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Chapter 1

Introduction

The main subject of this thesis is the description and investigation of the
Conjugate Gradient Boundary Iteration (CGBI) method. CGBI is a paral-
lelization method for symmetric elliptic boundary value problems based on non-
overlapping domain decomposition. It was proposed by Borchers [5]. This thesis
gives a detailed overview on the theory of CGBI, the development of precondition-
ers on different meshes, test runs and the application of CGBI to Navier-Stokes
flow problems.

Beside the possibility to make use of the full computational power of parallel
computers, domain decomposition methods like CGBI facilitate the combination
of different local solvers on different parts of the computational domain, e.g.
highly accurate spectral solvers on simply-formed parts of the domain with the
highly flexible finite element method (FE, FEM) on more complicated parts.

Thus, as an application for CGBI, a parallel solver for the incompressible
Navier-Stokes equations

i +idVi—-vAi+Vp = f (1.1)

divu = 0.

is constructed in this paper. Using a pressure correction scheme (the pressure cor-
rection methods, also called fractional step methods, were introduced by Chorin
& Temam [51]) our solver splits each Navier-Stokes timestep into one hyperbolic
and two elliptic problems (see Chapter 5 and also [5]). The hyperbolic problem is
solved with the method of characteristics. The elliptic problems are solved with
CGBI. Chapter 2 describes CGBI with its theoretical background and Chapter 3
is devoted to the construction of efficient preconditioners for CGBI. Both chapters
also present numerical tests (Sections 2.8, 3.1.5, 3.3, 3.4.3).

In Chapter 4 our scheme of characteristics is investigated. Error estimates
and and a theoretical investigation of the stability on different meshes are given.

In Chapter 5 the full Navier-Stokes solver based on CGBI and the method of
characteristics is presented. Test runs for the flow past a backward facing step
and the flow past a cylinder (both modeled in 2d) are given.
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4 CHAPTER 1. INTRODUCTION

Beside the approximation of the Navier-Stokes equations, both the CGBI
method and the characteristics scheme may have lots of applications. Therefore
it makes sense to investigate highly accurate versions of these methods although
the presently used Navier-Stokes time splitting scheme may reduce this accuracy.
In accordance with this philosophy, the Chapters 2 and 3 on the one hand and
Chapter 4 on the other hand can be read independently from each other.

In this introduction I will give a brief summary of the CGBI solver and of
the characteristics solver. I will also remark on the mathematical methods which
are used in this paper.

1. The CGBI solver. The CGBI solver is a domain decomposition method
for the solution of symmetric elliptic problems in parallel. Obviously it is easy to
find the solution of the global partial differential equation in parallel as soon as
the corresponding boundary conditions on the subdomain interfaces are known.
CGBI searchs these boundary conditions of Neumann type by a conjugate gradient
(CG) iteration. The name CGBI comes from the fact that the global conjugate
gradient method and its preconditioner are running on the interfaces ("bound-
aries’) of the subdomains. During each CG iteration step local elliptic problems
on the subdomains are to be solved. The CGBI method enables us to couple
different local solvers to get a high performance. For example, on rectangular
subdomains spectral methods provide highly efficient solvers. On non-rectangular
subdomains, finite element methods (FE, FEM) should be used because of their
flexibility.

In Chapter 2 the theory of the CGBI method is expounded. In the context
of our Navier-Stokes solver, the CGBI method is used

e on resolvent type equations (5.4) for the velocity involving Dirichlet bound-
ary conditions on the 'physical’ walls and

e on a Poisson equation (5.5) for the pressure which uses Neumann boundary
conditions on the physical walls.

When Neumann boundary conditions are used for the Poisson equation, the ques-
tion occurs how to avoid ill-posed local problems: The global boundary value
problem may be well-posed, e.g. because of Dirichlet conditions on the out-
flow part of the domain, but some subdomains (the so-called ’floating subdo-
mains’) may only have Neumann boundaries. Thus, beside the Dirichlet case
(Sections 2.2, 2.3) special emphasis is layed on the application of CGBI in the
Neumann case (Section 2.4).

The relation of CGBI to domain decomposition methods like FETI (finite ele-
ment tearing and interconnecting method) developed in the early 1990s for prob-
lems from structural mechanics and the Schur method are discussed in Sec. 2.9.
In fact, CGBI is very similar to FETT; the main advantage is the fact that CGBI
uses preconditioners acting only on the interfaces (see 2.).



Many publications on domain decomposition methods ([3] [19] [21] [22] [40])
focus on the discrete (‘matrix’) level for the description of the algorithm and
for the investigation of preconditioners. In this thesis we concentrate on the
investigation of the underlying continuous problems. This approach directly leads
to our preconditioner (see end of Sec. 2.2) as a discretization of the square root
of the negative of the Laplacian operator acting on the subdomain interfaces.

2. The CGBI interface preconditioner. The theoretical investigations of
Chapter 2 already show how to construct a suitable preconditioner for CGBI.
This preconditioner yields a condition number (i.e. a CGBI convergence rate)
independent of the number of mesh points and the number of subdomains. In
contrast to other approaches ([45] Sec. 3.3.2 and the authors cited there and
(very recent) [28]), our interface preconditioner does not require the solution of
any time-consuming subdomain-based problems. Here we have to mention the
work of Dryja [15] and Bjgrstad & Widlund [4] who proposed interface-based
preconditioners in the context of the Schur method with local FE/FD solvers in
the 1980.

In Chapter 3 some efficient discretizations of our preconditioning operator
are developed and tested for the case of rectangular subdomains. These dis-
cretizations are easy to find on an equidistant mesh. However, our Chebyshev
spectral solvers are working on a Chebyshev-Gauss-Lobatto mesh. It turns out
that on such a mesh, it is much more difficult to find a discretization of the
preconditioner. The mathematical method to construct a Gauss-Lobatto mesh
based preconditioner is the interpolation theory of weighted Sobolev spaces. The
resulting preconditioner yields for Dirichlet problems a CGBI convergence rate
independent of the number of grid points, the number of the subdomains, the
size of the channel and the resolvent equation parameter o, both on equidis-
tant and on Gauss-Lobatto boundary meshes. Only for the combination of a
Gauss-Lobatto boundary mesh and Neumann boundary conditions on the phys-
ical channel walls, a very moderate dependence of the condition number on the
discretization parameter may occur.

A disadvantage of our preconditioner is, that the condition number increases
for bad aspect ratios (<0.1) of the subdomains. For this case and Neumann
boundary conditions a different preconditioner is proposed in Sec. 3.3.

The discretization of our preconditioners proposed in Sec. 3.1 is based on the
spectral decomposition (fast Fourier transform, FFT) of a function given on the
interfaces. In Sec. 3.4, discretizations based on sparse matrices are presented as
an alternative.

3. The characteristics solver. For the solution of the transport equation
we are using a method of characteristics. The characteristics method reflects
the ’local’ character of this equation. Obviously, this local character is a big
advantage for the parallelization. Compared to the semi-Lagrangian method
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and the semi-implicit method [42], our collocation characteristics method allows
larger time steps due to better stability properties, whereas the semi-Lagrangian
method has the advantage of avoiding spatial interpolations which are costly in
the context of highly accurate spectral approximations.

In Chapter 4 we develop our characteristics scheme for the nonlinear equation

us + a(t, z,u) - Vu =0,

which is slightly more general than needed for our Navier-Stokes solver. However,
until now, our theoretical investigation is restricted to the case of one space
dimension. In our approach we are calculating a characteristic starting at a grid
point z, at time ¢, backward in time until ¢ =t, (see Chapters 4.2, 5 for the
details). In the course of this the discrete data of the velocity field are interpolated
using polynomials in time and piecewise polynomial ansatz functions in space.
In Chapter 4 detailed convergence and stability investigations are performed. It
turns out that for linear spatial ansatz functions the stability of the scheme is
trivial. For higher order ansatz functions, however, some restrictions appear:
For equidistant or quasi-uniform meshes, only the Courant number has to be
bounded which is a very weak condition. On a Chebyshev-Gauss-Lobatto mesh
the stability proof for higher order interpolation requires some stricter conditions.
However, numerical tests in Section 4.4.6 and in Chapter 5 reveal better stability
properties than expected due to Chapter 4.4.4-4.4.5.

The basis of our stability investigations are the stability theorems published
by Lax [32] [33]. To make these theorems applicable for our purposes, some mod-
ifications and generalizations (Theorems 4.6, 4.8) are necessary. The application
of these theorems requires the investigation of certain properties (including a
Lipschitz condition) of the coefficient functions of the time stepping scheme.

4. Cooperations, note of thanks. The research presented in this thesis was
supported by the Deutsche Forschungsgemeinschaft (DFG) and by the Centre
National de la Recherche Scientifigue (CNRS). The programming was done in
collaboration with the University of Paderborn (Kerstin Wielage, Dr. Nicole Ro8,
Prof. Rautmann) and the University of Nice, France (Prof. Peyret, Dr. Pasquetti
& co-workers). I would like to express my thanks for cooperation and support to
all of them; especially to Prof. Borchers (University Erlangen-Nuremberg), who
is in charge of this thesis, for his support and advice.

5. How to attain this paper. This paper is available on the World Wide
Web at

http://www.am.uni-erlangen.de/aml/publications/dipl phd thesis/PhD Kraeutle.ps.gz



Chapter 2
CGBI

CGBI stands for Conjugate Gradient Boundary Iteration. It is a domain decom-
position method to parallelize the computation of symmetric elliptic boundary
value problems. We concentrate on the solution of the Poisson equation and the
Helmholtz resolvent equation

Lw:=-Aw+ow=f, 0>0, (2.1)

on a bounded domain Q C IR", n > 2, with a Lipschitz continuous' boundary
00) and appropriate boundary conditions on 0€). In this paper, for the sake
of simplicity n = 2 is taken, however, the method is also applicable in higher
dimensions without much modification.

Best suited for the domain decomposition method CGBI are domains with a
large extension in one direction; for practical applications of CGBI in the context
of a Navier-Stokes solver we may think of a rectangular channel with (or without)
an obstacle or systems of pipes (see Figs. 2.1-2.4). Test runs for the geometry of
Fig. 2.1 with a circular obstacle M and of Figs. 2.2, 2.4 (right hand part) will be
presented in Chapter 5. Because of its simplicity, the geometry of Fig. 2.2 is used
in Chapter 3 for theoretical investigations on the condition number; however,
this geometry is also of practical interest, e.g. for the computation of a jet or a
Bickley flow [24] or certain heat driven flow problems.

The boundary on the left and on the right side of the channel are called T'/
rsp. I'?. This nomenclature points to the fact that the test runs in Chapter 5
have inflow boundary conditions on the left and outflow boundary conditions on
the right part of Q. We set I'"V := 9Q\ (I'Y UT?), where the "W’ stands for the
physical wall of the channel.

We pose (homogeneous or inhomogeneous) Neumann and/or Dirichlet bound-
ary conditions on 02:

1 See [1] A 6.2 for the definition of a Lipschitz boundary.
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Figure 2.4: Flow behind a step.



w = gDir on FDir
0
v _ g"™ on TNm (2.2)
on

where I'Pr U TAN™ = 9Q, TPir N TA™ = ().

The domain 2 is decomposed into the subdomains €,...,€2, where p > 2
is the number of available processors. The name ’boundary iteration’ comes
from the fact that the unknowns are distributed only on the artificial boundaries
(’interfaces’) I';, ¢ = 1,...,p—1 between the subdomains. We set

p—1

=1

In this paper we will assume that
I_-‘i N I_-‘j - 0

for 1 # 7, i.e. there are no interior crosspoints of the subdomain boundaries. In
our future work this restriction will be dropped. Such a generalization will make
the application of CGBI on non-channel-like domains easier.

Processor number i solves an equation of type (2.1) locally on its subdomain
;. The correct Neumann boundary conditions for the local problems on the
interfaces are unknown. As in Section 2.2 explained, these boundary values are
the solution of a certain minimization principle. This minimization principle is
solved iteratively by the CG method (see Section 2.3).

The relation between CGBI and other domain decomposition methods is ex-
plained in Sec. 2.9.
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2.1 Some interpolation spaces and properties

Before we can consider the algorithm and the minimization principle related
to CGBI we have to define some symbols and some function spaces, expecially
interpolation spaces.

We will use the writing || - ||1 ~ || - |2 to express that two norms || - |1, || - [|2
on a common vector space are equivalent. To keep the notation simple, we will
also use the writing || - |2 ~ || - |2 if || < |1 ~ || - ||2-

We suppose that 2 and each subdomain 2; are bounded and have Lipschitz
boundaries. Let CF(€;), 0<p<oo, be the vector space of CP({2;)-functions with
a support which is a compact subset of ;. Let H*(€;), Hj(£;) be the well known
Sobolev spaces

HY(Q;) = closure{C™®(Q)}
H} () = closure{C{(Q:)}

where the closure is taken with respect to the norm

1/2
lullioy = | [(Vul + uf) da| . (2.3)
Q;
Furthermore we will need the spaces
L2 (%) = {uel®()] /u dz=0,,
Q;
HL () = {ucHYQ)] /uda:zO . (2.4)
Q;

For all the three spaces H'(Q;), Hy (%), H}, (), (2.3) is a norm; however, using
the well known Poincaré inequality?, H;(£;) and H}, (€2;) can be equipped with
the norm

lullapi = llullmg,, @) = [Vull2@y- (2.5)

Following the notation of [34], Chapter 1, Theorem 11.7, we define Hy,*(T;) as
the interpolation space between L?(T;) and H}(T;) for the index 1/2:

Ho? (1) = [L(Ty), Hy (1)), (2.6)

2 A rather general version of the Poincaré inequality covering the case of H} () is given
in Lemma 2.8. The application of this lemma is demonstrated in the proof of 2.9.
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Furthermore we set

HU(D) = (), B, 2.7)

HyJJ(T3) = [L7,(T), Hppy (D)3 (2.8)
The spaces (2.6)-(2.8) are equipped with the norms

el = NullZaey + 11(=20) ull 2 (2.9)

el = MelZary + 11(=Anm)  ull e, (2.10)

lullfiee,y = lelliae, +11@d - Anm)*ullp2(r,) (2.11)

Here, A, is the Laplacian defined on H*(T;) N H}(T;) and Ay, is the Laplacian
defined on the subspace of H?(T;) consisting of all the functions with homo-
geneous Neumann boundary values.> For the explanation of these norms and
fractional powers of self-adjoint positive operators see e.g. [34] Chapter 1 Sec-
tion 2.1 and the texts cited there. Definitions and properties of interpolation
spaces are given in Chapter 1 in [34]. Let us summarize the properties of the
interpolation spaces which are meanin ful for this chapter:

HY2(T;) is equal to the space H,'*(T;) being the closure of C°(T;) in the
| |l zr172(r;-norm (see [34] Chapter 1 Theorem 11.1).

