions (background: mathematical physics, QFT)
(3) Standardness and modular data

Plan of the talk

(1) Define twisted Araki-Woods Algebras $\mathcal{L}_{T}(H)$ on T-twisted Fock spaces (mostly review)
(2) Motivation and questions (background: mathematical physics, QFT)
(3) Standardness and modular data
(1) Inclusions of twisted Araki-Woods algebras ("twisted subfactors")

Construction of $\mathcal{L}_{T}(H)$ on twisted Fock spaces

[Bożejko/Speicher '94; Jørgensen/Schmitt/Werner '95]

- Setup: Fix Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.

Construction of $\mathcal{L}_{T}(H)$ on twisted Fock spaces

[Bożejko/Speicher '94; Jørgensen/Schmitt/Werner '95]

- Setup: Fix Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.
- Idea: New scalar products $\langle\cdot, \cdot\rangle_{T, n}:=\left\langle\cdot, P_{T, n} \cdot\right\rangle$ on $\mathcal{H}^{\otimes n}$.

Construction of $\mathcal{L}_{T}(H)$ on twisted Fock spaces

[Bożejko/Speicher '94; Jørgensen/Schmitt/Werner '95]

- Setup: Fix Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.
- Idea: New scalar products $\langle\cdot, \cdot\rangle_{T, n}:=\left\langle\cdot, P_{T, n} \cdot\right\rangle$ on $\mathcal{H}^{\otimes n}$.
- Notation:

$$
T_{k}:=1_{\mathcal{H}}^{\otimes(k-1)} \otimes T \otimes 1_{\mathcal{H}}^{\otimes(n-k-1)} \in \mathcal{B}\left(\mathcal{H}^{\otimes n}\right), \quad 1 \leq k \leq n-1
$$

- Kernels:

$$
\begin{aligned}
P_{T, 1} & =1, \quad P_{T, 2}=1+T, \quad P_{T, 3}=1+T_{1}+T_{2}+T_{1} T_{2}+T_{2} T_{1}+T_{2} T_{1} T_{2}, \\
P_{T, n+1} & =\left(1 \otimes P_{T, n}\right)\left(1+T_{1}+T_{1} T_{2}+\ldots+T_{1} \cdots T_{n}\right) .
\end{aligned}
$$

Construction of $\mathcal{L}_{T}(H)$ on twisted Fock spaces

[Bożejko/Speicher '94; Jørgensen/Schmitt/Werner '95]

- Setup: Fix Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.
- Idea: New scalar products $\langle\cdot, \cdot\rangle_{T, n}:=\left\langle\cdot, P_{T, n} \cdot\right\rangle$ on $\mathcal{H}^{\otimes n}$.
- Notation:

$$
T_{k}:=1_{\mathcal{H}}^{\otimes(k-1)} \otimes T \otimes 1_{\mathcal{H}}^{\otimes(n-k-1)} \in \mathcal{B}\left(\mathcal{H}^{\otimes n}\right), \quad 1 \leq k \leq n-1
$$

- Kernels:

$$
\begin{aligned}
P_{T, 1} & =1, \quad P_{T, 2}=1+T, \quad P_{T, 3}=1+T_{1}+T_{2}+T_{1} T_{2}+T_{2} T_{1}+T_{2} T_{1} T_{2}, \\
P_{T, n+1} & =\left(1 \otimes P_{T, n}\right)\left(1+T_{1}+T_{1} T_{2}+\ldots+T_{1} \cdots T_{n}\right) .
\end{aligned}
$$

Definition

- Twist: $T=T^{*},\|T\| \leq 1, P_{T, n} \geq 0$ for all n.
- Strict twist: In addition $\operatorname{ker} P_{T, n}=\{0\}$.

Construction of $\mathcal{L}_{T}(H)$ on twisted Fock spaces

[Bożejko/Speicher '94; Jørgensen/Schmitt/Werner '95]

- Setup: Fix Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.
- Idea: New scalar products $\langle\cdot, \cdot\rangle_{T, n}:=\left\langle\cdot, P_{T, n} \cdot\right\rangle$ on $\mathcal{H}^{\otimes n}$.
- Notation:

$$
T_{k}:=1_{\mathcal{H}}^{\otimes(k-1)} \otimes T \otimes 1_{\mathcal{H}}^{\otimes(n-k-1)} \in \mathcal{B}\left(\mathcal{H}^{\otimes n}\right), \quad 1 \leq k \leq n-1
$$

- Kernels:

$$
\begin{aligned}
P_{T, 1} & =1, \quad P_{T, 2}=1+T, \quad P_{T, 3}=1+T_{1}+T_{2}+T_{1} T_{2}+T_{2} T_{1}+T_{2} T_{1} T_{2}, \\
P_{T, n+1} & =\left(1 \otimes P_{T, n}\right)\left(1+T_{1}+T_{1} T_{2}+\ldots+T_{1} \cdots T_{n}\right) .
\end{aligned}
$$

Definition

- Twist: $T=T^{*},\|T\| \leq 1, P_{T, n} \geq 0$ for all n.
- Strict twist: In addition $\operatorname{ker} P_{T, n}=\{0\}$.

Definition

T-twisted Fock space

$$
\mathcal{F}_{T}(\mathcal{H}):=\bigoplus_{n \geq 0} \overline{\mathcal{H}^{\otimes n} / \operatorname{ker} P_{T, n}}(\cdot, \cdot\rangle_{T, n}
$$

Examples

- $T=F: v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_{F}(\mathcal{H})=$ Bose Fock space

Examples

- $T=F: v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_{F}(\mathcal{H})=$ Bose Fock space
- $T=q F,-1 \leq q \leq 1: \mathcal{F}_{q F}(\mathcal{H})=q$-Fock space

Examples

- $T=F: v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_{F}(\mathcal{H})=$ Bose Fock space
- $T=q F,-1 \leq q \leq 1: \mathcal{F}_{q F}(\mathcal{H})=q$-Fock space
- $T=0: \mathcal{F}_{0}(\mathcal{H})=$ full Fock space
- $T=-1: \mathcal{F}_{-1}(\mathcal{H})=\mathbb{C} \oplus \mathcal{H}$.

Examples

- $T=F: v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_{F}(\mathcal{H})=$ Bose Fock space
- $T=q F,-1 \leq q \leq 1: \mathcal{F}_{q F}(\mathcal{H})=q$-Fock space
- $T=0: \mathcal{F}_{0}(\mathcal{H})=$ full Fock space
- $T=-1: \mathcal{F}_{-1}(\mathcal{H})=\mathbb{C} \oplus \mathcal{H}$.

Theorem ([Jørgensen/Schmitt/Werner; Bożejko/Speicher])
Let $T=T^{*} \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H}),\|T\| \leq 1$.
(1) If $\|T\| \leq \frac{1}{2}$, then T is a strict twist.
(2) If $T \geq 0$, then T is a strict twist.
(3) If

$$
T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2} \quad \text { (Yang-Baxter equation) }
$$

then T is a twist (strict twist if $\|T\|<1$).

Examples

- $T=F: v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_{F}(\mathcal{H})=$ Bose Fock space
- $T=q F,-1 \leq q \leq 1: \mathcal{F}_{q F}(\mathcal{H})=q$-Fock space
- $T=0: \mathcal{F}_{0}(\mathcal{H})=$ full Fock space
- $T=-1: \mathcal{F}_{-1}(\mathcal{H})=\mathbb{C} \oplus \mathcal{H}$.

Theorem ([Jørgensen/Schmitt/Werner; Bożejko/Speicher])

Let $T=T^{*} \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H}),\|T\| \leq 1$.
(1) If $\|T\| \leq \frac{1}{2}$, then T is a strict twist.
(2) If $T \geq 0$, then T is a strict twist.
(3) If

$$
T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2} \quad \text { (Yang-Baxter equation) }
$$

then T is a twist (strict twist if $\|T\|<1$).