An important characterization of H&éz(f‘i) is given in [34], Chapter 1, Theo-
rem 11.7: It is

H2 (1) = {u € HYV*(Ty) | p YVPue L3 ()}, (2.12)

and the equivalence
_ 1/2
lall a2y ~ (el + 0™ ?ullzar,) (2.13)

holds in the space Hyj>(T;). Herein, p is a C*°(T;)-function with 111’20 %

d#0 for all zo€dT';, z€T;. (The distance between OI'; and z is taken along I';.)
An alternative characterization of H}/? is

Hl}(T:) = ¢€H1/2(Fi)|/<pdo=0 : (2.14)

This can be proved by regarding L2,,, H'  in (2.8) as quotient spaces and using

Theorem 13.2 in [34].

—Agy on H*(T;) N HY(T;), id — Anm on H2(Q) N {u|du/0v = 0}, —Anm on H?(Q) N
HL,(Q) N {u|Ou/dv = 0} are self-adjoint and (strictly) positive on the domain of their def-
inition, therefore the fractional powers can be defined. The existence of Neumann boundary
values for functions in H?(T;) is a consequence of the Trace Theorem (Satz 8.7 in [57], p. 130).

muv)
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From (2.13) we derive Hoj*(T;) C H'Y?(T;); no '=’ holds, as the constant
function 1 € HY(T;) C HY*(T;), but ||p~ /2| p2(r,) = 00.

Let us consider (2.9)-(2.10). As —A, and —Apy, are positive definite opera-
tors (see Poincaré Lemma 2.8), the same holds for their powers and we get

1(=20) ullzery 2 ¢ llullzy,  I(=Anm) ullzey 2 e llull 2

Therefore dropping the term ||ul|7s () in (2.9)-(2.10) leads to the norms

lll gy = I(=20) ullzaey, (2.15)
lullgzey = I=Awm) ullz, (2.16)

which are equivalent to the norms (2.9), (2.10), respectively.
Function spaces Cg°, H&f, H'Y? H, 1/2 defined on the interfaces ['; are leading
to function spaces on I in a natural way, e.g.
CE(T) = {p:T =R gl €CF(Ty) Vi=1,..,p—1},
Hy’(T) = {p:T =R |plr, e Hoy*(T;) Vi=1,..,p—1}.

The norm associated with Hay” (T") will be

Il zum [,

and so on.
Let H1/2(T;) be the dual space to H&éz(Fi). The application of an element
of H~'/2 onto an element of H'/2? will be denoted as follows:

<.,.>Pi = <-, >H V2(13),H 1/2(Pz)’

00

<'7'>F = <.’.>H*1/2( I),H, 1/2(1—1)

We will use the same notation (-,-)r, for the duality between H_1/2(T;) and
H2(T;) and between (H'/2(T;))* and H'/?(T;).
There is a relation between the elements of H~/%(I") and H~'/(T;): For

p—1
@i € HY2(T;), ¢ defined by (¢, ¥)r :== ¥ (s, ¥|r,)r, is in H/2(T); we write
i=1

¢ = (¢1,.,0p_1). For p € H-Y2(T) the restriction p|r, € H~Y/2(T;) can be
defined by (¢|r,, ¥)r, := (¢, ¥)r where ¢ € Hy)>(T) is the extension by zero of a
zbeHé({z(Fi). For the norms,

lollz-1/2r Z el - v/2(r

holds.
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By means of the canonical Riesz identification L?(T") = (L?(T'))* we can identify
HyJ*(T) with a subspace of H~/2(T):
Ho*(T) € LA(T) = (LX(D))* ¢ H™Y() (2.17)

The same holds for each I'; instead of I'.
Now we will summarize some well known results. The following Trace Theo-
rem is essential for the rest of this section:

Theorem 2.1 (Trace Theorem) Assume that T CQ is a Lipschitz curve and
v a unit vector field normal to I'. Then, the mapping

u+— ulp, C®(Q) — C(T)
extends by continuity to a continuous linear mapping
u— you, HYQ) — HYX(I). (2.18)

This mapping is surjective and there exists a continuous linear right-inverse?
P: HY(T) — HY(Q).

Proof. See Satz 8.7 and Satz 8.8 in [57].° .
Further we will make use of the following generalized Stokes formula:
Theorem 2.2 Let ) be a domain with Lipschitz boundary,

Hyio(Q) := {@ e (L*(Q))" | div G L*()}.
Then there is a continuous linear operator g : Hy, (Q) — (HY2(0Q))* with g(@) =

@ - v for all we (C>(N))". For 4 Hy,(2)

/ (@ Vw + w div @) dz = (g(), yow)oe (2.19)
Q

holds for all we H*(Q).

Proof. See Theorem 1.2 and Remark 1.3 in [52], Ch. 1, §1, 1.3. n

Corollary 2.3 Let Q be a domain with Lipschitz boundary,
HA(Q) :={ucH(Q) | AucL*(Q)}.

Then there exists a continuous linear operator
71 HA(Q) — (H'2(09))"

with yiu = 2 for all ue C*(2) and

/(Vu -Vw + wAu) de = (714, Yow)aq (2.20)
Q

holds for all ue Hx(Q), we H'(Q).

4 i.e. ’YOP = 'idHl/Z(F)
SFor more regular 9 we find another proof in [34], Chapter 1, Theorem 8.3.
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Proof. Use Theorem 2.2 with 4 replaced by Vu. "

Remark. As Ho?(0Q) C HY/2(09), (HY2(8Q))* C H~1/2(09).

Lemma 2.4 Let T, Ty be two Lipschitz curves, o CIT', Ty #T, ¢ : ' — IR
with U|p\r0 =0.
Then ulr, € Hol*(To) if and only if u € HY2(T).S In this case,

¢ Nkl gaqrey < Nllrvaqey < € kol gyagee) (2.21)

Proof. The assertion follows directly from the proof of Theorem 11.4 in [34]
Chapter 1 (p. 60-61) for s = 1/2.7 Let us just point out that the validity of

(11.34) in [34] is a consequence of the representation (2.12)-(2.13) of H1/2(I‘0). n

Lemma 2.5 Let B be a subspace of H*(Q)) in which a Poincaré inequality
[ullz20) < cp [[Vull2@) VueB

holds. For
lullfr ) = Vullza@) +ollullzeg), >0,

the estimate
cllullaie) < llullar@) <€ llulla o (2.22)

holds with

1 9\ 1/2 1 9\ 1/2
¢=minK 1, LEP , €¢=max\ 1, Lgp (2.23)
1+¢% 1+cp
Proof. For 0 <1, ¢=1 matches (2.22), obviously. Let 0 >1. With the approach
c1+c2=1, 0< ¢q,c2<1 and the Poincaré inequality we get
el @) < (L+crocp) [Vullfzg) + ca o l|ullZzq)-

The best choice of ci, ¢, is to postulate 1+ c; 0 ¢ = cy0. Then we get

1+
—“” [T

2
1wl @) < T+c

and the right part of inequality (2.23) follows.

6 Replacing Héé2(I‘o) by H'/?(Ty) this statement would become false (see Theorem 11.4 in
[34] Chapter 1).

7 That proof makes use of the representation of the H'/?>-norm by double integrals as in
(3.165).
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For 0 >1, ¢c=1 matches (2.22). Now let 0 <1. With the same approach as
above and ||Vu||2q) > o [lullz2(e) we get

C2
lelEgor > e 190l + (5 +0) ol
Selecting ci, c; with ¢; = & + o we find
P

1+o0c?
= ||u||§11(9)

lullfe) > ———
Hz (@) 1+c¢%

and the left part of inequality (2.23) follows. .
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2.2 The minimization principle for the Dirichlet
problem

Now let us consider the Dirichlet case (TP = 9Q, TVN™ = () of the resolvent
equation (2.1)-(2.2) at first:

Lw=-Aw+ocw = f on§, >0,
w = ¢g°" on 9. (2.24)

To guarantee the existence of the solution of (2.24), we consider the corre-
sponding weak problem

/Vw Vw+owwde = (f,w)g-a)m@ Y we Hy(Q),
Q

w e {wEHl(Q) | Yow|aq = gD"} (2.25)

rather than (2.24). In (2.25), we assume that f€ H~1(Q), gPr € H/2(9Q).

Now we can give a derivation of the CGBI method as it was published in [5]
and [7]:

The main idea is to represent the solution w of the global problem (2.24) as
the sum

w=v;+u;, t=1,..p, (2.26)

on each €2;, where v; is the solution of the following pre-step:

L’U,’ == f in Qz
v; = ¢P" on 9Q;NON
Z—Z: = 0 on 9Q;\002 (2.27)

v; 1s the outward normal direction on 0f);.

Then, obviously u; has to fulfil Lu; = 0 on §2;. Denoting by ¢; the unknown
normal derivative of u; on I'; and requiring its continuity we get the following
problem for determining w;:

u; = 0 on 0Q;NON
ou.:
Ui = —p;1only 4 if i>0
81/,'
Oui T;ifi< (2.28)
= ; Ol L ; 1112 . .
e 2 p

with the unknown boundary value function ¢ = (¢4, ..., ¢p_1). By means of (2.28)
we may regard u = (uy,...,up,) = u(yp) as a function of ¢. We have to find the
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¢ such that v+u(yp) is in H'(2), i.e. that the jumps of v+u(yp) vanish at the
interfaces.
Strictly speaking, we are of course solving the corresponding weak problems

/sz Vw +oviw de = (f,w)g-1(9,),11 (%)
& V weHpi nm(Qi) == {we H' () | yow|on,no0 =0},
v; € {ue H'(Q) | youlon,nae = g7} (2.29)
instead of (2.27) and
/Vu, Vw + o u;w dx = (@i, Yow)r; — {(©i—1, Yow)r; ,
& V w € Hpyp nm ()
U € Hpipnm(Ch) (2.30)

instead of (2.28).
The method is now to determine ¢ on the interfaces such that the jump of
v+u = v+u(yp) on the interfaces is continuous in the sense of traces:

[v+u(p)]=0 onT (2.31)
where we have put
[w] := yow; — Yowsy1 on Ty i=1,....p—1.

The idea of CGBI is to find this ¢ by minimizing the quadratic functional

p-1 1
J(p):=>" <<Pz', Y0Ui = YoViv1 + 5 (Youi(p) — ’Youi+1(<P))> — Min., (2.32)
=1 %

with u; depending linearly on ¢ via (2.30). The equivalence of problem (2.31) to
the minimization problem (2.32) (both with v, u(y) defined by (2.29), (2.30)) is
demonstrated in Theorem 2.6. Using the more compact notation, (2.32) becomes

T9) = o, [0+ 5 u(@))r (23
Introducing the associated bilinear form b : H='/2(T') x H~'/2(I') = IR
b(¥, ) = (¥, [u(p)])r (2.34)

and the linear form [ : H=¥/3(T) = R
l(p) = (g, [v])r

(2.32) becomes

L b, ) +1(p) —> Min. in H-V/2(T) (2.35)

J(90)=2
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Theorem 2.6 The bilinear form b has the following properties:
a) b is symmetric.

b) b is bounded in the sense

b(p,¢) < ¢ lollf-say Yo€H YA(T). (2.36)
c) b is coercive:

b(e,9) 2 ¢ |ollf-2qy Yo €HA(T).

d) The problem (2.35) has a unique solution ©° € H='/2(T") which coincides
with the boundary value ¢ in (2.29)-(2.31).

The ratio of the constants in b) and c) only depends on the shape of the subdo-
mains €);, but not on the number p of subdomains or the length of the channel or
.

Remark. These properties and their meaning for the construction of a precon-
ditioner (see next remark) were stated by Borchers [5], but a proof was not given
in that paper.

Proof. For ¢ € H~*/2(T'), the Trace Theorem 2.1 and Lemma 2.4 guarantee that
ui(©)|r,, wis1 ()|r, € Hod?(Ty), thus [u(y)] € Hoy>(T). That means that b is well
defined.

ad a). From the definition of u(%) in (2.28) we get

oui()| _ Ouia(9)

— 7 = 5 , ie. mui(¥) = —y1ui1(y) on Ty (2.37)
Vit1

T;

8 v;

T
for i=1,...,p—1, Y€ H Y/2(T"). With help of (2.37) we conclude

b(, ) = Ig(@bia’YOUi(@)_'YOUHl(‘P»Fi
= X (), () s (),
= Igmui(@/}), Youi(@))r; + (Mmuit1(¥), Youir1(p))r;
_ zmuiw), o, + () o),

= D (nui(¥), voui(p))ae; (2.38)

i=1

[ary
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where we have used the homogenity of the boundary conditions for u(¢) on 9
in (2.28) in the last step.
As Aui(p) =0 u;(p) € L2(£);), we can apply the Stokes formula (2.20) and get

p

W) = 3 [ (o) Auth) + Vuly) - Vua(y)) da
= é/(a ui(p) wi(¥) + Vui(p) - Vui(v)) dz (2.39)

ad b). Let us apply Lemma 2.5 to all subdomains ,...,0, and let C be the
minimum off all the constants ¢. Let ¢ be the maximum of the norms of all trace
operators H(Q;) — H'Y?(0%Y;), i=1,...,p. Let us apply Lemma 2.4 to all curves
I; € 09, Ty C 0941 and let cp be the reciprocal of the minimum of the constants
c on the left hand side of (2.21). Using Lemma 2.5, the representations (2.39),
(2.38), Lemma 2.4, the Trace Theorem 2.1 and the Cauchy-Schwarz inequality
we get

p—1

c’ Z [|ui(p ||H1 < b(p, ) = Z(‘Pia70ui(<;0)_70ui+1(§0)>ri (2.40)

=1

< ZII%IIH 2y (ows()ll gz e,y +lvouia (Ol gz r,))

< CFZ il - 121 (||’Youz( )||H1/2(8§2,-)+||70ui+1(<P)||H1/2(6Qi+1))

< CFCTZ”%”H 12T (HUZ( )||H1(Qi)+||ui+1((p)||H1(Qi+1))
i=1
1/2
< 2crer [|ollg-12r (Z“Uz ||H1 )