An example from QFT ("S-Matrix Model")

$\mathcal{H}=L^{2}(\mathbb{R}, d \theta), s: \mathbb{R} \rightarrow S^{1}, s(-\theta)=\overline{s(\theta)}$. Then

$$
(T f)\left(\theta_{1}, \theta_{2}\right)=s\left(\theta_{1}-\theta_{2}\right) \cdot f\left(\theta_{2}, \theta_{1}\right) \quad \text { is a unitary twist. }
$$

Examples

- $T=F: v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_{F}(\mathcal{H})=$ Bose Fock space
- $T=q F,-1 \leq q \leq 1: \mathcal{F}_{q F}(\mathcal{H})=q$-Fock space
- $T=0: \mathcal{F}_{0}(\mathcal{H})=$ full Fock space
- $T=-1: \mathcal{F}_{-1}(\mathcal{H})=\mathbb{C} \oplus \mathcal{H}$.

Theorem ([Jørgensen/Schmitt/Werner; Bożejko/Speicher])

Let $T=T^{*} \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H}),\|T\| \leq 1$.
(1) If $\|T\| \leq \frac{1}{2}$, then T is a strict twist.
(2) If $T \geq 0$, then T is a strict twist.
(3) If

$$
T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2} \quad \text { (Yang-Baxter equation) }
$$

then T is a twist (strict twist if $\|T\|<1$).

An example from QFT ("S-Matrix Model")

$\mathcal{H}=L^{2}(\mathbb{R} \rightarrow \mathcal{K}, d \theta), s: \mathbb{R} \rightarrow \mathcal{U}(\mathcal{K} \otimes \mathcal{K})$ solves YBE w.spec.par., $s(-\theta)=s(\theta)^{*}$.

$$
(T f)\left(\theta_{1}, \theta_{2}\right)=s\left(\theta_{1}-\theta_{2}\right) \cdot f\left(\theta_{2}, \theta_{1}\right) \quad \text { is a unitary twist. }
$$

From now on: \mathcal{H} Hilbert space, T twist.

From now on: \mathcal{H} Hilbert space, T twist.

- On $\mathcal{F}_{T}(\mathcal{H})$, have (left) creation/annihilation operators $a_{L, T}(\xi), \xi \in \mathcal{H}$:

$$
\begin{array}{rlrl}
a_{T, L}^{\star}(\xi) \Omega & =\xi, \quad a_{L, T}(\xi) \Omega=0, & \Omega: \text { Fock vacuum } \\
a_{L, T}^{\star}(\xi)\left[\Psi_{n}\right] & =\left[\xi \otimes \Psi_{n}\right], & \Psi_{n} \in \mathcal{H}^{\otimes n}, \\
a_{L, T}(\xi)\left[\Psi_{n}\right] & =\left[a_{L, 0}(\xi)\left(1+T_{1}+\ldots+T_{1} \cdots T_{n-1}\right) \Psi_{n}\right]
\end{array}
$$

These are bounded for $\|T\|<1$.

From now on: \mathcal{H} Hilbert space, T twist.

- On $\mathcal{F}_{T}(\mathcal{H})$, have (left) creation/annihilation operators $a_{L, T}(\xi), \xi \in \mathcal{H}$:

$$
\begin{array}{rlrl}
a_{T, L}^{\star}(\xi) \Omega & =\xi, \quad a_{L, T}(\xi) \Omega=0, & \Omega: \text { Fock vacuum } \\
a_{L, T}^{\star}(\xi)\left[\Psi_{n}\right] & =\left[\xi \otimes \Psi_{n}\right], & \Psi_{n} \in \mathcal{H}^{\otimes n}, \\
a_{L, T}(\xi)\left[\Psi_{n}\right] & =\left[a_{L, 0}(\xi)\left(1+T_{1}+\ldots+T_{1} \cdots T_{n-1}\right) \Psi_{n}\right]
\end{array}
$$

These are bounded for $\|T\|<1$.

- Relations ($\operatorname{dim} \mathcal{H}<\infty,\left(e_{k}\right)$ ONB, $\left.a_{i}:=a_{L, T}\left(e_{i}\right)\right)$

$$
a_{i} a_{j}^{\star}=\sum_{k, l}\left\langle e_{i} \otimes e_{k}, T\left(e_{j} \otimes e_{l}\right)\right\rangle a_{k}^{\star} a_{l}+\delta_{i j} \cdot 1
$$

From now on: \mathcal{H} Hilbert space, T twist.

- On $\mathcal{F}_{T}(\mathcal{H})$, have (left) creation/annihilation operators $a_{L, T}(\xi), \xi \in \mathcal{H}$:

$$
\begin{array}{rlrl}
a_{T, L}^{\star}(\xi) \Omega & =\xi, & a_{L, T}(\xi) \Omega=0, & \Omega: \text { Fock vacuum } \\
a_{L, T}^{\star}(\xi)\left[\Psi_{n}\right] & =\left[\xi \otimes \Psi_{n}\right], & \Psi_{n} \in \mathcal{H}^{\otimes n}, \\
a_{L, T}(\xi)\left[\Psi_{n}\right] & =\left[a_{L, 0}(\xi)\left(1+T_{1}+\ldots+T_{1} \cdots T_{n-1}\right) \Psi_{n}\right]
\end{array}
$$

These are bounded for $\|T\|<1$.

- Relations ($\operatorname{dim} \mathcal{H}<\infty,\left(e_{k}\right)$ ONB, $\left.a_{i}:=a_{L, T}\left(e_{i}\right)\right)$

$$
a_{i} a_{j}^{\star}=\sum_{k, l}\left\langle e_{i} \otimes e_{k}, T\left(e_{j} \otimes e_{l}\right)\right\rangle a_{k}^{\star} a_{l}+\delta_{i j} \cdot 1 \quad\left(a_{i} a_{j}^{\star}=T_{j l}^{i k} a_{k}^{\star} a_{l}+\delta_{i j}\right)
$$

From now on: \mathcal{H} Hilbert space, T twist.

- On $\mathcal{F}_{T}(\mathcal{H})$, have (left) creation/annihilation operators $a_{L, T}(\xi), \xi \in \mathcal{H}$:

$$
\begin{array}{rlrl}
a_{T, L}^{\star}(\xi) \Omega & =\xi, \quad a_{L, T}(\xi) \Omega=0, & \Omega: \text { Fock vacuum } \\
a_{L, T}^{\star}(\xi)\left[\Psi_{n}\right] & =\left[\xi \otimes \Psi_{n}\right], & \Psi_{n} \in \mathcal{H}^{\otimes n}, \\
a_{L, T}(\xi)\left[\Psi_{n}\right] & =\left[a_{L, 0}(\xi)\left(1+T_{1}+\ldots+T_{1} \cdots T_{n-1}\right) \Psi_{n}\right]
\end{array}
$$

These are bounded for $\|T\|<1$.

- Relations ($\operatorname{dim} \mathcal{H}<\infty,\left(e_{k}\right)$ ONB, $\left.a_{i}:=a_{L, T}\left(e_{i}\right)\right)$

$$
a_{i} a_{j}^{\star}=\sum_{k, l}\left\langle e_{i} \otimes e_{k}, T\left(e_{j} \otimes e_{l}\right)\right\rangle a_{k}^{\star} a_{l}+\delta_{i j} \cdot 1 \quad\left(a_{i} a_{j}^{\star}=T_{j l}^{i k} a_{k}^{\star} a_{l}+\delta_{i j}\right)
$$

- Left field operators:

$$
\phi_{L, T}(\xi):=a_{L, T}^{\star}(\xi)+a_{L, T}(\xi)
$$

(Left) twisted Araki-Woods Algebra (with $H \subset \mathcal{H}$)

$$
\mathcal{L}_{T}(H):=\left\{\phi_{L, T}(h): h \in H\right\}^{\prime \prime} \subset \mathcal{B}\left(\mathcal{F}_{T}(\mathcal{H})\right)
$$

w.l.o.g.: $H \subset \mathcal{H}$ closed \mathbb{R}-linear subspace.

Standardness and standard subspaces

We are interested in the situation that the Fock vacuum Ω is standard (cyclic and separating) for $\mathcal{L}_{T}(H)$.