Thus,

2 9cpe
F T
(S htMiran) < 25 bl

and

4c% 2
b0, 0) < 2B e

C, cr, cr are defined as maximums/minimums of constants which only depend
on the local geometry €;, ;. cr and cp are independent of o, and ¢ in (2.23) is
bounded independently of o € [0, 00). Hence, the constant in (2.36) is independent
of p, o and the length of the channel 2.
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ad c). Let us apply Lemma 2.5 to all subdomains Q;,...,Q, and let C be the
maximum off all the constants ¢. It holds

p—1 2
eI/ ZII%IIH 1/2(r =<Z sup M) (2.41)

& et Will e

Every 1; € H&f(l",-) can be extended to a ¢; € HY3(0%) by ¥ilaonr; = 0;
I|¢i||H1/2(BQ') < C ||’sz|| 1/2 1. holds (Lemma 2.4). Hence,
i H{*(T;)
(pi, vi)r, = (nui(@), Yi)r, = (nuily), 15 ;)00
= (nui(p), WPi)oa, = / o ui(¢) Pip; + Vui(p) - VP, d

< Cllui@)llm ||Pz'¢z'||H1(9
where we have used Theorem 2.1, (2.38)/(2.39) and Lemma 2.5. Furthermore,
| Pibill ey < cp; Clivill g,y

where cp, is the norm of the prolongation operator P; : HY/2(89Q;) — H()
(Theorem 2.1). Hence, in (2.41),

lelF-1r2y < C* e CzZIIUz W = C* b C*bp, ),

where cp is the maximum of the cp,.

ad d). The resolvent problem (2. 25) has a unique solution w € H'(Q). With help
of Corollary 2.3, ¢° := (ay1 ITyy ey au,, -|r,_,) liesin H~ 1/2(T). Then ¢°€ H-1/2(T)
is a solution of (2.29)-(2.31), i.e. v+ u(¢®’) = w. Using [v] = —[u(¢?)] and the
symmetry of b we get for arbitrary ¢ € H~/2(T)

Te) = T(¢%) = (o= olbr + 5 (o [u(@))r — 2 (6, [u(@")r
= @ WD~ (o, e )Dr + 5 (o [u(@)e
= ble—¢° p—¢")

which is zero for ¢ =¢° and, due to c), strictly positive otherwise. Thus, J has
a unique minimum at p=¢°. "

Corollary 2.7 For each isomorphism C' : H1/2(F) — H~Y2(T) that generates a
positive definite bilinear form (§,n) — (C&,n)r on Hééz(I‘) X Hl/z( T') there are
constants c1,cy >0 such that

c1 (¢, O p)r < b(p, ) < e2 (0, Cp)r (2.42)
holds for all p€ H~Y/%(T).
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Proof. Using at first Theorem 2.6 and then the continuity of C' and C'~!, we get
the following chain of equivalences on H~/2(T):

b(e,0) ~ llelg-say ~ 10l asn (2.43)
The positivity
2
<C§7 6)1" >c ||£||Héé2(r)
and the continuity
(CE&,E)r < 108 -2 €l ey < oy
both applied to £:=C"1¢p yield the equivalence

-1 -1 2
(0,07 ) ~ 10 ol (2.44)

|
Remarks on Corollary 2.7 and on preconditioning. We are going to
find the solution of the minimization principle (2.35) by the conjugate gradient
method. Therefore we are interested in a mapping C : Hgj*(T') — H~Y/*(T) for
which (2.42) holds because these mappings (rsp. its discretizations) are suitable
preconditioners: They are expected to cause a condition number k independent
of the discretization parameter.
Obviously, the Riesz isometry from Hy(T) to H~'/2(T') which is defined by

(C&mr = (€0 gy V&€ Hyg' (D)

meets the requirements in Corollary 2.7. (In the proof, last equivalence in (2.43)
and equivalence (2.44) can be replaced by =’ if C is the Riesz isometry.) Fur-
thermore, if we replace the norm in H&éz(f‘) by an equivalent norm (this induces
a new norm on H~/2(T") and a new Riesz isometry), the assertion also holds for
the new Riesz isometry. Let us focus on a special (canonical’) Riesz isometry:

(—Ag)Y? : H}() — L3(T) is a Riesz isometry between the spaces H}(T)
with the norm (2.5) and L?(T"). By continuity, this mapping can be extended to
a Riesz isometry

(=Ao)Y? : HY*(T) — H-Y*(T). (2.45)
Locally on each interface we get
(=Ao)Y? :+ HyJ (T;) — H A(Ty).

If we identify T'; with the interval (0, 7), this operator has obviously the eigen-
functions sin kz, k € IN. (—Apnn,)Y? on H}/2(T;) has the eigenfunctions cos kz,
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k € IN. The accompanying eigenvalues are equal to k both for (—A)'/2 and
(_ANm)1/2 and vV 1+k2? for (’Ld—ANm)l/z

A natural way for the choice of C is this Riesz isometry (2.45). For this choice
of C, the proofs of Theorem 2.6 b), ¢) and of Corollary 2.7 imply estimate (2.42)
with constants independent of p and the channel length. So the condition number
Kk can be expected to be independent of the discretization parameter, the number
p of subdomains and the length of the channel, but it may depend on the shape
of the subdomains. Of course x will also depend on the accuracy of the discrete
realization of C.

All these effects can be observed in Chapter 3 were preconditioning operators
C and its discretizations are developed and tested.

Another, less sophisticated choice of the transition operator C : H&éz(f‘) —
H~Y2(T") would be the Riesz isometry between L?(T') and its dual (L?(T))*,
restricted to H&f(l"). This operator violates the spectral equivalence of the
previous corollary. In the discretized version of CGBI, this transition operator
would be represented by the identity matrix on a finite dimensional space of
discrete solutions "

Both transition operators are subjected to numerical tests and comparisons
in Chapter 3.
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2.3 The algorithm for the Dirichlet problem

The method described in Section 2.2 leads to the following algorithm. Step 1
corresponds to the pre-step (2.27), in step 2 the boundary condition ¢ which fulfils
the minimization principle (2.32) is calculated, and in step 3 the corresponding
w; = v; + u;() is calculated.

For the sake of clarity, the obvious modifications in the boundary conditions
for the first and the last subdomain are omitted.

Procedure CGBI(f):
(Done in a parallel mode by processors i = 1, ..., p.)

step 1:  Solve (in a parallel mode)
Lv = f on ),
ﬂ =0 on an Fz 1 (246)

v—gD" on 9 \ (T; ULy ;)
with FEM, FDM or Chebyshev method.

Let g := [v] be the jump of v on the
artificial boundaries; g is defined on U r;.

=1

step 2: ¢ :=CG(g); (see below)
© is defined on U r;.
step 3:  Solve (in parallel)

Lu =0 on (),

%u — LponTy, 2 6 =—¢pon [ (2.47)
u—OonBQ \ (T; UT;_;)

with FEM, FDM or Chebyshev method.

Return w := w + v which is the solution of
Lw = f on Q, w = ¢gP" on 09.
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Procedure CG(g;):
(Done in parallel; each processor i = 1...p calculates on one artificial

boundary I'; and on one subdomain €;.)

;i =0

di == —Clg;
p—1

0 == — > {gi,d;) (— communication)
i=1

get d;_; from process i — 1 (— communication)

repeat
{ solve
Lu =0 on $,
g_lz = +dz on Fi, g—: = _di—l on Fi—l (248)

w=0ondY\ ([;UL;_,)
with FEM, FDM or Chebyshev method

Yi := uiy1 — u; on Iy (Cjump’) (— communication)
7= % — (= communication)
> {diyi)
i=1
Pi == @i + Td;
9i = 9i + T h; == Cy;
o
0 := Y {(gi, hi) (— communication), S := g—;, 0o := 01
i=1
dz’ = —hi -+ de
get d;_; from process i — 1 (— communication)
} until §; < e
return g;

The above algorithm is given in a non-discretized version. It computes the
boundary condition ¢ € H~!/2(T") and the solution w € H*() of (2.1). For details
on the discretization of this algorithm see Sections 2.6, 2.7. The local solvers in
(2.46), (2.47), (2.48) are described in Section 2.5.

For more details on the transition operator C' in the procedure CG see Chap-
ter 3 and the end of Section 2.2.
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2.4 The Neumann problem

As long as o > 0, the CGBI algorithm of Section 2.3 can be applied to the
Neumann case T"™#£() (see (2.2)) as well. Just the boundary condition (2.2) has
to be taken into account on the outer boundaries TV™N9<); for the local problems
(2.27) and the corresponding homogeneous boundary condition on TN™ N 9Q; for
the local problems (2.28). Concerning theory (Sec. 2.2), the spaces H&f(l") and
H~/2(T) have to be replaces by new ones if the interfaces hit V™,

If 0 =0, then a more important difficulty arises: The well-posedness of the
local problems gets lost if I'P" N 9Q; = 0, even if the global problem (2.1) is
well-posed (e.g. I'P" =T°). These subdomains where the local problem has no
Dirichlet boundary are frequently called floating subdomains. Having in mind
the pressure problem of the Navier-Stokes solver (Chapter 5), we will focus on
the case 0 =0, I'P"" =T°. For this case, we will discuss the modification for the
CGBI algorithm and the related function spaces for the boundary functions ¢
and the jumps [u(yp)].

2.4.1 General remarks on the Neumann problem

In this section some well known properties of the Poisson problem with pure
Neumann boundary conditions are recapitulated. We regard the following three
formulations:

(i) Strong formulation. Find a H?(2)-function u such that

—Au = f on (, 8_1: = g on 0f. (2.49)

0
To assure the uniqueness of a solution, we may additionaly postulate e.g.

u€ H (Q) (2.50)
(see def. (2.4)).

(ii) A variational formulation. For f € H~*(Q), g € H~'/2(8Q), find u €
H} () such that

/Vu -Vw = <f, w>H—1(Q)’H1(Q) + <g, ’)/0w>H—1/2(39)7H1/2(39) Y w EHl (Q)
Q

(iii) Another variational formulation. For f € H~*(Q), g€ H~*/2(99), find
uw€ H} (Q) such that

/VU -Vw = <f, w>H—1(Q)’H1(Q) + (g, 70w>H71/2(39),H1/2(39) Y w EH}m}(Q)
Q

(2.51)
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The Divergence Theorem shows that (i) can only have a solution if the compati-
bility condition

/fd:c+/gdo:o (2.52)

Q o

holds. On the other hand, the Lax-Milgram theorem implies® the existence of a
unique solution of problem (iii) without any compatibility condition on f and g.
By setting w := 1 we see that in (ii),

(f,Du -1@),HY(Q) T (9, 1>H*1/2(BQ),H1/2(6Q) =0 (2.53)

(which is, in fact, a 'weak’ formulation of (2.52)) is a necessary compatibility
condition for the existence of a solution. So (iii) is the only formulation among
(1)-(iii) without any compatibility condition for f and g.

Obviously, the solution u of (iii) does not change if a constant is added to f.
(In the spirit of (2.17), (f + ¢, w) = (f,w) + ¢ f[o w dz.) So we may substitute f
in (iii) by f= f+c such that (2.53) holds for f. Then, (ii) and (iii) have the same
solution. Assuming that this solution has H?(Q)-regularity, it also solves (i).

It should be emphasized that arbitrary H?(2)-solutions of (iii) (i.e. without
validity of (2.53)) do not meet (i), but only

7= g on 0N (2.54)

—Au = f—con Q, 0
ov

For a constant c€1R.?

2.4.2 Getting rid of ill-posed local problems

Let us assume the conditions made in the beginning of Section 2.4: o = 0,
['Dir = 19, Comparing Section 2.4.1, especially (2.53)/(2.52), with the prob-
lems (2.27), (2.28) where the Dirichlet conditions on 0 are just replaced by
Neumann conditions, we see that these problems would be ill-posed. We apply
the following modifications to ensure solvability and uniqueness:

Solvability. For both the pre-step and the main step, there seem to be two
different ways to ensure the solvability: To modify the source term of the partial
differential equations or to modify the boundary conditions on the interfaces. As
we want the problem of the main step to be homogeneous, we leave the source
terms unchanged. So we modify the boundary conditions.

8 Here we are using the Poincaré inequality on H}  (Q) (Lemma 2.9).

® To prove (2.54), one decomposes arbitrary w € H*(Q) into w=wo+cqy, ¢y :=|Q| 7! [ wdz,
wo € H},(Q). With help of (2.51), [,Vu-Vwdr = [,Vu-Vwedz = [, fwodr +
faQ g Yowo do = fQ flw—cy)dz + faQ 9(Yow—cy) do = fg f=let fg f=lo ! faQ g9)wdz +
S50 9Yow do from which (2.54) follows. Let us remark that our spectral solver (Sec. 2.5) happens
to solve (2.54) if confronted with an incompatible problem (2.49).
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Let us consider the main step at first. From the compatibility condition
(2.53), the homogenity of the partial differential equation and the homogenity of
the boundary condition on 0f2 we get the condition

Ou; .
< ui(p) 1> -0, i=1,..,p—1 (2.55)
I 89:\00

Successive application for :=1,...,p—1 leads to
<g0,', 1>Fi =0 Vi= 1, ey P — 1.
That means that we are searching the boundary condition ¢ in the space
H,,”*(T) := {pe(HYX(T))* | (¢s )r, =0V i=1,..,p—1}
(instead of H~/2(T)).
Now to the pre-step. Here, (2.53) leads to the conditions
<-f1: 1> H=1(Q41),H () + <9Nm7 1>FW0391 + <(P1a 1>I‘1 =0
(Fi Vr-1(00),m1(20) + (9" Drwaag, + (i, r, — (pi-1, 1), =0V i=2, ., p—1.
(2.56)

Let us notice that there is no compatibility condition on €2, due to the Dirichlet
boundary condition on T'Y. The easiest way to fulfil (2.56) is to define each ¢;,
1=1,...,p—1, as a constant ¢; on I';. This leads to the following recurrency
equation for the constants ¢;:

<f1, L ~1(Qy),HL () T <9N7’3 Drwraa, + ¢ [T1| =0,
(fz, > -1(q,),H(Q;) T <9N 71>I‘W06(2,- + ¢ |Fz| —Ci—1 \Fi—1| =0, 2=2,..,p—1
(2.57)

Uniqueness. The local solutions v; of the pre-step and u;(¢) in H*(;) (i =
1,...,p—1) are only defined up to a constant. Therefore we choose the following
additional condition:

/[v] do =0, /[u(gp)] do=0 Vi=1,.,p—1 (2.58)

r;

As v, and wu,(yp) are already well defined due to the Dirichlet condition on
9 (2.58) serves as a recurrency equality to determine the v,_j,v,_o,...,

Up—1(), Up_2(¢), ... by

/’Yovi do = /%Uz'+1 do, /70%‘(90) do = /’Youiﬂ(‘P) do, i=1,..,p—1L
T T T; T
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So we can state that the jumps [v], [u(¢p)] are situated in the space H}/2(T)
defined in (2.14), (2.8) and the solution u(yp) itself is situated in the space

HL (Q) = {ueL?Q)]|ulg,€H (), ulpow =0,
/[u] do=0Vi=1,..,p—1} (2.60)
Ty

and v in

{ue L3(Q) | ulo, € HY (), ulpoi = gP", /[u] do=0Vi=1,..,p—1}.