Standardness and standard subspaces

We are interested in the situation that the Fock vacuum Ω is standard (cyclic and separating) for $\mathcal{L}_{T}(H)$.

- $\phi_{L, T}(h)=a_{L, T}^{\star}(h)+a_{L, T}(h)$ and $i \phi_{L, T}(i h)=-a_{L, T}^{\star}(h)+a_{L, T}(h)$

Standardness and standard subspaces

We are interested in the situation that the Fock vacuum Ω is standard (cyclic and separating) for $\mathcal{L}_{T}(H)$.

- $\phi_{L, T}(h)=a_{L, T}^{\star}(h)+a_{L, T}(h)$ and $i \phi_{L, T}(i h)=-a_{L, T}^{\star}(h)+a_{L, T}(h)$
\Rightarrow need $H \cap i H=\{0\}$ for Ω separating

Standardness and standard subspaces

We are interested in the situation that the Fock vacuum Ω is standard (cyclic and separating) for $\mathcal{L}_{T}(H)$.

- $\phi_{L, T}(h)=a_{L, T}^{\star}(h)+a_{L, T}(h)$ and $i \phi_{L, T}(i h)=-a_{L, T}^{\star}(h)+a_{L, T}(h)$
\Rightarrow need $H \cap i H=\{0\}$ for Ω separating
- Lemma: If $H+i H \subset \mathcal{H}$ is dense, then Ω is cyclic for $\mathcal{L}_{T}(H)$.

Standardness and standard subspaces

We are interested in the situation that the Fock vacuum Ω is standard (cyclic and separating) for $\mathcal{L}_{T}(H)$.

- $\phi_{L, T}(h)=a_{L, T}^{\star}(h)+a_{L, T}(h)$ and $i \phi_{L, T}(i h)=-a_{L, T}^{\star}(h)+a_{L, T}(h)$
\Rightarrow need $H \cap i H=\{0\}$ for Ω separating
- Lemma: If $H+i H \subset \mathcal{H}$ is dense, then Ω is cyclic for $\mathcal{L}_{T}(H)$.
- Consider from now on only standard subspaces: closed \mathbb{R}-linear subspaces $H \subset \mathcal{H}$ with

$$
\overline{H+i H}=\mathcal{H}, \quad H \cap i H=\{0\} .
$$

Standardness and standard subspaces

We are interested in the situation that the Fock vacuum Ω is standard (cyclic and separating) for $\mathcal{L}_{T}(H)$.

- $\phi_{L, T}(h)=a_{L, T}^{\star}(h)+a_{L, T}(h)$ and $i \phi_{L, T}(i h)=-a_{L, T}^{\star}(h)+a_{L, T}(h)$
\Rightarrow need $H \cap i H=\{0\}$ for Ω separating
- Lemma: If $H+i H \subset \mathcal{H}$ is dense, then Ω is cyclic for $\mathcal{L}_{T}(H)$.
- Consider from now on only standard subspaces: closed \mathbb{R}-linear subspaces $H \subset \mathcal{H}$ with

$$
\overline{H+i H}=\mathcal{H}, \quad H \cap i H=\{0\} .
$$

Reminder on standard subspaces and modular theory

Standardness and standard subspaces

We are interested in the situation that the Fock vacuum Ω is standard (cyclic and separating) for $\mathcal{L}_{T}(H)$.

- $\phi_{L, T}(h)=a_{L, T}^{\star}(h)+a_{L, T}(h)$ and $i \phi_{L, T}(i h)=-a_{L, T}^{\star}(h)+a_{L, T}(h)$
\Rightarrow need $H \cap i H=\{0\}$ for Ω separating
- Lemma: If $H+i H \subset \mathcal{H}$ is dense, then Ω is cyclic for $\mathcal{L}_{T}(H)$.
- Consider from now on only standard subspaces: closed \mathbb{R}-linear subspaces $H \subset \mathcal{H}$ with

$$
\overline{H+i H}=\mathcal{H}, \quad H \cap i H=\{0\} .
$$

Reminder on standard subspaces and modular theory

- Tomita operator

$$
S_{H}: H+i H \rightarrow H+i H, \quad h_{1}+i h_{2} \mapsto h_{1}-i h_{2} .
$$

- Polar decomposition: $S_{H}=J_{H} \Delta_{H}^{1 / 2}$ with J_{H} antiunitary and $\Delta_{H}>0$.

Standardness and standard subspaces

We are interested in the situation that the Fock vacuum Ω is standard (cyclic and separating) for $\mathcal{L}_{T}(H)$.

- $\phi_{L, T}(h)=a_{L, T}^{\star}(h)+a_{L, T}(h)$ and $i \phi_{L, T}(i h)=-a_{L, T}^{\star}(h)+a_{L, T}(h)$
\Rightarrow need $H \cap i H=\{0\}$ for Ω separating
- Lemma: If $H+i H \subset \mathcal{H}$ is dense, then Ω is cyclic for $\mathcal{L}_{T}(H)$.
- Consider from now on only standard subspaces: closed \mathbb{R}-linear subspaces $H \subset \mathcal{H}$ with

$$
\overline{H+i H}=\mathcal{H}, \quad H \cap i H=\{0\} .
$$

Reminder on standard subspaces and modular theory

- Tomita operator

$$
S_{H}: H+i H \rightarrow H+i H, \quad h_{1}+i h_{2} \mapsto h_{1}-i h_{2} .
$$

- Polar decomposition: $S_{H}=J_{H} \Delta_{H}^{1 / 2}$ with J_{H} antiunitary and $\Delta_{H}>0$.
- Tomita's Theorem for standard subspaces:

$$
\Delta_{H}^{i t} H=H, \quad J_{H} H=H^{\prime}=\left\{h^{\prime} \in \mathcal{H}: \operatorname{Im}\left\langle h, h^{\prime}\right\rangle=0 \forall h \in H\right\}
$$

H^{\prime} is also a standard subspace, and $\left(H^{\prime}\right)^{\prime}=H$.

Real Hilbert spaces vs. standard subspaces

Proposition ([Shlyakhtenko '97])

There is a one to one correspondence between

- (real) standard subspaces of a complex Hilbert spaces, $H \subset \mathcal{H}$,
- real Hilbert spaces $\mathcal{H}_{\mathbb{R}}$ with a strongly continuous one parameter orthogonal group $U(t)$

$$
H \longleftrightarrow \mathcal{H}_{\mathbb{R}},\left.\quad \Delta_{H}^{i t}\right|_{H} \longleftrightarrow U(t)
$$

Real Hilbert spaces vs. standard subspaces

Proposition ([Shlyakhtenko '97])

There is a one to one correspondence between

- (real) standard subspaces of a complex Hilbert spaces, $H \subset \mathcal{H}$,
- real Hilbert spaces $\mathcal{H}_{\mathbb{R}}$ with a strongly continuous one parameter orthogonal group $U(t)$

$$
H \longleftrightarrow \mathcal{H}_{\mathbb{R}},\left.\quad \Delta_{H}^{i t}\right|_{H} \longleftrightarrow U(t)
$$

Examples

 Then $\mathcal{L}_{0}(H)=\mathcal{L}\left(\mathbb{F}_{\operatorname{dim} \mathcal{H}}\right)$. (free Gaussian functor, [Voiculescu '85])

Real Hilbert spaces vs. standard subspaces

Proposition ([Shlyakhtenko '97])

There is a one to one correspondence between

- (real) standard subspaces of a complex Hilbert spaces, $H \subset \mathcal{H}$,
- real Hilbert spaces $\mathcal{H}_{\mathbb{R}}$ with a strongly continuous one parameter orthogonal group $U(t)$

$$
H \longleftrightarrow \mathcal{H}_{\mathbb{R}},\left.\quad \Delta_{H}^{i t}\right|_{H} \longleftrightarrow U(t)
$$

Examples

- $T=0$ and $H=\overline{\mathbb{R}-s p a n(O N B)}$, i.e. $\Delta_{H}=1$ (or: $U(t)=1$ on $\mathcal{H}_{\mathbb{R}}$). Then $\mathcal{L}_{0}(H)=\mathcal{L}\left(\mathbb{F}_{\operatorname{dim} \mathcal{H}}\right)$. (free Gaussian functor, [Voiculescu '85])
- $T=q F$ and $H=\overline{\mathbb{R} \text {-span(ONB), with }-1<q<1}$ q-Gaussian v. Neum. alg., [Bożejko/Speicher '91]. II 1 -factors [Ricard '05]

Real Hilbert spaces vs. standard subspaces

Proposition ([Shlyakhtenko '97])

There is a one to one correspondence between

- (real) standard subspaces of a complex Hilbert spaces, $H \subset \mathcal{H}$,
- real Hilbert spaces $\mathcal{H}_{\mathbb{R}}$ with a strongly continuous one parameter orthogonal group $U(t)$

$$
H \longleftrightarrow \mathcal{H}_{\mathbb{R}},\left.\quad \Delta_{H}^{i t}\right|_{H} \longleftrightarrow U(t)
$$

Examples

- $T=0$ and $H=\overline{\mathbb{R}-s p a n(O N B)}$, i.e. $\Delta_{H}=1$ (or: $U(t)=1$ on $\mathcal{H}_{\mathbb{R}}$). Then $\mathcal{L}_{0}(H)=\mathcal{L}\left(\mathbb{F}_{\text {dim }} \mathcal{H}\right)$. (free Gaussian functor, [Voiculescu '85])
 q-Gaussian v. Neum. alg., [Bożejko/Speicher '91]. II 1 -factors [Ricard '05]
- $T=0$ and H arbitrary (free Araki-Woods factors, [Shlyakhtenko '97])

Real Hilbert spaces vs. standard subspaces

Proposition ([Shlyakhtenko '97])

There is a one to one correspondence between

- (real) standard subspaces of a complex Hilbert spaces, $H \subset \mathcal{H}$,
- real Hilbert spaces $\mathcal{H}_{\mathbb{R}}$ with a strongly continuous one parameter orthogonal group $U(t)$

$$
H \longleftrightarrow \mathcal{H}_{\mathbb{R}},\left.\quad \Delta_{H}^{i t}\right|_{H} \longleftrightarrow U(t)
$$

Examples

- $T=0$ and $H=\overline{\mathbb{R}-s p a n(O N B)}$, i.e. $\Delta_{H}=1$ (or: $U(t)=1$ on $\mathcal{H}_{\mathbb{R}}$). Then $\mathcal{L}_{0}(H)=\mathcal{L}\left(\mathbb{F}_{\text {dim }} \mathcal{H}\right)$. (free Gaussian functor, [Voiculescu '85])
 q-Gaussian v. Neum. alg., [Bożejko/Speicher '91]. II 1 -factors [Ricard '05]
- $T=0$ and H arbitrary (free Araki-Woods factors, [Shlyakhtenko '97])
- $T=q F$ and H arbitrary
(q-deformed Araki-Woods algebras, [Hiai '01])

Real Hilbert spaces vs. standard subspaces

Proposition ([Shlyakhtenko '97])

There is a one to one correspondence between

- (real) standard subspaces of a complex Hilbert spaces, $H \subset \mathcal{H}$,
- real Hilbert spaces $\mathcal{H}_{\mathbb{R}}$ with a strongly continuous one parameter orthogonal group $U(t)$

$$
H \longleftrightarrow \mathcal{H}_{\mathbb{R}},\left.\quad \Delta_{H}^{i t}\right|_{H} \longleftrightarrow U(t)
$$

Examples

- $T=0$ and $H=\overline{\mathbb{R}-s p a n(O N B)}$, i.e. $\Delta_{H}=1$ (or: $U(t)=1$ on $\mathcal{H}_{\mathbb{R}}$). Then $\mathcal{L}_{0}(H)=\mathcal{L}\left(\mathbb{F}_{\text {dim }} \mathcal{H}\right)$. (free Gaussian functor, [Voiculescu '85])
- $T=q F$ and $H=\overline{\mathbb{R}}$-span(ONB), with $-1<q<1$ q-Gaussian v. Neum. alg., [Bożejko/Speicher '91]. II 1 -factors [Ricard '05]
- $T=0$ and H arbitrary (free Araki-Woods factors, [Shlyakhtenko '97])
- $T=q F$ and H arbitrary
(q-deformed Araki-Woods factors, [Kumar, Skalski, Wasilewski '23])

Real Hilbert spaces vs. standard subspaces

Proposition ([Shlyakhtenko '97])

There is a one to one correspondence between

- (real) standard subspaces of a complex Hilbert spaces, $H \subset \mathcal{H}$,
- real Hilbert spaces $\mathcal{H}_{\mathbb{R}}$ with a strongly continuous one parameter orthogonal group $U(t)$

$$
H \longleftrightarrow \mathcal{H}_{\mathbb{R}},\left.\quad \Delta_{H}^{i t}\right|_{H} \longleftrightarrow U(t)
$$

Examples

- $T=0$ and $H=\overline{\mathbb{R}-s p a n(\mathrm{ONB})}$, i.e. $\Delta_{H}=1\left(\right.$ or: $U(t)=1$ on $\left.\mathcal{H}_{\mathbb{R}}\right)$.

Then $\mathcal{L}_{0}(H)=\mathcal{L}\left(\mathbb{F}_{\operatorname{dim} \mathcal{H}}\right)$. (free Gaussian functor, [Voiculescu '85])

- $T=q F$ and $H=\overline{\mathbb{R}}$-span(ONB), with $-1<q<1$
q-Gaussian v. Neum. alg., [Bożejko/Speicher '91]. II -factors [Ricard '05]
- $T=0$ and H arbitrary
(free Araki-Woods factors, [Shlyakhtenko '97])
- $T=q F$ and H arbitrary
(q-deformed Araki-Woods factors, [Kumar, Skalski, Wasilewski '23])
$\mathcal{L}_{T}(H)$ is non-injective, of type III unless $\Delta_{H}=1$

Questions

- For general T (and general H), only little is known about $\mathcal{L}_{T}(H)$.

Questions

- For general T (and general H), only little is known about $\mathcal{L}_{T}(H)$.
- Motivated from QFT background, we do not focus on internal properties of $\mathcal{L}_{T}(H)$, but rather on interplay with Ω, and inclusions.

Questions

- For general T (and general H), only little is known about $\mathcal{L}_{T}(H)$.
- Motivated from QFT background, we do not focus on internal properties of $\mathcal{L}_{T}(H)$, but rather on interplay with Ω, and inclusions.
- QFT: H encodes a localization region in some spacetime, T a two-particle interaction

Questions

- For general T (and general H), only little is known about $\mathcal{L}_{T}(H)$.
- Motivated from QFT background, we do not focus on internal properties of $\mathcal{L}_{T}(H)$, but rather on interplay with Ω, and inclusions.
- QFT: H encodes a localization region in some spacetime, T a two-particle interaction

Main Questions

(1) For which T, H is Ω separating (hence standard) for $\mathcal{L}_{T}(H)$?

Questions

- For general T (and general H), only little is known about $\mathcal{L}_{T}(H)$.
- Motivated from QFT background, we do not focus on internal properties of $\mathcal{L}_{T}(H)$, but rather on interplay with Ω, and inclusions.
- QFT: H encodes a localization region in some spacetime, T a two-particle interaction

Main Questions

(1) For which T, H is Ω separating (hence standard) for $\mathcal{L}_{T}(H)$?

In case Ω is separating, what are the modular data of $\left(\mathcal{L}_{T}(H), \Omega\right)$?