T;

Obviously, the solution w; = v; + u;(p) fulfils the partial differential equation
on each subdomain €2;, the boundary conditions on 92 N 9€2; and the continuity
conditions You; = YoUit1, Y1U; = —Y1Ui+1 on the interfaces I';. Thus, w is the
solution of the global problem.

Embedding of the function spaces. In the Neumann case we replace (2.17)
by the embedding

HY2(T) C L2,(T) = (I2,(I))* C Hpb*(D) (2.61)
with
12,(1) = {pel*(T)| [¢=0Vi=1,.,p-1)
Ty
(L2,(D) = {pe(@D)" | (¢, Dy = 07 i=1, .., p—1}

and the Riesz identification

J i Lu(D) — LoD 90— j(0) =8, ¢(w) = [ 99 da.

Remark concerning (2.58). Beside (2.58), there are other possibilities to
make u(p) unique. The definition of the function space of the u(y) determines
the function space of the traces on I' and vice versa. One might propose

where z; €T'; are fixed points, or
/ud:rzO Vi=1,..p—1, (2.63)
Q;

to substitute (2.58). The bilinear form b would be unaffected: (2.62) or (2.63)
instead of (2.58) would only shift the u; by additive constants; the application of
a € H-1/? to a constant is zero.
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However, (2.62) is only meaningful in the context of discretized u. So the
difficulty would arise how to define the function space replacing H}/2(T') and the
corresponding imbedding (2.61) properly.

If we would replace (2.58) by (2.63), the explicit characterization of the space
of the traces yyu as the space H,ln/f(F) would get lost; the space of traces would
be a certain subspace of H/2(T'). This would be a bit less convenient for the
construction of preconditioners which have to be isomorphisms from this space

to H_1/2(T).
2.4.3 The algorithm in the Neumann case

Section 2.4.2 showed that we can define the bilinear form b on the space
H,;/*(T) x H,,,/*(T) by

b, ¥) = (o, [u(¥)])r, (2.64)
where u(y) is the solution of the problem
u € Hy,(9),

/Vui -Vwdz = {(pi,vow)r; — ($i1,Yow)r;_,
* Vwe {we B | wlpoe = 0}, (2.65)
and that v is the solution of the folling pre-step:
v € HY(Q), vplro =¢"",

/[v] do = 0,
/V’Ui Vw = <f7 W>Qi + <gNm’ 70w>3QiOTNm

+c; /fyow do — c;_1 / Yow do

Ty T

Vwe {weH () | wlppir=0} (2.66)

with the ¢; from (2.57), determined such that the compatibility condition (2.53)
rsp. (2.55) is satisfied.
The corresponding strong formulation of (2.66) is

—A’U,' = f in Q,

v _ g"™ on 9Q; N TN™
81/1'

v = gP"onTP"=T9if j=p (2.67)
8’01'

= —C;—1 On Fi—l ifi>1

A,
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ov; v

a_v = qgonl;ifi<p

Vi
/[v] do = 0 Yi=1,..p—1 (2.68)
T;

(compare to the Dirichlet case (2.27)) and

gui = 0ondQ, NIANm
Vi
u; = 0onTP7=TCifi=p
Ou; .
81: = —@;—1 On i_iifi>1
g“" = p;onTiifi<p
Vi
/ [ do = 0 (2.69)
T

for the main problem (2.65) (compare to the Dirichlet case (2.28)); (2.57) corre-
sponds to the strong formulation

/f1 dz + / gV da + ey |Ty| = 0,

1951 I‘Wmc')ﬂl
[fidz+ [ g dzt el i1 Tial =0, i=2,.,p-1.
Q; W NaQ;

The last line of (2.67) and of (2.69) are ensured by adding, for i = p — 1,
p — 2,...,1 a constant to each v; rsp. wu;. To determine these constants, the
recurrency equalities (2.59) are used.

In the following let us check that all the properties of Theorem 2.6 stay true for
the bilinear form b defined by (2.64)-(2.65) on the space H_Y/2(T") x H-V*(T).
Also all the remarks on the preconditioning at the end of Section 2.2 stay valid
for the Neumann case if the spaces Hel?, H™'/2, L2, (L?)* are replaced by H/2,
H,;ul)/z, L%nv’ (LG'u)* and AO by ANm-

At first let us check the validity of a Poincaré inequality in the space H}, (£):

Lemma 2.8 (a general Poincaré inequality) Let QCIR", n>1, be a bounded
domain, meIN. Let n€ (H™(Q))* with the property that n(P)#0 for all nonzero
polynomials P : Q@ — IR of degree deg(P) < m—1. Then there is a constant
c=c(n,Q) such that

[ullgm-1) < ¢ ( > ID%ullzz(e) + |77(U)|> VueH™(Q) (2.70)

al=m



2.4. THE NEUMANN PROBLEM 31
where [[ullf) = 3 1Dl

Proof. |n(-)| is a norm in {P | P : Q — IR is a polynomial with deg(P) <m—1}.
So we can apply Satz 2.17 in [55]. .

From this lemma we can derive the Poincaré inequality for the space H}, (€):

Lemma 2.9 (Poincaré inequality in H} (%)) There is a constant c=c(£);)
such that

ullz2@) < e [[Vullrz ;)
for allue HE, ().

Proof. 7n(u) := [o udz defines a functional n; € (H'(€))*. Let us apply
Lemma 2.8 with m=1. We get the estimate

lullzzen < e | IValzy + | [ udal |- (2.71)
Q;
Due to the definition of H} (€;), the last integral vanishes. n

Remark. It is also possible to derive a ’global’ Poincaré inequality in H} (Q)
(2.60). It reads

p
lullzz@) < e X lIVullza@y Y ue H,y,, (D). (2.72)
i=1

To prove this we replace 7 in the previous proof by 7;(u) := [, vou do and get

luillzay < e | Vil + | [ rouisa dol
I,

13

which evaluates to

upllz20,) < cp IVUpll2(a,)

on the last subdomain and

lallzaqen < e | IVl + | [ vouiss dol
Ty
on all the other subdomains i=1, ...,p—1 (we have used (2.59)). With help of the

Trace Theorem, the last integral can be estimated by the H*(£2;,1)-norm of u;, ;.
Successive application of the gained estimate for i=p—1,...,1 leads to (2.72).



32 CHAPTER 2. CGBI

Conclusion. Theorem 2.6 is valid in the Neumann case with the bilinear form
b defined by (2.64)-(2.65) on the space H,1/2(T') x H-/(T).
Proof. a) and d) are analogous to the Dirichlet case.

ad b) As 0=0, we have b(p, )= Z | Vu; (o )||%2(Qi)' Using the ’global’ Poincaré

inequality (2.72) for the first step in (2 40), we can prove (2.36) with a constant c
depending on the Poincaré constant in (2.72). This constant, again, may depend
on the length of the domain 2! To avoid this dependence on global parameters,
we proceed like this, using the ’local’ Poincaré inequality on H} (€;):

Let X; be the projection

X;: L2(Q) — L2, (%), ur—— o u dz.
il
Following (2.40) we get
Z IVui(@)lz2(0:) = ble; )
-1
< Z ||g0i||H;ul;/2(Fi) llvoui(®) — youir1(p )||H1/2(1"-)' (2.73)
i=1

Using the definition of the norm || - | HY2(r,) (2.16) and the fact that constant

functions are in the kernel of (—ANm)1/4 then (2.11), the Trace Theorem for
H'(Q;) — HY?(T;) and the "local’ Poincaré inequality in HY, (;) we get

Ivoui(p) — 70ui+1(80)||H},{3(pi) = ||(—ANm)1/4 (voui(p) — 70uz'+1(<P))||L2(n)
(= Anm)* (Yo Xiui(e) — YoXis1tir1(#)llz2ry)

¢ |l Xiui(p) — YoXiv1uir1 (@)l a2y

@ ar2ws) + e llvoXivivi (@)l gy,

)

(o

IANIA

¢ ||yvoXiu;

IN

c || Xiui (@) || +C||Xz'+1uz'+1( M et (@ira)
c||VX;u; )||L2 )+ eIVX i (0)| 2 9ir)

c||Vui(p )”L2 +C||Vu1+l( )||L2(Qi+1)

where the c are generic. We get (2.40), (2.36) now independent of the global
shape of €.

ad c) We only have to check that the prolongation of ¥ € HY2(T;) to a ¢ €
H/2(0%;) with |r,_, =0 in the proof of Theorem 2.6 part c) is possible.

Let us choose a parametrization of 9€2; which maps the interval [0, 27) onto
0Q;, (0,7) onto I';, (2/37,5/6m) onto I';_1. Then by setting ¥(x—m) := ¥(z),
1 is prolongated to a H/2(98);)-function. (The H'/2-property can be checked
easily with the representation of H'/2 by double integrals (3.165). Then, 1 is
multiplied by a C*'(99;)-function which is 1 on I'; and 0 on I'; ; such that the
product has mean value zero. This operation preserves the H'/2-property, as can
be seen e.g. by using the double integral representation again. "

IN
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2.5 The local solvers

Within each CGBI iteration step (2.48) and in the pre-step (2.46) and post-step
(2.47) a local partial differential equation has to be solved on each subdomain.
The CGBI parallelization method enables the use and the coupling of arbitrary
local solvers on the subdomains €2;. On rectangular subdomains the use of spec-
tral solvers is sensible. The high accuracy of spectral solvers enables the use of
a very low discretization parameter on those subdomains. On non-rectangular
subdomains (as they occur when the flow around an obstacle is simulated), fi-
nite element solvers may be used. On channel-like domains, the possibility of
coupling different solvers should make CGBI an interesting alternative to, for
example, parallel FE/multigrid solvers.
Our program includes three different local solvers:

1. A finite element solver.
The FE solver uses a triangular mesh and linear shape functions. On each
FE subdomain, the resulting set of equations is solved by a sequential CG
method. (However, a sequential multigrid method might be preferable).

2. A Chebyshev collocation spectral solver.
This solver uses the collocation method with respect to the so-called Gauss-
Lobatto points, which are for the two-dimensional unit square [—1, 1] x
[_L 1]

} . T 7
{(:v,-,yj)T | i=0,...,Nx, j=0,..,Ny}, @ =cos—, y; = cos—j.
Nx Ny

The Chebyshev collocation method uses the explicit knowledge of the rela-
tion between the values of a function of the (polynomial) ansatz space at the
Gauss-Lobatto points and the values of its (first, second order) derivative
at the same points. As the dimensions decouple, these relations are given
by (Nx+1) x (Nx+1)- rsp. (Ny+1) x (Ny+1)-matrices for 8/0z, §?/0x?
rsp. 0/0y, 0%/0y?. In the case of the first order derivative, this matrix can
be found in [12], p. 69 (and in [16]). The second order derivative matrix
was found by Peyret 1986. It is given in [16], p. 7.

After eleminating the boundary grid points by means of the boundary con-
ditions, a diagonalization!? is performed on the resulting system matrix.
For time-dependent problems (flow problems) this time-consuming diago-
nalization only takes place once. If the diagonalization is performed, the
application of the Chebyshev spectral solver takes O(N?3) (N = Nx = Ny)
operations.

10 j.e. a computation of the eigenvalues and eigenfunctions
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A short summary of the method can be found in [7]. A more detailed
description is given in [16], [17].

. A finite difference (FD-) solver.

It uses the ordinary 5-point-stencil approximation

—Au(zi, yy) ~ (2.74)

1
72 (Adu(zi, yj) — w(@iz1, y;) — w(wio1, y;) — w(@s, yj+1) — w(zi, yi-1))

on an equidistant mesh z;=y; =ih, h = N !, i=0, ..., N on the unit sqare
[0,1] x [0, 1].

The system of equations is solved efficiently by a multigrid method. We
use V-cycles with two relaxed Gauss-Seidel steps before and two after the
descent.
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2.6 The discretization on the interfaces

A quality of CGBI is its flexibility: Almost all questions of discretization are left
to the local solvers which facilitates the use of arbitrary local solving modules.
Beside an ordinary CG iteration in which the local solvers are called only the
following items are left to CGBI:

1) the calculation of the jump at the interfaces

2) the application of the transition operator C : Hyj(T') — H /%(T) rsp.
C'+ Hy/X(T) — H,./2(T)

The only requirement to the local solving modules is that they provide a method
to evaluate a local solution at some grid points on the interfaces. This is sufficient
to enable CGBI to perform 1) and 2). Let us concentrate on an interface I';, and
let us denote G* C I'; the set of points on which the solver on ;_; provides the
solution and Gﬂr C TI'; the set of points on which the solver on (2; provides its
solution.

ad 1). If G* and Gﬂr coincide then CGBI uses this boundary mesh G. = Gﬂr,
and the calculation of the jump on I'; is trivial. Otherwise some interpolation has
to be applied: If T'; is surrounded by a FD subdomain and a Chebyshev subdo-
main our program uses interpolation onto an equidistant grid by piecewise linear
polynomials. If T'; is surrounded by two Gauss-Lobatto domains we perform the
CG iteration on the Gauss-Lobatto grid; finite order interpolation onto another
grid would destroy the spectral accuracy.

If FE-subdomains are involved, there are two possibilities:

a) Construct the FE-meshes such that its restriction onto the interfaces coin-
cides with the restriction of the mesh of the adjoint subdomain (equidistant
or Gauss-Lobatto). In this case the FE-subdomain can be treated as a FD-
rsp. a Chebyshev subdomain.

b) If it is not suitable to construct such a FE-mesh, interpolation onto (e.g.)
the boundary mesh induced by the adjoint subdomain is necessary.

ad 2). Chapter 3 deals with the transition operator C. It turns out that a
discrete version of C' can be found easily if we can access the equidistant grid
values of the function being subject to C. As already mentioned in 1), the
application of CG with respect to an equidistant boundary mesh would diminish
the accuracy if more than one spectral subdomain is involved. One might try to
use the equidistant mesh only for the preconditioner, i.e. to perform CG on the
Gauss-Lobatto mesh and to interpolate before and after the application of C"

Char = Ieg6L © Choequ © IgL—seq
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This method seems to be problematic (see Section 3.2). So the construction
of discrete preconditioners on non-equidistant grids in Chaper 3 seems to be
indispensable.

2.7 The discrete scalar product

Interpretation and evaluation of the duality couple (-,)r,. In the CGBI
algorithm in Section 2.3 the application of a ¢ € H~Y/2(T;) onto a ¢ € Hoy” ()
(1sp. ¢ € H,Y*(T;), ¥ € HY2(T;) in the Neumann case) has to be calculated.
How has this to be treated in the discretized version of CGBI?

Discrete solution spaces are usually subspaces of L? (or they can be identified
with subspaces of L?); by means of the embedding (2.17) rsp. (2.61) we can
interprete the expressions (s, ¥p)r; as scalar products in L?(T;). But it should
be emphasized that CGBI also works if the exact solution ¢° is not situated in
L2(T) but only in H~Y/2(T") (H,/(T"))! In this case, the discrete approximations
of ¢° lying in L2(T) converge to ¢° in H~Y/2(T') (H_Y/*(T)) if the discretization
parameter tends to zero.

However, we may interprete the expressions (@, ¥p)r, as scalar products
(ns Yn)r2(r,)- Furthermore, let us assume that the discrete solution spaces en-
able the pointwise evaluation of functions (for FE and for spectral methods, this
is obviously true). If there is an equidistant mesh on I'; we can approximate the
L*(T;) scalar product with help of the trapezoid rule

(©n, Yn)n = E‘V—A (M + 2_1 on(xi) Yn(zi) + (ph(xN);ﬁh(xN)) (2.75)

where the x; are the equidistant grid points.
In case of a Gauss-Lobatto mesh on I'; we may use the transformation!

™

1
/gm,b dx = /(pocos wocos sin€ d€.
-1

0

The discretization of the right hand side by the trapezoid rule'? with respect to
an equidistant grid leads to the discrete scalar product

T

N-1
(©ns Yn)nar = % > () v(zy) sinﬁ (2.76)
=1

where the Z; =cos(im/N) are the Chebyshev-Gauss-Lobatto grid points.

11 For the sake of simplicity let us assume T';=(—1,1) here.
12 Let us note that the trapezoid rule is highly accurate here, as the integrand is periodic
([47] Section 8.2.1).
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The symmetry of the system matrix. The classical CG method requires
the symmetry of the system matrix. But collocation methods like the Chebyshev
method mentioned in Section 2.5 are known for destroying this property, i.e. for
a symmetric differential operator the system matrix may be non-symmetric.

Therefore it seems reasonable to investigate the (non-)symmetry of the system
matrix A, for our operator

Ao — [u(p)] (2.77)

corresponding to the bilinear form b and the minimization principle J. Let us
mention that the entries of the system matrix are not actually present in the
CGBI program code, as the application of A is performed 'implicitely’ by solv-
ing boundary value problems and calculating the ’jump’. As a measure for the
(non-)symmetry of the discrete operator Ay, with respect to a scalar product (-, -)p
we may choose a basis ¢!, ..., V=1 of the N—1-dimensional discrete solution space
and calculate

S(Ah) = S(Ah;(pla"'agoN_l)
N-l o . Y2
(1 1664 4n) - (e o)

— T €0,1] (2.78)
2 (,z |<soz',Ahw>\2)

4,j=1
If Ay, is symmetric with respect to (-, -), s(Ap) =0, if Ay is antisymmetric, s(Ay) =
1.

If the FD (or the FE) solver is used we should expect Aj being symmetric
with respect to the scalar product (2.75). And in fact, due to numerical round
off errors we achieve for s(Aj) values between 1078 and 1077,

Fig. 2.5, however, shows s(Ap) in the case of 2 subdomains with Chebyshev
spectral solver and a Chebyshev-Gauss-Lobatto mesh on the interface. On the left
of Fig. 2.5, Dirichlet boundary conditions are imposed, and on the right Neumann
boundary conditions. On the horizontal axis, the discretization parameter N =
h~! is given. For the full lines, the 'correct’ scalar product (2.76) was used'3. For
the broken lines, the 'wrong’ scalar product

rfr = _

3 (5@ v(@) + X w(@) via) + § olew) viow) (2.79)
i=1

was used. The figure shows that with the 'correct’ scalar product the symmetry

of Aj, is much better than with the other. Test runs confirmed that the classical

CG method is applicable, if the correct scalar product (full lines) is used. For the

13 Correct in the sense that it approximates the Hy/>-H ~/2-duality (rsp. the Hple-Hmy!>-

duality in the Neumann case) in which the exact operator A is symmetric.
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1.0 y
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0001 | oo
0.0001 0.0001
0.00001 : 0.00001
8 16 32 64 : " - -

Figure 2.5: Asymmetry s(Ap) in the Dirichlet case (left figure) and in the Neu-
mann case (right figure). Discretization parameter N on the horizontal axis. The
full lines represent (2.78) with the scalar product (2.76), the broken lines (2.78)
with (2.79). Two different bases (¢%)i=1.. n—1 where used; therefore each line
appears twice.

other scalar product (broken lines), the classical CG algorithm only converges
for the Dirichlet case, but not for the Neumann case. This can be explained by
the larger asymmetry in the Neumann case (compare broken lines left«sright).
This larger asymmetry, in turn, can be explained by the fact that the two scalar
products (2.76) and (2.79) differ by a weight which is singular at the boundary
of T';, and for functions being zero at the boundary (=Dirichlet case) this weight
function loses importance.

Our tests (Sec. 2.8 and 3.1.5) showed that our CGBI method using the classical
CG algorithm for symmetric matrices handles the slight asymmetry (Fig. 2.5, full
lines) of the discrete operator without any problem. The implementation of a CG
version for asymmetric matrices turned out to be unnecessary.
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2.8 Test runs

In this section some test runs with FDM and with Chebyshev subsolvers, with
Dirichlet and with Neumann boundary conditions are made. Diagrams showing
the errors of the numerical solution of the Poisson equation with respect to the
discretization parameter are given.

In Section 3.1.5 (also 3.3, 3.4), far more tests are made including the coupling
of the different local solvers and the variation of several parameters. There,
special emphasis is laid on the examination of the speed of convergence. Here in
Sec. 2.8 we focus on the final CGBI error and its dependence on the discretization
parameter.

We suppose that we have a rectangular domain Q (Fig. 2.2).

For all the tests, the exact solution is given so that the error can be calculated.
These are the tested exact solutions:

Test function 1:
108

A

(see Fig. 2.6) has [max, lu(z,y)| = L?, Q = (0,L) x (0,1). This function has

u(z,y) = (z—L) y* (1—-y)? (2.80)

homogeneous Dirichlet boundary values on 02 and also homogeneous Neumann
boundary values on T UTY,

Test function 2:

u(z,y) = e eV 71/ @Y L/ o~L/(2L-2) (2.81)
(see Fig. 2.7) has sup |u(z,y)| =1 and homogeneous Neumann boundary con-
(z,y)eQ

ditions on 9. The higher order derivatives of (2.81) take rather large values.

Test function 3:
u(z,y) =z (L—z)y (1-y) Y(y—=z/L) (2.82)
with
1, d<0
w(d):{ 1—d/4, d>0

The second order derivatives of u are discontinuous at the diagonal y = z/L.
The two factors z (L—z) y (1—y) and ¥ (y—z /L) are displayed in Fig. 2.9; u itself
is given in Fig. 2.8. (2.82) lies in C*(Q2) and in H?(Q2), but not in C?(Q) or in
H3(Q). The correct interface condition ¢ = 2%|. for (2.82) is only a continuous
function, but it is not in C*(I'). 2 is displayed in Fig. 2.10. Fig. 2.12 shows the
decay of the Chebyshev series for functions of different regularity.

Test function 4:

w(z,y) = % eV y(1—y) cos(Wz) z (L—2) (2.83)
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is a function with homogeneous Dirichlet boundary values on 0f2. In the test
runs and in Fig. 2.11 we take W =5. In that case, max |u(z,y)| ~ 1.

This function is used for larger channel lengths L. For integer L and W, the
cosine oscillation is not commensurable with the length of the domain.

%

1

Figure 2.6: Test function 1.

Figure 2.7: Test function 2.
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Figure 2.8: Test function 3.

-3
Figure 2.9: The smooth and the non-smooth factor of test function 3.

_0:6 Figure 2.10: g—’; for test function 3.
-0.8
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1E+2 — T T T T T
I ,,_—s'
1E+0 |
161 |
1E-2
1E-3
1E-4
1E-5
1E-6
1E-7
1E-8
1E-9

abs(c_k)

O 2 4 6 8 10 12 14 16 18 20
k

Figure 2.12: Absolute value of the Chebyshev coefficients ¢, for functions f(z) =
Y20 ¢k Ti(x), Ti(x) =cos(n arccos ), of different regularity on [—1,1]. Only the
non-vanishing coefficients are displayed. ¢;(z) = sinwz, po(x) = 22 x(z > 0),
e3(x) = zx(z > 0), pa(x) = x(z > 0). x(M) is the characteristic function
of a set M C [—1,1]. The higher the regularity of ¢, the faster the decay of
the Chebyshev series. Concerning regularity, (3 corresponds to the boundary
condition du/dz|r, = ¢|r, for the test function 3 for p=4, L=4. For the other
test functions 1, 2, 4, du/dx|r, is in C*(T;) which corresponds to ¢; in the figure.
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The test runs. Figs. 2.13 and 2.14 show the error of the numerical solution
in the L*°(Q)-norm with respect to the discretization parameter N. 4 square
subdomains with (N+1) x (N+1) grid points each were used. The error after the
CGBI becomes stationary is displayed. The test function (t.f.) 2 uses Neumann
boundary conditions. For all the other cases, Dirichlet conditions are applied.

If FD solvers are used (Fig. 2.13) the second order FD discretization error
leads to a global error of second order in N~—!. Only for t.f. 3, as expected, the
lack of regularity causes a lower order.

If Chebyshev spectral solvers are used (Fig. 2.14) only the round off error of
~ 1078 occurs!* as soon as the modes of the exact solution are resolved in the
local ansatz spaces, i.e. spectral accuracy is reached. T.f. 1 is a polynomial of
low order, i.e. it is situated in the ansatz spaces. Therefore spectral accuracy is
gained even for small N. T.f. 2 requires a very large polynomial ansatz space to
resolve its modes. The lack of regularity of t.f. 3 destroys the spectral accuracy
in this case. However, it seems to be remarkable that the error is still smaller
than in the FD case.

L>(Q) 1B+l — ! ! ! ! ' '
-error ! 5 5 5 5
1E+0
1E-1
1E-2
1E-3

1E-4

1E-5 | | | | | | |
esf

w7l

sl

Figure 2.13: CGBI error for 4 FD subdomains.

14 10~® with respect to the maximum of the solution.
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L>(Q) 1E+1
N 1E+0
1E-1
1E-2
1E-3
1E-4
1E-5
1E-6
1E-7
1E-8 | | : | | | |
1E-9 L1 - - - - - -

Figure 2.14: CGBI error for 4 spectral subdomains.
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2.9 CGBI and other domain decomposition
methods

In the last twenty years a large variety of algorithms for parallelization by domain
decomposition was presented. In the following we restrict ourselves to approaches
which are related to CGBI;'® we do not discuss e.g. the Schwarz method for
overlapping subdomains.

CGBI reduces the global problem (2.1) to the inversion of the operator

A:p— [u(p)] (2.84)

where u(yp) is the function matching (2.1) locally on each Q; with Neumann
boundary data ¢ on the interfaces I' (and homogeneous Neumann or Dirichlet
data on 02, see Sections 2.2, 2.4). The continuity condition for the normal
derivative [0u/0v] = 0 is intrinsically guaranteed by this approach, while the CG
iteration process causes [u] — 0.

Closely related to CGBI is the following ’dual’ approach: Guarantee [u] =0
and try to minimize the jump of the normal derivatives [0u/0v] — 0. This
approach leads to the operator

. Ou” ()

A .¢—>l 5 ] (2.85)
where u*(¢) is the function matching (2.1) on each ; with homogeneous Dirichlet
boundary data 9 on the interfaces I'. In fact, the use of operator (2.85) is more
classical than (2.84); as a method for parallelization it was investigated from the
early 1980s on ([4], [15], [35], [45] p. 4, [53] and papers cited there).

As A (see Theorem 2.6), also A* is symmetric, coercive and continuous ([45]
p. 8-9). That means that a CG iteration is possible to invert (2.85). The condition
number of FE discretizations of A* is estimated in [35] and, more generally, in
[11].

The mapping ¢ — u(yp) is usually called the Poincaré-Steklov operator. (In
[45], instead the mapping A* has this name.)

Both methods have in common that they ’reduce’ the problem given on the
domain 2 to a ’smaller’ (dual’) problem on the interfaces I'; both methods
use a preliminary step to handle the inhomogenities of the global problem and
determine the correct interface boundary condition ¢ rsp. 9, then. If we restrict
ourselves to the model case of only two subdomains where one is the mirror image
of the other, both operators are even inverse to each other up to a constant factor:

o) . ,
Eu(go) =¢, A"A=4id (2.86)

15 An overview over several methods is given in [45] [53].
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If regarded on a discrete ('matrix’) level the methods related to A and A*
are called dual Schur methods or Schur complement methods because the matri-
ces of the discretized problems (2.84), (2.85) are the Schur complements of the
discretized global problem (2.1). A very common method which was developed
for the finite element approximation of problems in structural mechanics is the
FETI method (Finite Element Tearing and Interconnecting) by Farhat & Roux
(first publications: [18] [19] [20] [21]; more recent e.g. [22] [40] [3]). FETI and
CGBI have in common that the resulting local problems correspond to boundary
value problems with natural boundary conditions. The FETI method expresses
the interface condition by Lagrange multipliers and starts from a saddle-point
problem which is discretized. Main differences between FETI and CGBI are the
construction of the preconditioner and the handling of the so-called floating sub-
domains (see Sec. 2.4). The problem of the floating subdomains is more grave in
the context of structural mechanics. This leads to a projected CG algorithm for
FETI. For flow problems, CGBI is able to handle the floating subdomains by the
simple fact that its preconditioner C defines a proper isomorphism of the function
spaces R(A) and D(A) (see Sec. 3.1.1); Cy is automatically in the correct space,
no projection is needed.