Questions

- For general T (and general H), only little is known about $\mathcal{L}_{T}(H)$.
- Motivated from QFT background, we do not focus on internal properties of $\mathcal{L}_{T}(H)$, but rather on interplay with Ω, and inclusions.
- QFT: H encodes a localization region in some spacetime, T a two-particle interaction

Main Questions

(1) For which T, H is Ω separating (hence standard) for $\mathcal{L}_{T}(H)$? In case Ω is separating, what are the modular data of $\left(\mathcal{L}_{T}(H), \Omega\right)$?
(2) For which inclusions of standard subspaces $K \subset H$ and which T does the inclusion of von Neumann algebras

$$
\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)
$$

have "large" relative commutant? (e.g. Ω cyclic, type III, or at least non-trivial relative commutant)

Questions

- For general T (and general H), only little is known about $\mathcal{L}_{T}(H)$.
- Motivated from QFT background, we do not focus on internal properties of $\mathcal{L}_{T}(H)$, but rather on interplay with Ω, and inclusions.
- QFT: H encodes a localization region in some spacetime, T a two-particle interaction

Main Questions

(1) For which T, H is Ω separating (hence standard) for $\mathcal{L}_{T}(H)$? In case Ω is separating, what are the modular data of $\left(\mathcal{L}_{T}(H), \Omega\right)$?
(2) For which inclusions of standard subspaces $K \subset H$ and which T does the inclusion of von Neumann algebras

$$
\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)
$$

have "large" relative commutant? (e.g. Ω cyclic, type III, or at least non-trivial relative commutant)

In the following: $H \subset \mathcal{H}$ an arbitrary standard subspace (i.e. arbitrary $U(t)$ resp. modular group $\Delta_{H}^{i t}$), and T a twist.

Separating vacuum

Basic assumption: T and H are compatible in the sense $\left[T, \Delta_{H}^{i t} \otimes \Delta_{H}^{i t}\right]=0$.
Lemma: If Ω is separating for $\mathcal{L}_{T}(H)$ and H, T are compatible, then the modular data Δ, J of $\left(\mathcal{L}_{T}(H), \Omega\right)$ restrict to Δ_{H}, J_{H} on \mathcal{H}.

Separating vacuum

Basic assumption: T and H are compatible in the sense $\left[T, \Delta_{H}^{i t} \otimes \Delta_{H}^{i t}\right]=0$.
Lemma: If Ω is separating for $\mathcal{L}_{T}(H)$ and H, T are compatible, then the modular data Δ, J of $\left(\mathcal{L}_{T}(H), \Omega\right)$ restrict to Δ_{H}, J_{H} on \mathcal{H}.

- In order to have Ω separating for $\mathcal{L}_{T}(H)$, need KMS-property. Consider n-point functions $\left(h_{1}, \ldots, h_{n} \in H\right)$

$$
f_{n}(t):=\left\langle\Omega, \phi_{L, T}\left(h_{1}\right) \cdots \phi_{L, T}\left(h_{n-1}\right) \Delta^{i t} \phi_{L, T}\left(h_{n}\right) \Omega\right\rangle_{T}=\left\langle 12 \ldots(n-1) n_{t}\right\rangle .
$$

Separating vacuum

Basic assumption: T and H are compatible in the sense $\left[T, \Delta_{H}^{i t} \otimes \Delta_{H}^{i t}\right]=0$.
Lemma: If Ω is separating for $\mathcal{L}_{T}(H)$ and H, T are compatible, then the modular data Δ, J of $\left(\mathcal{L}_{T}(H), \Omega\right)$ restrict to Δ_{H}, J_{H} on \mathcal{H}.

- In order to have Ω separating for $\mathcal{L}_{T}(H)$, need KMS-property. Consider n-point functions $\left(h_{1}, \ldots, h_{n} \in H\right)$

$$
f_{n}(t):=\left\langle\Omega, \phi_{L, T}\left(h_{1}\right) \cdots \phi_{L, T}\left(h_{n-1}\right) \Delta^{i t} \phi_{L, T}\left(h_{n}\right) \Omega\right\rangle_{T}=\left\langle 12 \ldots(n-1) n_{t}\right\rangle .
$$

Need

$$
f_{n}(-i)=\left\langle\Omega, \phi_{L, T}\left(h_{n}\right) \phi_{L, T}\left(h_{1}\right) \cdots \phi_{L, T}\left(h_{n-1}\right) \Omega\right\rangle_{T}=\langle n 12 \ldots(n-1)\rangle
$$

Separating vacuum

Basic assumption: T and H are compatible in the sense $\left[T, \Delta_{H}^{i t} \otimes \Delta_{H}^{i t}\right]=0$.
Lemma: If Ω is separating for $\mathcal{L}_{T}(H)$ and H, T are compatible, then the modular data Δ, J of $\left(\mathcal{L}_{T}(H), \Omega\right)$ restrict to Δ_{H}, J_{H} on \mathcal{H}.

- In order to have Ω separating for $\mathcal{L}_{T}(H)$, need KMS-property. Consider n-point functions $\left(h_{1}, \ldots, h_{n} \in H\right)$

$$
f_{n}(t):=\left\langle\Omega, \phi_{L, T}\left(h_{1}\right) \cdots \phi_{L, T}\left(h_{n-1}\right) \Delta^{i t} \phi_{L, T}\left(h_{n}\right) \Omega\right\rangle_{T}=\left\langle 12 \ldots(n-1) n_{t}\right\rangle .
$$

Need

$$
f_{n}(-i)=\left\langle\Omega, \phi_{L, T}\left(h_{n}\right) \phi_{L, T}\left(h_{1}\right) \cdots \phi_{L, T}\left(h_{n-1}\right) \Omega\right\rangle_{T}=\langle n 12 \ldots(n-1)\rangle
$$

- Graphical notation (~[Bożejko/Speicher])

$$
\left\langle J_{H} h_{1}, \Delta_{H}^{i t} h_{2}\right\rangle, \quad\langle\overline{1}, 2\rangle \cdot\left\langle\overline{3}, \Delta_{H}^{i t} 4\right\rangle, \quad\left\langle\overline{3} \otimes T(\overline{2} \otimes \overline{1}), T(4 \otimes 5) \otimes 6_{t}\right\rangle
$$

Six-point function $\left\langle 12 \ldots 6_{t}\right\rangle$

By imposing the KMS condition, one can extract two properties of T :
(1) Crossing symmetry (analytic)
(2) Yang-Baxter equation (algebraic)

By imposing the KMS condition, one can extract two properties of T :
(1) Crossing symmetry (analytic)
(2) Yang-Baxter equation (algebraic)
(1) Analytic continuation of diagrams:

By imposing the KMS condition, one can extract two properties of T :
(1) Crossing symmetry (analytic)
(2) Yang-Baxter equation (algebraic)
(1) Analytic continuation of diagrams:

This is a condition on T.

By imposing the KMS condition, one can extract two properties of T :
(1) Crossing symmetry (analytic)
(2) Yang-Baxter equation (algebraic)
(1) Analytic continuation of diagrams:

This is a condition on T.
(2) The two possible triple crossing terms in the 6-point function differ by a Reidemeister move of type III.

By exploiting KMS condition, one can show that one must have RHS $=$ LHS (\rightarrow Yang-Baxter equation.)

Definition

T is called crossing-symmetric (w.r.t. H) if for all $\psi_{1}, \ldots, \psi_{4} \in \mathcal{H}$, the function

$$
T_{\psi_{3}, \psi_{4}}^{\psi_{2}, \psi_{1}}(t):=\left\langle\psi_{2} \otimes \psi_{1},\left(\Delta_{H}^{i t} \otimes 1\right) T\left(1 \otimes \Delta_{H}^{-i t}\right)\left(\psi_{3} \otimes \psi_{4}\right)\right\rangle
$$

has an analytic continuation to the strip $\mathbb{S}_{1 / 2}(\ldots)$ and

$$
\begin{aligned}
T_{\psi_{3}, \psi_{4}}^{\psi_{2}, \psi_{1}}\left(t+\frac{i}{2}\right) & =\left\langle\psi_{1} \otimes J_{H} \psi_{4},\left(1 \otimes \Delta_{H}^{i t}\right) T\left(\Delta_{H}^{-i t} \otimes 1\right)\left(J_{H} \psi_{2} \otimes \psi_{3}\right)\right\rangle \\
& =T_{J_{H} \psi_{2}, \psi_{3}}^{\psi_{1}, J_{H} \psi_{4}}(-t)
\end{aligned}
$$

Definition

T is called crossing-symmetric (w.r.t. H) if for all $\psi_{1}, \ldots, \psi_{4} \in \mathcal{H}$, the function

$$
T_{\psi_{3}, \psi_{4}}^{\psi_{2}, \psi_{1}}(t):=\left\langle\psi_{2} \otimes \psi_{1},\left(\Delta_{H}^{i t} \otimes 1\right) T\left(1 \otimes \Delta_{H}^{-i t}\right)\left(\psi_{3} \otimes \psi_{4}\right)\right\rangle
$$

has an analytic continuation to the strip $\mathbb{S}_{1 / 2}(\ldots)$ and

$$
\begin{aligned}
T_{\psi_{3}, \psi_{4}}^{\psi_{2}, \psi_{1}}\left(t+\frac{i}{2}\right) & =\left\langle\psi_{1} \otimes J_{H} \psi_{4},\left(1 \otimes \Delta_{H}^{i t}\right) T\left(\Delta_{H}^{-i t} \otimes 1\right)\left(J_{H} \psi_{2} \otimes \psi_{3}\right)\right\rangle \\
& =T_{J_{H} \psi_{2}, \psi_{3}}^{\psi_{1}, J_{H} \psi_{4}}(-t)
\end{aligned}
$$

- Trivially satisfied for $T=q F$, trivially violated for $T=q 1$
- For S-matrix model crossing holds if s has the right analytic properties (many examples exist)

Definition

T is called crossing-symmetric (w.r.t. H) if for all $\psi_{1}, \ldots, \psi_{4} \in \mathcal{H}$, the function

$$
T_{\psi_{3}, \psi_{4}}^{\psi_{2}, \psi_{1}}(t):=\left\langle\psi_{2} \otimes \psi_{1},\left(\Delta_{H}^{i t} \otimes 1\right) T\left(1 \otimes \Delta_{H}^{-i t}\right)\left(\psi_{3} \otimes \psi_{4}\right)\right\rangle
$$

has an analytic continuation to the strip $\mathbb{S}_{1 / 2}(\ldots)$ and

$$
\begin{aligned}
T_{\psi_{3}, \psi_{4}}^{\psi_{2}, \psi_{1}}\left(t+\frac{i}{2}\right) & =\left\langle\psi_{1} \otimes J_{H} \psi_{4},\left(1 \otimes \Delta_{H}^{i t}\right) T\left(\Delta_{H}^{-i t} \otimes 1\right)\left(J_{H} \psi_{2} \otimes \psi_{3}\right)\right\rangle \\
& =T_{J_{H} \psi_{2}, \psi_{3}}^{\psi_{1}, J_{H} \psi_{4}}(-t)
\end{aligned}
$$

- Trivially satisfied for $T=q F$, trivially violated for $T=q 1$
- For S-matrix model crossing holds if s has the right analytic properties (many examples exist)

Theorem

Let $H \subset \mathcal{H}$ be a standard subspace and T a compatible twist. The following are equivalent:
a) Ω is separating for $\mathcal{L}_{T}(H)$.
b) T is braided and crossing symmetric w.r.t. H.

Braided twists and left-right duality

How does the argument "YBE+crossing $\Longrightarrow \Omega$ separating" work?

Braided twists and left-right duality

How does the argument "YBE+crossing $\Longrightarrow \Omega$ separating" work?
For braided twists (YBE $T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2}$ holds), also right creation/annihilation operators exist:

$$
\begin{aligned}
& a_{R, T}^{\star}(\xi)\left[\Psi_{n}\right]=\left[\Psi_{n} \otimes \xi\right], \\
& a_{R, T}(\xi)\left[\Psi_{n}\right]=\left[a_{R, 0}(\xi)\left(1+T_{n}+\ldots+T_{n-1} \cdots T_{1}\right) \Psi_{n}\right] \\
& \phi_{R, T}(\xi):=a_{R, T}^{\star}(\xi)+a_{R, T}(\xi)
\end{aligned}
$$

... generating "right" twisted Araki-Woods algebras $\mathcal{R}_{T}(H)$.

Braided twists and left-right duality

How does the argument "YBE+crossing $\Longrightarrow \Omega$ separating" work?
For braided twists (YBE $T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2}$ holds), also right creation/annihilation operators exist:

$$
\begin{aligned}
& a_{R, T}^{\star}(\xi)\left[\Psi_{n}\right]=\left[\Psi_{n} \otimes \xi\right] \\
& a_{R, T}(\xi)\left[\Psi_{n}\right]=\left[a_{R, 0}(\xi)\left(1+T_{n}+\ldots+T_{n-1} \cdots T_{1}\right) \Psi_{n}\right] \\
& \phi_{R, T}(\xi):=a_{R, T}^{\star}(\xi)+a_{R, T}(\xi)
\end{aligned}
$$

... generating "right" twisted Araki-Woods algebras $\mathcal{R}_{T}(H)$.

- With crossing symmetry and YBE one can show that $\mathcal{L}_{T}(H)$ and $\mathcal{R}_{T}\left(H^{\prime}\right)$ commute.

Braided twists and left-right duality

How does the argument "YBE+crossing $\Longrightarrow \Omega$ separating" work?
For braided twists (YBE $T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2}$ holds), also right creation/annihilation operators exist:

$$
\begin{aligned}
& a_{R, T}^{\star}(\xi)\left[\Psi_{n}\right]=\left[\Psi_{n} \otimes \xi\right] \\
& a_{R, T}(\xi)\left[\Psi_{n}\right]=\left[a_{R, 0}(\xi)\left(1+T_{n}+\ldots+T_{n-1} \cdots T_{1}\right) \Psi_{n}\right] \\
& \phi_{R, T}(\xi):=a_{R, T}^{\star}(\xi)+a_{R, T}(\xi)
\end{aligned}
$$

... generating "right" twisted Araki-Woods algebras $\mathcal{R}_{T}(H)$.

- With crossing symmetry and YBE one can show that $\mathcal{L}_{T}(H)$ and $\mathcal{R}_{T}\left(H^{\prime}\right)$ commute.

Proposition

Let T be braided and crossing symmetric.
a) The Tomita operator S of $\left(\mathcal{L}_{T}(H), \Omega\right)$ is given by

$$
S\left[\psi_{1} \otimes \ldots \otimes \psi_{n}\right]=\left[S_{H} \psi_{n} \otimes \ldots \otimes S_{H} \psi_{1}\right]
$$

b) Left-right duality holds:

$$
\mathcal{L}_{T}(H)^{\prime}=\mathcal{R}_{T}\left(H^{\prime}\right)
$$

Remarks on standardness question

- From our perspective, the braided and crossing-symmetric twists are the most interesting ones (Classification unknown).
- Both the Yang-Baxter equation and crossing symmetry have their origins in physics, but can here be derived from modular theory.
- Definition of crossing is inspired by QFT crossing symmetry (scattering of particles vs. scattering of antiparticles, $J_{H}=$ TCP operator)
- Result on modular data generalizes many known results [Eckmann/Osterwalder '73, Leyland/Roberts/Testard '78, Shlyakhtenko '97, Baumgärtel/Jurke/Lledo '02, Buchholz/L/Summers '11, L '12]

Inclusions

Have two maps

$$
H \longmapsto \mathcal{L}_{T}(H), \quad H \longmapsto \mathcal{R}_{T}(H)
$$

from T-comp. standard subspaces $H \subset \mathcal{H}$ to v. Neumann algebras on $\mathcal{F}_{T}(\mathcal{H})$.

Inclusions

Have two maps

$$
H \longmapsto \mathcal{L}_{T}(H), \quad H \longmapsto \mathcal{R}_{T}(H)
$$

from T-comp. standard subspaces $H \subset \mathcal{H}$ to v. Neumann algebras on $\mathcal{F}_{T}(\mathcal{H})$.