A lot of authors have developed preconditioners for the two operators. Most
have in common that they lead to a condition number

k= c(1l+logH/h)"

where h is the mesh size of the discretization, H is the diameter of the subdo-
mains and v is usually equal to 2 or 3 ([45] Sec. 3.3.2 and the authors cited there
and (very recent) [28]). So the condition number depends on the discretization
parameter which is not the case for our preconditioner developed in the following
chapter. Furthermore, these preconditioners require the solution of additional
local problems on the subdomains which is much more time consuming than the
preconditioner of Chapter 3. However, the development of those preconditioners
was done in a more general setting concerning the geometry of €2, its decomposi-
tion and the given operator L, whereas we consider geometries given on p. 8. So
the challenge remains to investigate the effectivity of our preconditioner in the
more general case of interior crosspoints of the interfaces. Let us mention the
early work by Dryja [15] and Bjgrstad & Widlund [4] in which a preconditioner
acting only on the interface and leading to a condition number independent of h
was constructed for A* instead of A. They presented test runs for a model case
of two subdomains and a FD discretization on an equidistant Cartesian mesh.
Both Dryja and Bjgrstad & Widlund used the square root of the discretized neg-
ative Laplacian while Chapter 3 of this thesis proposes the non-discretized. See
remark at the bottom of page 92. In this thesis we extend the application of
interface-based preconditioners to Gauss-Lobatto boundary meshes and to Neu-
mann boundaries causing the ’'floating’ subdomains, and we demonstrate the
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application for FE-Chebyshev couplings and for Navier-Stokes flow problem:s.

Let us emphasize that the construction of our preconditioner for the operator
A is also meaningful for the Schur complement method based on A*: From (2.86)
or from [15] it is clear that the inverse of our preconditioner is well suited as
a preconditioner for the Schur complement method concerning A*, at least in
the case of two subdomains. The application of the method of the proof of
Theorem 3.12 to the operator A* instead of A shows that the inverse of our
preconditioner is well suited as a preconditioner for A* in the case of an arbitrary
number of subdomains, too. In fact, A* with preconditioner (—A)~'/2 and A
with preconditioner (—A)'/2 lead to exactly the same condition number for the
geometry of Sec. 3.1.4 and equidistant FD meshes (¢ =0).

Finally, let us mention that for the Bramble domain decomposition approach
a condition number independent of h was found, but just for geometries without
interior crosspoints. See [9] [10], esp. Theorem 1 in [9].

CGBI and FETI handle the problem of applying A~! rsp. (A*)~! by solving
local boundary value problems. A modified approach consists in assembling the
matrices related to A, A* (i.e. the Schur complement matrices) explicitely. This
is expensive both concerning memory and time, as the matrices are containing
blocks which are dense, but this method may be considered if the number of
nodes on the interfaces is not too large, as it happens to be the case with spectral
methods. Comparational computations are presently done [43].



Chapter 3

Preconditioning Techniques for
CGBI

The theoretical results of the previous chapter (Cor. 2.7 and the following remark)
already showed how to construct a preconditioner for CGBI. In this chapter we
will mainly deal with a simplified geometry of the domain . In fact, we will
assume that (2 is a rectangle and that all subdomains (2; are rectangles of the same
size. In this case it is possible to calculate the eigenvalues and eigenfunctions of
the operator (2.77) related to the minimization principle (more or less) explicitely.
This knowledge of the eigenvalues and eigenfunctions will give us another (less
theoretical) approach to construct preconditioners. Of course, the results of this
new approach will be similar to those of Chapter 2. The advantages of the new
approach using the simplified geometry is that it allows to

e find explicit bounds for the estimate (2.42) of the preconditioned operator
(in (2.42), these bounds depend on the unknown norms of some restriction
and prolongation operators)

e investigate the dependence of these constants on ¢ and on the subdomain
aspect ratio r and modify the preconditioner to make the bounds indepen-
tend of these parameters.

Within this chapter, two main discretizations of the square root of the negative
Laplacian (i.e. the preconditioning operator) are given: A ’spectral’ one based
on FFT (Section 3.1) and an approach based on sparse matrices (Section 3.4).
Originally, both approaches require the equidistance of the boundary mesh on T'.
In Section 3.1.3, the interpolation theory of Sobolev spaces is used to adapt the
discrete preconditioner to a Chebyshev-Gauss-Lobatto boundary mesh.

Of course, the discretization techniques (i.e. the use of FFT (p. 54), the use
of sparse matrices (Sec. 3.4), the reduction of the Gauss-Lobatto case to the
equidistant case (Sec. 3.1.3)) introduced in this third chapter also apply in the

48
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case of a more general global geometry (Chapter 2). Only the explicit knowledge
of the bounds of the eigenvalues gets lost, then.

3.1 Eigenvalues and the spectral preconditioner

3.1.1 The main concept

To construct preconditioners, we will examine the ezact (non-discrete) operator
A related to the bilinear form b (2.34):

A:D(A) — R(A), ¢— [u(9)] (3.1)
with
e u = u(yp) defined by (2.30),
e and D(A)=H YT), R(A)=Hy*(T)
in the case of Dirichlet boundary conditions on ' and
e u=u(y) defined by (2.65),
e D(A)=H_Y*(I'), R(A)=H}2?(T) in the Neumann case.

As pointed out in Chapter 2.2, A (rsp. b) is symmetric and positive definite.
Concerning the geometry and the boundary conditions we are making the
following assumptions in this chapter:

e The domain ( is a rectangle (i.e. there is no obstacle in the channel) and
all the subdomains (); are rectangles of the same size.

e The type of the boundary condition (Dirichlet or Neumann) does not change
within TW, T'Y, T9, i.e. for example I'P" = T'W or '’ = T UTO or

rbir = 9.

If we know the eigenvalues Ay > 0 and the eigenfunctions ¢ of A we can
decompose each ¢ € D(A):

o
0= arpx (3.2)
k=1
Thus, we may write

A:D(A) — R(A4), o= oror— Ap = o)k @k (3.3)

k=1 k=1
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The preconditioner C' to be constructed should be a good approximation of
A~1. Tt would be optimal if we had

C:R(A)— D(A), ¢= Z ag o — Cp = Z ak)\,zl Ok (3.4)

k=1 k=1

In this case C would be inverse to A, and the condition number « of a discretized
version of the preconditioned operator AC' could be expected to be very close to
1.

The construction of the preconditioners consists of the following steps:

1. Try to determine (analytically) the eigenvalues and eigenfunctions of the
exact operator A.

2. Decompose the boundary conditions ¢ which occur during the CG-iteration
into the eigenfunctions according to (3.2).

3. Multiply each coefficient with the reciprocal value of the related eigenvalue
and sum up the terms (see (3.4)).

Fortunately, the restrictions of the eigenfunctions to the interfaces ¢i|r, are
simple trigonometric functions (Lemma 3.1, Theorem 3.12). Therefore we can
use the fast Fourier transform (FFT) for the decomposition in 2 and the re-
composition in 3.

This approach through the investigation of the eigenvalues and eigenfunctions
is completely different from the approach of Chapter 2, but the results are very
similar.

Throughout this chapter we are using expansions of the kind

p(y) =) o sinmky
k=1

for o€ H-Y/2(T;), T;=[0, 1]. These series do not converge in L?(T;), but only in

HY2(T;); a — 0 is not necessarily true. For 1 EH(}({z(Fi), Y =Y B sinwky,
k=1

we have using (2.15)

o0

”11]”?1(%2(1‘1.) = ZBI% ||(_A0)1/4(Sinka)”%ﬁ(ri)
k=1

_ 2 > Benk. (3.5)
24
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Hence, any ¢ =Y, ay sin mky with %o: 1 a? < oo defines (in the spirit of (2.17))
k=1

k
an element of H~/2(T;) by

(o, V)r, = > ay B (sinmky, sin Tky)r,

k=1

o0 1 o0
= Y oy Bl sinmke||fap,) = 3 > o B
k=1 =1

1 /2 1 \Y? /oo 1/2
< S Xpe) | XEE) <o
2 k ]

k=1

A side effect of (3.5) is that such a calculation for || - || ji/2p, . (see def. (2.9))
00 ?

shows easily that the norms ||- || HY2(r) and ||| Y2 (ry) AT equivalent. Obviously,

the similar considerations hold for HY/2(T;) and HX/2(T;)*.

In Chapter 3 we will develop a numerical realization of 2.—3. with computa-
tional costs that are neglectable compared to the computational costs of the local
solvers. Furthermore we will see that step 2 is very easy if there is an equidistant
grid on all the interfaces but rather tricky in the case of a Chebyshev-Gauss-
Lobatto grid. In fact, the main difficulty of the construction of a preconditioner
is the transference of the equidistant grid preconditioners to the Gauss-Lobatto
grid case.

The preconditioners are constructed by examination of the non-discrete op-
erator A. We should be aware that a discretized operator A (the kind of dis-
cretization depends on the local grids and the local solvers) may have completely
different eigenvalues/eigenfunctions.! Nevertheless, as Aj, is an approximation
of A, the use of the eigenvalues/eigenfunctions of the non-discrete operator is
justified. The efficiency of the preconditioners will be demonstrated by many
numerical test runs.

Even in the case of local FEM solvers it is not compelling to consider the case
of arbitrary grids on the interfaces. For many flow problems the finite element
mesh on the subdomains can be constructed so that its restriction on the inter-
faces is equidistant, e.g. if the obstacle M is not hit by (or is not very close to)
any interface. However, the more general case of nonequidistant meshes on the
interfaces is considered in Section 3.5.

! Numerical tests showed that the quotient of the largest and the smallest eigenvalue of the
discretization of A using N +1 grid points on each interface is O(N?) for the spectral solver
whereas it is O(N) for the FD solver. This result corresponds to the behaviour of the spectral
solver applied to the Laplacian equation (see [12], Table 4.1, p. 100) having a condition number
of O(N*): We already know that the square root (—Ag)'/?, (—Anm)'/? of the related operator
is an approximation of A.
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3.1.2 The case of p=2 subdomains and equidistant bound-
ary mesh

In this section we will show a way to find out the eigenvalues and eigenfunctions
of the operator (3.1) in the simple case of only 2 subdomains.

1 rB 1 rB |

Of course, this is just an exemplary case. In Section 3.1.4 the more relevant
(but more difficult) case of arbitrary numbers of subdomains is handled.

At first we consider the Poisson equation (i.e. ¢ = 0 in (2.1)) with pure
Dirichlet boundary conditions.

Due to the symmetry of the domain and the boundary conditions we have

[u(e)] = 2u'(¢)Ir

where u! is the restriction of u on the left subdomain €2; and ul\p is the trace of
u! on the interface I'.

Starting with a product approach u!(z,y) = v(z) w(y) and taking into account
the boundary conditions on the left (z=0), the upper (y = B) and the lower (y=0)
boundary of €2y, we get solutions

k k

ug(z,y) = sinh % sin %, kelN, (3.6)
for u'. We observe that

0 k k

% r(y) = % cosh mkr sin % (3.7)
and

1 . . wky

[ur] = 2ui|r(y) = 2 sinh wkr sin 5 (3.8)
where r is the aspect ratio of the subdomains. A comparison of (3.7) and (3.8)
shows that sin %’jy are eigenfunctions of (3.1), and it also gives the eigenvalues as

the quotient of the coefficients of the sine functions:

2B
Ak = — tanh wkr (3.9)
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If we consider the more general case >0 in (2.1) we get

/ 2k? k
ur(z,y) = sinhz 0+7TB2 sin%,

Ouy, ) Ck b . mky
— = —cosh¢,r sin —=
Oz r\y B k B ;
k
ug|r(y) = sinhcgr sin %,
B
A = — tanhre

Ck
with
¢y = VoB? + n2k?

instead of (3.6) - (3.9) which means that the eigenfunctions are the same, but
the eigenvalues depend on ¢ now.

Similar calculations for different boundary conditions result in the following
lemma:

Lemma 3.1 For p = 2 subdomains, the eigenfunctions of (3.1) are

k
@r(y) = sin %, k=1,..,00 (3.10)

in the case of Dirichlet boundary conditions on TV and

wky

prly) =cos—=, k=1,..,00 (3.11)

in the case of Neumann boundary conditions on TV, both independent of the
boundary condition at T'T and TC. The related eigenvalues are

_ 2B tanhrvoB? + n2k?

A 3.12
N e RS (3.12)
for Dirichlet boundary conditions on T UTC and
2 B cothrv/oB? 2[;2
A = cothrvobB* +m (3.13)

for Neumann boundary conditions on TT UT?, both independent of the boundary
condition on TV .

Proof. By calculations similar to the above. "

Corollary 3.2 For the preconditioner (38.4) with ¢y and Ay from the previous
lemma, C=A"1 holds.
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Following Section 3.1.1, the preconditioning operator (3.4) can be imple-
mented as follows:

e To get the sine rsp. cosine coefficients of ¢, use the Fast Fourier Transform
(FFT) on the equidistant grid values of ¢ after odd rsp. even prolongation
of the record to the double length.

e Multiply each coefficient with A\, ' from Lemma 3.1.

e Use FFT~! on these coefficients to calculate the equidistant grid values of
Co.

In lots of applications of the CG method, the costs of the preconditioner is
proportional to the costs of the rest of the CG step. This is also true for the
widespread FETI and dual Schur preconditioners (see Sec. 2.9 and the papers
cited there). In case of CGBI, the amount of work for the preconditioning is only
O(N log N) which is neglectable compared to the O(N?) operations for a FDM
local solver on a subdomain with N x N grid points.