- By definition: $K \subset H \Longrightarrow \mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H), \mathcal{R}_{T}(K) \subset \mathcal{R}_{T}(H)$.

Inclusions

Have two maps

$$
H \longmapsto \mathcal{L}_{T}(H), \quad H \longmapsto \mathcal{R}_{T}(H)
$$

from T-comp. standard subspaces $H \subset \mathcal{H}$ to v. Neumann algebras on $\mathcal{F}_{T}(\mathcal{H})$.

- By definition: $K \subset H \Longrightarrow \mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H), \mathcal{R}_{T}(K) \subset \mathcal{R}_{T}(H)$.
- Inspired by QFT models: Investigate von Neumann algebra inclusions

$$
\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)
$$

$\mathcal{L}_{T}(H)$ will be a factor (\rightarrow subfactors).

Inclusions

Have two maps

$$
H \longmapsto \mathcal{L}_{T}(H), \quad H \longmapsto \mathcal{R}_{T}(H)
$$

from T-comp. standard subspaces $H \subset \mathcal{H}$ to v. Neumann algebras on $\mathcal{F}_{T}(\mathcal{H})$.

- By definition: $K \subset H \Longrightarrow \mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H), \mathcal{R}_{T}(K) \subset \mathcal{R}_{T}(H)$.
- Inspired by QFT models: Investigate von Neumann algebra inclusions

$$
\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)
$$

$\mathcal{L}_{T}(H)$ will be a factor (\rightarrow subfactors).

Lemma: Proper inclusions $K \subset H$ only exist if Δ_{H}, Δ_{K} are unbounded. In particular $\operatorname{dim} \mathcal{H}=\infty$ is needed.

Twisted subfactors

- For $T=q F,-1<q<1$, it is known that $\mathcal{L}_{q F}(H)$ is a non-injective factor of type III if Δ_{H} is unbounded [Kumar, Skalski, Wasilewski '23].

Twisted subfactors

- For $T=q F,-1<q<1$, it is known that $\mathcal{L}_{q F}(H)$ is a non-injective factor of type III if Δ_{H} is unbounded [Kumar, Skalski, Wasilewski '23].
- This is no longer true for $q=1$, where $\mathcal{L}_{F}(H) \cap \mathcal{L}_{F}(H)^{\prime}=\mathcal{L}_{F}\left(H \cap H^{\prime}\right)$ (and $\mathcal{L}_{F}(H)=\mathcal{R}_{F}(H)$) holds [Leyland/Roberts/Testard '78].

Twisted subfactors

- For $T=q F,-1<q<1$, it is known that $\mathcal{L}_{q F}(H)$ is a non-injective factor of type III if Δ_{H} is unbounded [Kumar, Skalski, Wasilewski '23].
- This is no longer true for $q=1$, where $\mathcal{L}_{F}(H) \cap \mathcal{L}_{F}(H)^{\prime}=\mathcal{L}_{F}\left(H \cap H^{\prime}\right)$ (and $\mathcal{L}_{F}(H)=\mathcal{R}_{F}(H)$) holds [Leyland/Roberts/Testard '78].
- We expect that for general (braided, crossing-symmetric) twist with $\|T\|<1$, it is still true that $\mathcal{L}_{T}(H)$ is a non-injective factor of type III if Δ_{H} is unbounded.

Twisted subfactors

- For $T=q F,-1<q<1$, it is known that $\mathcal{L}_{q F}(H)$ is a non-injective factor of type III if Δ_{H} is unbounded [Kumar, Skalski, Wasilewski '23].
- This is no longer true for $q=1$, where $\mathcal{L}_{F}(H) \cap \mathcal{L}_{F}(H)^{\prime}=\mathcal{L}_{F}\left(H \cap H^{\prime}\right)$ (and $\mathcal{L}_{F}(H)=\mathcal{R}_{F}(H)$) holds [Leyland/Roberts/Testard '78].
- We expect that for general (braided, crossing-symmetric) twist with $\|T\|<1$, it is still true that $\mathcal{L}_{T}(H)$ is a non-injective factor of type III if Δ_{H} is unbounded.
$K \subset H$. Relative commutant

$$
\mathcal{C}_{T}(K, H):=\mathcal{L}_{T}(K)^{\prime} \cap \mathcal{L}_{T}(H)=\mathcal{L}_{T}(K)^{\prime} \cap \mathcal{R}_{T}\left(H^{\prime}\right)^{\prime}
$$

In the following: Two results on $\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)$ in different situations,

- one "negative" (singular inclusions, $\mathcal{C}_{T}(K, H)=\mathbb{C} 1$)
- one "positive" (large relative commutant, $\mathcal{C}_{T}(K, H) \neq \mathbb{C} 1$)

Half-sided inclusions

Let us consider a half-sided inclusion $K \subset H$ of standard subspaces:

- have unitary one-parameter group $V(x)$ with positive generator,
- $V(x) H \subset H, x \geq 0$. Set $K:=V(1) H$.
- $[V(x) \otimes V(x), T]=0$.

Half-sided inclusions

Let us consider a half-sided inclusion $K \subset H$ of standard subspaces:

- have unitary one-parameter group $V(x)$ with positive generator,
- $V(x) H \subset H, x \geq 0$. Set $K:=V(1) H$.
- $[V(x) \otimes V(x), T]=0$.

Well-studied scenario in CFT (translations on a lightray). Known:
$-\mathcal{L}_{T}(H)$ is a III ${ }_{1}$ factor [Wiesbrock '93].

- Modular group acts by dilations, $\Delta_{H}^{i t} V(x) \Delta_{H}^{-i t}=V\left(e^{-2 \pi t} x\right)$ [Borchers'92].

Suppose $\|T\|<1$ and $k \in K, h^{\prime} \in H^{\prime}$. Then

$$
\begin{aligned}
& \phi_{T, L}(k) \phi_{T, R}\left(h^{\prime}\right) \in \mathcal{L}_{T}(K) \\
& \phi_{T, L}\left(\Delta_{H}^{i t} k\right) \phi_{T, R}\left(H^{\prime}\right)=\mathcal{C}_{T}(K, H)^{\prime} \\
&\left.h^{i t} h^{\prime}\right) \in \mathcal{L}_{T}(K) \vee \mathcal{R}_{T}\left(H^{\prime}\right)=\mathcal{C}_{T}(K, H)^{\prime}, \quad t<0 .
\end{aligned}
$$

For $\|T\|<1$, weak limit $t \rightarrow-\infty$ can be controlled. Gives vacuum projection P_{Ω}.

Half-sided inclusions

Let us consider a half-sided inclusion $K \subset H$ of standard subspaces:

- have unitary one-parameter group $V(x)$ with positive generator,
- $V(x) H \subset H, x \geq 0$. Set $K:=V(1) H$.
- $[V(x) \otimes V(x), T]=0$.

Well-studied scenario in CFT (translations on a lightray). Known:
$-\mathcal{L}_{T}(H)$ is a III ${ }_{1}$ factor [Wiesbrock '93].

- Modular group acts by dilations, $\Delta_{H}^{i t} V(x) \Delta_{H}^{-i t}=V\left(e^{-2 \pi t} x\right)$ [Borchers'92].

Suppose $\|T\|<1$ and $k \in K, h^{\prime} \in H^{\prime}$. Then

$$
\begin{aligned}
& \phi_{T, L}(k) \phi_{T, R}\left(h^{\prime}\right) \in \mathcal{L}_{T}(K) \\
& \phi_{T, L}\left(\Delta_{H}^{i t} k\right) \phi_{T, R}\left(H^{\prime}\right)=\mathcal{C}_{T}(K, H)^{\prime} \\
&\left.h^{i t} h^{\prime}\right) \in \mathcal{L}_{T}(K) \vee \mathcal{R}_{T}\left(H^{\prime}\right)=\mathcal{C}_{T}(K, H)^{\prime}, \quad t<0 .
\end{aligned}
$$

For $\|T\|<1$, weak limit $t \rightarrow-\infty$ can be controlled. Gives vacuum projection P_{Ω}.