In the next section, the preconditioner is applied to the Gauss-Lobatto grid.
As a preparation, we will derive a simplification of the preconditioner (3.4):

Lemma 3.3 Let (pg)rew be a complete orthonormal system of a subspace H of
L*(T"). Let A,B : H — H* be two operators defined by

(o] o0
A:@:Zakgok — A<p=zakak§0k,

k=1 k=1
o o

B:o=)Y arpr —> Bp=> brou s,
k=1 k=1

ag, br, > 0. If there are constants cq,co > 0 with

< <

C -— C

1 = by — 2

707 all k € ]1\1, then the norms <A(p, (p>H*,H and <B(p, <P>H*,H are equivalent on H

Proof. From the assumptions we get easily

o
<A€07()0>H*,H = ZOZ% A,
k=1

(e}

} : 2
Oék bk,

k=1

(Bo, ©)u+1

and therefore

C2 <B§0, QO>H*,H7
5] (BSO, 90>HH

(Ap, ©)a~m
(Ap, ) a+n
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The lemma leads to the following idea: If we replace 1/, by a (simpler) expres-
sion g > 0 in the definition of the preconditioner (3.4) with

C1 S )‘k [ S Ca, ,k‘ = 1, ...y, 00, (314)

c1, c2 independent of k, then the new preconditioner

C:R(A)— D(A), ¢= Zakgokb—>6~’<p= Zakgkcpk (3.15)
k=1 k=1

generates a norm (C-,-)r which is equivalent to the norm (C-,-)r. This method
can be used to approximate the preconditioner C' by a simpler one: A linear
combination of (—Ag)*/2 rsp. (—Anm)'/? and the identity operator, because for
large k, A; ' in (3.12), (3.13) behaves like a linear function in k. If we find a linear
function g, = ak + § fulfilling (3.14), then we can approximate C by

C=a ? (—Ag)? + Bid

without losing the property of a condition number bounded independent of N.
To find suitable o and 3, we regard A\, = A(k) as a function of IR and
postulate that

lim @ = lim
k—oo k k—oo

% and lim g(k) = lim(A(k))™?, (3.16)

k—0

1.e.

=2 —»2 »:/:’/

Figure 3.1: 1/A(k) (full lines) and its approximation g(k) (dotted lines) in the
Dirichlet case for B=1, r=1 and ¢ = 0, 2, 10, 100.
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20 : : : 20 : : : -
/ 18 | ]
16 + Pz
14 | ,,/;;::::?5:" |
2y ,/;;;:::::,,, A
ol .

8
6 .
4l
2
0

Figure 3.2: 1/A(k) (full lines) and its approximation g(k) (dotted lines) in the
Neumann case for B =1 and ¢ = 0,10,100. On the left, » =1, on the right,
r=0.05. If 0 =0, the approximation becomes worse for small values of r because
1/A(k) behaves like a parabola which is approximated by a straight line.

a:= lim ——~, f:=lim——.

k—0 (k)

For Dirichlet boundary conditions on TV U T we get from (3.12)

0 - T
- 2B’
N
— >0
b 2 tanh rBy/o ore =5
1
= — f =
I} 5B orc =20

(which coincides with the limit of the result for ¢ > 0, 0 — 0). So we get

m g
g =55k Vo

2B" "3 tanhrB4/o (317)

with obvious modifications for ¢ = 0. For Neumann boundary conditions on
T UT? we get from (3.13)

.
2B’
8 = gtanhrB\/E.

a =
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So we get
Ok = % k + g tanh r By/o. (3.18)

So we arrive at the following lemma which additionaly estimates the quality
of the approximation by giving an estimate for the ratio cy/c; in (2.42):

Lemma 3.4 Let us set (—A)Y2 := (—=Ay)'/? in the case of Dirichlet boundary
conditions on TV and (—A)Y? := (—=Anp)Y? in the case of Dirichlet boundary
conditions on TV .

The norms generated by C=A"" (see (3.4)) and by C,

C = (A4 _ V7 d, if o >0,

tanh rB4/o '

- 1

C = (-A)Y24 —5id, if o =0,
T

in the case of Dirichlet boundary conditions on TT UTC (=’Dirichlet case’) and
C = (~A)? 4+ /o tanhrB+/o id

in the case of Neumann boundary conditions on TT UTC (=’Neumann case’) are
equivalent, i.e.

c1 (Co, o)r < (Cop, p)r < ¢ (Co, )r

holds. cy/c; = 28/9 can be found independent of o > 0, r > 0, ¢ € H&gz(I‘)
in the Dirichlet case. In the Neumann case, cy/c; can be found independent of
o€ HY2(T), but not independent of o, — 0.

Remark. The preconditioner C' of Lemma 3.4 is very similar to the precondi-
tioner (—A)l/ 2 of Chapter 2. In fact, the norms generated by them are equivalent.

Proof.

(a) The Dirichlet case.

(i) The upper bound. From (3.12), (3.17) we conclude that :C'A multiplies
each eigenfunction (3.10) rsp. (3.11) by

B tanh B? 2[;2
a(k) AK) = [k + Vo anhryoB% + 7
tanh rBy/o VoB? + n2k?

(with obvious modifications for 0 =0) for which we have to find bounds. For the
hyperbolic tangent we will use the estimates

3
1 <tanhz <1 forz >1, (3.19)

3
12 <tanhz <z for |z| <1, (3.20)
tanhz < min{l,z} for z > 0. (3.21)
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If rBy/o > 1, we get using (3.19)

7k + 3 ByJo
Y ME) < —3— Y |
g() ()—\/m

Using the fact that for >0, >0,

< a+ 7k 14+ a?
up —F——s = —5
semr VP + 12K 2

we arrive at

(3.22)

g9(k) A(k) <

OJICI!

If rBy/o <1, the application of (3.20) and (3.21) on g(k) A(k) gives

hrv/o B2 212
g(k) Ak) < (ﬂ'k )tan rVobe+m
3r/  oBZ+n2k?

4 . 1
< (m+g) m{m—ﬁ}

. i +4 7rk+—
= min<§ 7nKRr
3 \/m
If wkr < 1, we get
7
g(k) )‘(k)ﬁg

Otherwise, we get

7k (1—!—%) <7

VoB? +n2k2 — 3

(ii) The lower bound. For rv/0B? 4+ 72k% > 1 we have tanh rv/0cB? + n2k? >
3 Therefore

g(k) A(k)

IN

3 (rk + B\/o)
g(k) )‘(k) > 1 \/ﬁ.

Using

} , (3.23)
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For rv/oB? + n2k? < 1 we have tanhrv/ocB2 + 72k2 > % rvoB?2 + n2k?2 and
tanh rB4/o < rBy/o. Therefore

3

(k) A(k) > <7rk—|— %) r> g

So we have cy/c; = 28/9 independent of r, B, o> 0.
Due to continuity, these bounds also hold for o=0.

(b) The Neumann case, 0=0.

In this case we get from (3.13), (3.18)

. 1
~ tanhrmk

g(k) A(k)

and therefore

1
Jnf g(k) A(k) =1, sup g(k) A(k) = ——

which is unbounded for » — 0.
(c) The Neumann case, o >0.
(i) The upper bound. From (3.13) and (3.18) we get

(k) (k) = 7wk + B4/o tanhrBy/o
g "~ VoB? + m2k2? tanh /o B2 + m2k2

If /o B? + n2k? > 1, using estimate (3.19) on the hyperbolic tangent and (3.22)
we get

mk+Byo 4 4
< —F . — < =42,
s B < e 553 V2

If rv/oB? + n2k? < 1, using the estimate (3.20) for the hyperbolic tangent and
the fact that

tk+a  a’+ B +a

= 3.24
vemr m2R2 + B2 262 (3:24)
we get
nk+roB? 4 2 +/r?02B*+0B%>+r
k) AMk) < - < =
9(k) Alk) < r(cB?2 +7%k?) 3~ 3 roB?
1

S Y pr———
3 r2gB? oB?

Remembering the result for ¢ =0, we could not expect this bound being inde-
pendent of o.
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(ii) The lower bound. If rB/o > 1 we have, using (3.19), (3.23),
7k + 3 B\/o 3, 3
E)ME) > —2—— > min{l,-} = -.

In the same manner we proceed in the case rBy/o <1

k+ % roB?
k) M) > T2t are >min{1,%rB\/E}=ZrB\/E.

VoB? 4+ 2k~

3.1.3 The case of p =2 subdomains and Gauss-Lobatto
grid, application of the interpolation theory of
Hilbert spaces

In Section 3.1.2 a preconditioner C' for an equidistant grid on the interface was
developed. Unfortunately, this preconditioner cannot be applied directly in the
case of a non-equidistant grid because the discrete Fourier transform requires the
equidistant function values of ¢ to get the sine rsp. cosine coefficients. (FFT
applied to the Gauss-Lobatto grid values of ¢ gives the Chebyshev coeflicients of
a polynomial ¢ instead of the cosine coefficients.)

One might think that interpolation from the Gauss-Lobatto grid to an equidis-
tant grid can solve the problem. In Section 3.2 this idea is investigated and the
problem that arises is discussed.

Beside interpolation, there is a more elegant way of solving the problem, and
this is one of the main results of this paper: Whereas the decomposition of ¢
given on a Chebyshev-Gauss-Lobatto mesh into a trigonometric series seems to
be difficult, the decomposition of pocos into such a series is easy, as the Gauss-
Lobatto mesh points of ¢ coincide with the equidistant mesh points of pocos!?
That means that the numerical implementation of (—A)Y/2(pocos) and C(pocos)
is easy. So we have to find a relation between (—A)Y2p and (—A)Y2(pocos). To
be more precise: We have to express the norm ((—A)Y/2¢p, <p)11q/2 in terms of an
equivalent norm depending on @ocos.

In the case of Dirichlet boundary conditions on ' we succeed by proving
that the norms generated by (—Ag)'/?(+) and by (—Ag)'/?(- o cos) are equivalent
(see Section 3.1.3.2). The Neumann case, however, seems to be more complicated
(see Section 3.1.3.3). In both cases we use the interpolation theory of weighted
Sobolev spaces.

2 For the moment let us consider I' = (—1,1). For T'= (0, B) we replace cos by cds from
Theorem 3.9.
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3.1.3.1 Some results of the interpolation theory of weighted Sobolev
spaces

Definitions. Let Q C IR" be a C®-domain. Let s € IRZ%. Let w;, ws be two
positive continuous functions on 2. If s=0, let us assume that w; =w,. Let us
decompose s = |s| + {s} where |s] €Ny, {s}€]0,1).

Let us define the norm

Il e = 3 [ w1 DopP dz+ [ |l de (3.25)
lal=sq Q
if s€INg and
2 _ [wi(2)'? D*p(a) — w1 (y)'* D (y)|”
||‘P||H,svl,w2(sz) = aIZLSJs!s! |z — y|nt2{s} dz dy
+ el (3.26)
for non-integer s.
Let
H;, ,,(Q2) = closure{C*(Q)},
H’yyw, (2) = closure{C°(Q)} (3.27)

with respect to the norm ||-|[a;, . (0) in the space H, (€2). We are going to write

H;, ,, for H .(Q) if no confusion arises. Additionally, we set L2 :=H_ . For

w1,w2 w1,w?2

@ EH?® 1,2 (2) we may use the notation ||<p||I;S @ ”(’0||H51,w2(9)'

wl,w

Remark. ObViOUSly, H1171 = Hl, H1171: H&, H{),l :Hol,lz L2 holds.
Also for s =1/2, w; = we = 1, the definition (3.27) is compatible with the
previous definition of H/2 and Hy” in Chapter 2:

Lemma 3.5 a) Hll,/f = H'/? =H'?,,,
b) H&f(oﬂf) :H1/21’w (0, ) where w=1/sin.

Proof. a) For Hll’/f:Hl/z and H'/2, = H,'* see [34] Chapter 1 Theorem 10.2
and Remark 10.5 (p. 52). Then use Hy/>=H"/2 from Theorem 11.1 in [34].
b) See (2.13). .

Lemma 3.6 Let A; C Ay, By C By be two couples of Hilbert spaces with con-
tinuous injections. Let || - ||zca;,B,) be the operator norm in the space of linear
continuous mappings from A; to B;.
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a) Let I : Ay — By be a continuous injection of Aq into By and of Ay into
By, as well. Then, for 0<© <1, Ag := [Ao, A1]e is a subspace of Bg =
[By, Bile with continuous injection I and

1llccae,80) < 111 Ec,m0) 111 20A1,50)- (3.28)
b) If Ay=By and A, =B in the sense of equivalent norms, then
[AO; Al]@ - [BOa Bl]@
holds (in the sense of equivalent norms).

Proof. ad a). We apply the Calderon-Lions interpolation theorem (see e.g. [26]
Theorem IX.20). Therefore, we have to construct an analytic, uniformly bounded,
continuous L(Ay, By)-valued function 7" on the strip [0, 1] x ¢ IR C €. We choose
T(z)(¢) := I(p) which is constant in z. In order to apply the Calderon-Lions
theorem, we have to check that

Mo := sup [T (i)l c(a0,B0) < 00, My := sup [[T(1 +ay)|lccar,m) < 00
yeR yeR
Obviously, My = ||I||z(4a0,B,) < 00, My = ||I||(a;,B;) < 00. Now the theorem
yields
IT(©)llc(a6.80) < 1T (O£ I T(O)IZ(,,5,):

i.e. (3.28) holds.
ad b). Twice repeated application of a) yields b).
Another possibility to prove b) is given in [34] (see Chapter 1, Remark 2.3) =

Lemma 3.7 Let us consider a positive weight function w e C*®(T;) with

¢y dist(0Ty,z) < (w(z))™" < ¢y dist(0Ty, x), c1,ce>0. (3.29)
Let s1,82>0, s1# 892, ;> ui+2s;, i=1,2 such that

(k1 —11) 52 = (p2—12) 51.
Let

s:=(1-0) s +0s;, v:=(1-0)v + Ou,.

If s is an integer then let us assume that s1, ss are integers, too. Fori=1,2 with
s;>0, let u be defined by

H—V _ Hi—Vi
s s
Then
[th”l ;wYly H52w“2,w"2]® :stl‘,w" (330)

holds in the sense of equivalent norms.
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Proof. The assumption follows directly from Theorem 3.4.2; (a) and (f) on
page 275f. in [54]. (We restrict ourselves to the Hilbert space case p; =ps=2.)
The Definition 3.2.3.2 [54] (p. 251) of the involved spaces is different from ours
((3.25)-(3.27)). However, due to Theorem 3.2.4.2 (p. 254 in [54]) and Theo-
rem 3.2.4.1 (p. 253 in [54]) and (11) on p. 252, both definitions lead to equivalent
norms and the same spaces. "

In the last lemma, the restriction v; > u;+2s; was essential. The following lemma
deals with smaller v;:

Lemma 3.8 Let us consider a positive weight function we C*®(I;) of type (3.29).
Let s1,80 >0, s1# 89, v; < i +2s;, 1 =1,2. In the case s; =0, u; =v; may be
allowed. Let {s;}#1/2 and

i #1—2s;+2k; wherek; =0,...,[s;] — 1,
fori=1,2. Let
§:=(1—-0) s +0sy, p:=(1—0)pu; + Ous.