Singular inclusions

Theorem

Let $K \subset H$ be a half-sided inclusion of standard subspaces and T a compatible braided crossing-symmetric twist with $\|T\|<1$. Then $\mathcal{C}_{T}(K, H)=\mathbb{C} 1$.

- For $T=0$, the proof becomes quite easy.

Singular inclusions

Theorem

Let $K \subset H$ be a half-sided inclusion of standard subspaces and T a compatible braided crossing-symmetric twist with $\|T\|<1$. Then $\mathcal{C}_{T}(K, H)=\mathbb{C} 1$.

- For $T=0$, the proof becomes quite easy.
- \rightarrow easiest/most natural examples of singular half-sided inclusions (after more complicated ones in [Longo/Tanimoto/Ueda '19, L/Scotford '22])

Singular inclusions

Theorem

Let $K \subset H$ be a half-sided inclusion of standard subspaces and T a compatible braided crossing-symmetric twist with $\|T\|<1$. Then $\mathcal{C}_{T}(K, H)=\mathbb{C} 1$.

- For $T=0$, the proof becomes quite easy.
- \rightarrow easiest/most natural examples of singular half-sided inclusions (after more complicated ones in [Longo/Tanimoto/Ueda '19, L/Scotford '22])
Generalization:

Theorem

Let $K \subset H$ be standard subspaces. Suppose there exist sequences of unit vectors $k_{n} \in K, h_{n}^{\prime} \in H^{\prime}$, such that

$$
k_{n} \rightarrow 0, \quad h_{n}^{\prime} \rightarrow 0 \quad \text { weakly, } \quad\left\langle k_{n}, h_{n}^{\prime}\right\rangle \nrightarrow 0
$$

- Then $\mathcal{C}_{T}(K, H)=\mathbb{C} 1$ (for $\|T\|<1$).
- This is in particular the case when $\Delta_{H}^{1 / 4} \Delta_{K}^{-1 / 4}$ is not compact.

Singular inclusions

Theorem

Let $K \subset H$ be a half-sided inclusion of standard subspaces and T a compatible braided crossing-symmetric twist with $\|T\|<1$. Then $\mathcal{C}_{T}(K, H)=\mathbb{C} 1$.

- For $T=0$, the proof becomes quite easy.
- \rightarrow easiest/most natural examples of singular half-sided inclusions (after more complicated ones in [Longo/Tanimoto/Ueda '19, L/Scotford '22])
Generalization:

Theorem

Let $K \subset H$ be standard subspaces. Suppose there exist sequences of unit vectors $k_{n} \in K, h_{n}^{\prime} \in H^{\prime}$, such that

$$
k_{n} \rightarrow 0, \quad h_{n}^{\prime} \rightarrow 0 \quad \text { weakly, } \quad\left\langle k_{n}, h_{n}^{\prime}\right\rangle \nrightarrow 0
$$

- Then $\mathcal{C}_{T}(K, H)=\mathbb{C} 1($ for $\|T\|<1)$.
- This is in particular the case when $\Delta_{H}^{1 / 4} \Delta_{K}^{-1 / 4}$ is not compact.

Corollary: $\mathcal{L}_{T}(H)$ is a factor for $\|T\|<1$ and $\operatorname{dim} \mathcal{H}=\infty$.

L^{2}-inclusions

L^{2}-inclusions

- The fact that many inclusions $\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)$ are singular for $\|T\|<1$ is in line with proximity to extreme situation at $T=0$.

L^{2}-inclusions

- The fact that many inclusions $\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)$ are singular for $\|T\|<1$ is in line with proximity to extreme situation at $T=0$.
- Surprisingly, $\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)$ can also have very large relative commutant for suitable $K \subset H$ and $\|T\|<1$.

L^{2}-inclusions

- The fact that many inclusions $\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)$ are singular for $\|T\|<1$ is in line with proximity to extreme situation at $T=0$.
- Surprisingly, $\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)$ can also have very large relative commutant for suitable $K \subset H$ and $\|T\|<1$.

Theorem

Let $K \subset H$ be an inclusion such that $\left\|\Delta_{H}^{1 / 4} \Delta_{K}^{-1 / 4}\right\|_{1}<1$ (trace norm). Let T be a braided crossing symmetric compatible twist with $\|T\|<1$. Then
a) $\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)$ is split.
b) $\mathcal{C}_{T}(K, H) \cong \mathcal{L}_{T}(H) \otimes \mathcal{R}_{T}\left(K^{\prime}\right)$.

L^{2}-inclusions

- The fact that many inclusions $\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)$ are singular for $\|T\|<1$ is in line with proximity to extreme situation at $T=0$.
- Surprisingly, $\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)$ can also have very large relative commutant for suitable $K \subset H$ and $\|T\|<1$.

Theorem

Let $K \subset H$ be an inclusion such that $\left\|\Delta_{H}^{1 / 4} \Delta_{K}^{-1 / 4}\right\|_{1}<1$ (trace norm). Let T be a braided crossing symmetric compatible twist with $\|T\|<1$. Then
a) $\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)$ is split.
b) $\mathcal{C}_{T}(K, H) \cong \mathcal{L}_{T}(H) \otimes \mathcal{R}_{T}\left(K^{\prime}\right)$.

- Proof uses split property [Doplicher/Longo '84] and modular density conditions [D'Antoni/Longo/Radulescu'01,Buchholz/D'Antoni/Longo'07]

L^{2}-inclusions

- The fact that many inclusions $\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)$ are singular for $\|T\|<1$ is in line with proximity to extreme situation at $T=0$.
- Surprisingly, $\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)$ can also have very large relative commutant for suitable $K \subset H$ and $\|T\|<1$.

Theorem

Let $K \subset H$ be an inclusion such that $\left\|\Delta_{H}^{1 / 4} \Delta_{K}^{-1 / 4}\right\|_{1}<1$ (trace norm). Let T be a braided crossing symmetric compatible twist with $\|T\|<1$. Then
a) $\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)$ is split.
b) $\mathcal{C}_{T}(K, H) \cong \mathcal{L}_{T}(H) \otimes \mathcal{R}_{T}\left(K^{\prime}\right)$.

- Proof uses split property [Doplicher/Longo '84] and modular density conditions [D'Antoni/Longo/Radulescu'01,Buchholz/D'Antoni/Longo'07]

For $\|T\|<1$:

$$
\begin{gathered}
\left\|\Delta_{H}^{1 / 4} \Delta_{K}^{-1 / 4}\right\|_{1}<1 \\
\Downarrow \\
\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H) \text { split } \\
\Downarrow \\
\mathcal{C}_{T}(K, H) \neq \mathbb{C} \\
\Downarrow \\
\Delta_{H}^{1 / 4} \Delta_{K}^{-1 / 4} \text { compact }
\end{gathered}
$$

For $\|T\|<1$:

$$
\begin{gathered}
\left\|\Delta_{H}^{1 / 4} \Delta_{K}^{-1 / 4}\right\|_{1}<1 \\
\Downarrow \\
\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H) \text { split } \\
\Downarrow \\
\mathcal{C}_{T}(K, H) \neq \mathbb{C} \\
\Downarrow \\
\Delta_{H}^{1 / 4} \Delta_{K}^{-1 / 4} \text { compact }
\end{gathered}
$$

- Relation between $\Delta_{H}^{1 / 4} \Delta_{K}^{-1 / 4}$ and $\mathcal{C}_{T}(K, H)$ is much closer for $\|T\|<1$ than for $\|T\|=1$.

$\sigma(T F)$

$\sigma(T F)$

$q S$-model
$\sigma(T F)$

$q S$-model

- Do there exist inclusions $\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H)$ that have non-trivial relative commutant but are not split?
- Interesting regime: $\Delta_{H}^{1 / 4} \Delta_{K}^{-1 / 4}$ compact, but not $\left\|\Delta_{H}^{1 / 4} \Delta_{K}^{-1 / 4}\right\|_{1}<1$. Can we say something about $\mathcal{C}_{T}(K, H)$ (avoiding split)?