If s is an integer then let us assume that s1, so are integers, too. Then

o o o

[HSl'w“l ;wYl H52w”2 2wv2 ]@ :stl‘,wl“"z" (331)

holds in the sense of equivalent norms.

Proof. The assumption follows from Theorem 3.4.3, on page 277 in [54]. (Again,
we restrict ourselves to the Hilbert space case py =ps =2.) If s is an integer we
apply (b)/(5) in [54], otherwise (a).

The case s; =0 (i.e. u;=v; dueto Def. 3.2.6 (p. 262/263 [54])) is not explicitely
mentioned in Theorem 3.4.3 [54]. However, the proof of Theorem 3.4.3 still holds
in this case, as equation (6) in [54] is still true.? n

3.1.3.2 The Dirichlet case

Now we are able to state the main result of this section (one of the main results
of this paper):

Theorem 3.9 ) Defining the transformation

B
cos: [0,7] — [0, B], yr— o (14 cosy),

3 In our case, equation (6) just means that the closure of C*°(T;) and of C$°(T';) with respect
to the weighted L?-norm |p|? := [, ¢?w"i dz are identical.
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the equality
{¢:[0, B] = IR | pocds€ Hyy"(0,m)} = Hoy"(0, B) (3:32)
holds with equivalent norms
||90006$||H(%2(0,,T) ~ ||90||H362(0,B) (3.33)
b) Let us define the weight function

w:[0,B] — R U {0}, y+— [1— (%—1)2]1. (3.34)

The norms generated by (—A¢)'/? and by Cgy,
Carp = w? (=Ag)?(p 0 cds) o cds™L, (3.35)
generate equivalent norms on H&f(o, B), i.e. there are c1, ca >0 such that

c1 <(—A0)1/2S0, o)r < (Carp, p)r < c2 <(—A0)1/2<,0, ©)r.

In short form:

(Care, o)r ~ ((—80) ¢, o)1

or
CGL ~ (—Ao)l/z on H&({2(1—\)

Remark. If we would normalize the width of the channel onto the intervall
[—1,1] instead of [0, B] the transformation cds would simplify to cos and the
weight function w'/2 in (3.35) to the well known Chebyshev weight function
(1—y?)~1/2. But the usage of the intervall [—1, 1] would be less convenient for the
representation of the eigenfunctions of A. However, I will use [0, B] throughout
this chapter.

Proof of the theorem.

ad a). Let us consider smooth functions ¢ taken from the space C§°(I") which
is dense in H&éz(f‘) (see p. 11). We express the norms generated by id and —A,
in terms of the function

@ 1= ¢ 0 COS
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by integral transformation:

B by

B ~ :
||(»0||%2(0,B) = /902(.@) dy = 5/((/3(00814))2 siny dy
0 0
B
- 9 16117 L(0,m)
B BT
(~Bop, 9o = IVelios = [(¢'®) dy =5 [(¢(cdsy))* sinydy

0 0

2 7 2 4
_ 2
B B0/< p(cosy) ) Sinydy——B 121122 0  (3:36)

with the weight function
- 1
Dly) = siny’
Due to (3.36) and a density argument, the mapping ¢ — ¢ = pocos is an isomor-

phism from L?(0, B) to L2_,(0,7) on the one hand and from Hj(0,B) =H"'1,

(0,B) to H'g -1 (0,7) on the other hand. Applying Lemma 3.6 b) with inter-
polation index 1/2 we get

1 (o] COS o .
||<P||[L2(0,B),H0 (0,B)]1/2 ~ lle || O H 5 10

Using the definition (2.6) of H&f on the left hand side and Lemma 3.8 on the
right hand side we get

o

el gz o,m ~ e ocosle, 0

The application of (2.12) yields a).

ad b). b) is a consequence of a):

Let us restrict ourselves to ¢ € C§°(0, B) at first. Using a), the definition of the
norm (2.15) and an integral transformation we get

||(‘0||Héé2(073) ~ ||(10 © Cas||i]éé2(0,.,r)

= ((_A0)1/2(<P 0¢ds), o C(~)S)L2(1“)

= [(~80)"(p o cB)(y) - p(cBs y) dy

w(z)? - (—Ag)Y?(p o cBs)(cos z) - p(x) da

Il
W Wl
o

(Carp, ¢)r2(0,B)- (3.37)
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(3.37) and the density of C§° in H&f (see Section 2.1) yield the assertion. n

Alternative proof of a). Using the equivalence Hyj =H'/? ,, (Lemma 3.5, w
from (3.34)) we can apply Lemma 3.7 and get

H&({z(o? B) = [L2’w (Oa B)a lefl,w (Oa B)]1/2

As in (3.36), an integral transformation shows easily that

lellz2, 080 = C||§5||L;2a_1(o,7r)7
||<P'||L2wﬁ(o,B) = cl|¢ll|LfDZﬁ+1(0,7r)a (3.38)

a,B€Z. As in the previous version of the proof of a), we apply Lemma 3.6 b)
with ©=1/2 onto the norms (3.38) with a=1, f=—1 and get

o € Hy'(0,B)=[L(0,B),H'y 1, (0, B)ls
= pocos € [L'?Z;(Oa 7T)7 Hlu")—l,ﬁl (Oa 71-)]1/2
with equivalent norms

o1l /20,5 ~ Nl © €8l a2 _
Hg,"(0,B) H[L?‘.)(O,w),Hi_J_l’u_)(0,7r)]1/2

Application of Lemma 3.7 onto [LZ(0,7), Hg 1 4(0, 7))z yields
p € Hyf’(0, B) <= pocos €H'?1 4(0,). .

Remark. From Lemma 3.4 and the proof of Theorem 3.9 it is clear that the
equivalence constants of the three norms

C ~ C = (=Ay)? L'd,\,c L'd 3.39

(=4 + tanh rB4/o ! Lt tanh rB4/o ’ (3:39)

do not depend on r and o. So the right hand term in (3.39) is a suitable precon-
ditioner for the Gauss-Lobatto case.

Numerical realization. To apply the preconditioner Cgr+c id to a function ¢
known at the Gauss-Lobatto points on I', we just have to apply FFT onto the set
of function values (after odd prolongation to a data set of double length). This
gives the sine coefficients of ¢ o c6s. Then, we multiply each coefficient oy by its
index %k (i.e. we apply (—A¢)'/?) and add c. Then we apply FFT~!. At the end,
the multiplication with the weight function w is to perform. At the end points
of T', w is singular. At these points, we use the boundary condition Cgrp(z)=0
to gain the function values.
For test runs, see Section 3.1.5.
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3.1.3.3 The Neumann case

In the case of Neumann conditions on I'" we have to investigate the space { o
cds | o€ HY2(0, B)}. We may reduce this problem to the question of identifying
the space

Hym = {pocds|p € HY?*(0,B) =H"?,, (0, B)}
with the norm
I o cds| := [|ll z172(0,5)-

This case is more difficult to handle than the Dirichlet case because:

e The Lemmas 3.7 and 3.8 are dealing with interpolation spaces H/2,u ,v
with v > p+1 1sp. v = u+1. We, however, are interested in the case
v=p=0.

e Leaving the spaces which are closures of C§°, we may use the equivalence
HY? = [L2, H', po. (3.40)
Then we may apply the equivalences

¢ € L*(0,B) < ¢eL%.(0,7) (3.41)
e H'(0,B) < ¢€ Hy;1(0,m) (3.42)

(see (3.36)). But we cannot continue by applying Lemma 3.7, 3.8 as

Hp g1 #H'gg-1. (The last inequality is a result of the transformation
@ — pocos and H* # H}.)

o Theorems dealing with Hyi - (instead of H % wiws )-SPaces seem to be re-
stricted to non-singular weight functions (Teorema 3.3 in [23]) or to cases
where the derivative order of both spaces coincides (s; =s3) (Théoréeme 5.4
in [27] and Teorema 3.2 in [23]).

However, the following two lemmas give an estimation of the kind

@0,p—1
lollarzom = celloocds|| e (3.44)
W l€ g€

i.e. the inclusions
Hll’/gfl C HNm C H,;‘)/72176,12’)75 (345)

hold with continuous injections, € > 0.
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Lemma 3.10 For 0<e<1, Hym C H;/i,fﬂb,c holds with continuous injection.

Proof. Let us follow the idea of the second item of the enumeration at the
beginning of this section. For ¢ € L%(0, B), let us define*

@(z) = p(cds ) sinz = @(z) (w(z)) ™.

(i) Obviously,

€ L*(0,B) <= @=gpocds€ L5:(0,71) <= ¢elLi(0,n).
(ii) Now let o€ H'(0, B), i.e.

¢eH 51(0,m) (3.46)
(see (3.42)). As a well known fact, ¢ € C°([0, B]) and sup |¢(z)| < cl|¢ll#1(0,5)-

Then, of course, sup |p(z)| < c¢||¢||a1(0,5). Therefore

/(,52 W' dz < sup |@(z)|* | @' * dz < cll¢|laro,m), (3.47)
0

Ot~

with c=c(e) independent of ¢. (3.46) and (3.47) yield
¢ eL2(0,n), GeLy15(0,7).

Obviously, ¢ € L2, ,.(0,m) follows, and by using the representation ¢' =
@' sin +@ cos we get ¢' € L1 5.(0,7), hence ¢ € Hi s go-2.(0, 7). Remark 3.2.6.6

in [54] (p. 265) reads Hi s gs—2c(0,7) =H 12 gs-se (0,7).
(iii) All in all we can state that the mapping ¢ — ¢ is a continuous injection
from L?(0, B) into L2,(0,7), as well as a continuous injection from H*'(0, B)

into H'gi-2 gs-3 (0,7). Using part a) of Lemma 3.6 we derive that ¢ — ¢
is a continuous injection from H'/2(0, B) into [LZ,(0,7), H' g1-2¢ ga-3c (0, 7)]1/2.

Applying Lemma 3.8, the last interpolation space is equivalent to H/?1-c go-.
(0,7). Finally, the characterisation (3.26) of the weighted H'/2-norms shows
easily that

A~ ~

Il = [lgll

o
Y
H1/2u')1_5,u~)2_5 (Oaﬂ-)

o
H1/2u~,—1—6,u';—€ (0,m)

so the mapping ¢ — @ is a continuous injection of H/2(0, B) into HY/2j-1-c g--
(0, ). n
4 As explained in the beginning of this section, the interpolation lemmas cannot be applied

on ¢ = pocds because @ does not have zero boundary values for ¢ € H'. Instead, we will apply
the interpolation on ¢ which decays at the ends of the interval (0, B).
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Qp: @=(ocos : p=¢@sin :
S:]. QO € Hl — ¢€H1%,1ZJ71:H1]1;J,1111725 — gaEH,l%1725,12']372e:H112}1*25,1'[)3*35

f |

s=1/2: | H/? PEHY %1 e | — ¢ EHY2puoc goe
s=0: pel? — gpel, — ¢ € L3

Figure 3.3: Visualisation of the proof 3.10. Vertical arrows symbolize interpola-
tion. Horizontal arrows symbolize e.g. integral transformations like (3.36).

Lemma 3.11 H1/2

1 C Hym holds with continuous injection.
Proof. We have to show that there is a constant ¢>0 such that
el z1/20,8) < Bl /2

1,9~ 1(0,x)

As ||¢||z2(0,8)= B/2 ||¢||Lé_1(0’7r) it remains to show that

B B T T
[[H9=50 wapee [ ]
00 00

for ¢>0 independent of . Substituting £ =cosx, n=cdsy, the left hand side of
(3.48) is equal to

00
A comparison of (3.49) with the right hand side of (3.48) shows that it is sufficient
to prove that

2

dz dy (3.48)

Ay

0(&) — o(n)[*

(z) — 6(y)
" —

2
sinz siny dz dy. (3.49)

cos T —cosy‘

T —y

Flx,y) = | ———
(z,9) COST — COS Y

sinz siny <c¢ 3.50
y (3.50)

on Q\D, where Q := [0, 7] x [0,7], D := {(z,z) |z€(0,7)}. As F is continuous
on Q\D, it is sufficient to show that for any sequence (z,,¥,) converging to
(2o, %) € D, F(2,,yn) is bounded.

Let (zo,v0) € D at first. The mean value theorem applied to the denominator
in (3.50) shows that lim F'(z,,y,) = 1, then. For checking the case (z,,y,) €
D\D, it is sufficient to restrict ourselves to the case xo =17, =0. Furthermore, we
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are allowed to restrict ourselves to the case 4, :=y,—z, >0 for all n. Applying

the Taylor expansions
2

cos(z,+0,) = cosz, — d,sinz, — 5” cos (, < cosx, — 0, sin z,
(for z,+6, < m/2),
52 62
cos(Yp—0n) = CcOSYp + Opsiny, — 5" cos () > cos Y + O siny, — 5”

to the expression

F(.’En, yn) =

we get

2 . .
0. sin &, sin yy,

(cosz, — cos(x,+0,))(cos(yn—0d,) — COS Yp)

1
F(zp, yn) < 77—
i (1 - 25;51?1171)

Due to 6, < yn, limsup F(z,, y,) <2 follows. .

Remark. For the proof of Lemma 3.10 it seems to be more straightforward to use
(as for the proof of Lemma 3.11) the representation (3.26) of the weighted H'/2-
norm instead of the application of interpolation theorems on ¢ o ¢6s sin. Indeed,
it is possible to derive Lemma 3.10 using the integral representation (3.26). As
before, this method is able to prove the assumption for all € >0, and it fails for
e=0:

Alternative proof of Lemma 3.10. It has to be shown that

(1+€) /2 i (14€)/2 ) \2
Sin — P STTTYS e ay (3.51)
(z—y)?

can be estlmated by (3.49) times a constant plus the L?-norm of ¢ times a
constant. Because of the symmetry we can restrict ourselves to the integral

~ o (14€)/2 0 > s (14€)/2 ,\2

— )2
Q1UQ2UQ3 (ZE y)
instead of (3.51). See Fig. 3.4 for @1, Q2, Qs.
(i) On Q; we use the estimate |z — y| >7/2 and get

sm (1+e)/2 5, <p(y) sin(1+e)/2 y)2
// CEE dx dy
2 2
<2 (Jf wersae [f v i
T
Q1
2 e - 4
< ;/SIDH z @ () de < B ||80||%2(0,B)
0
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™
Q
37r/ ' Q3
y Qo
0
0 w/4 s
x

Figure 3.4: Decomposition of the square [0, 7] x [0, 7].

(ii) On Q2 we have z <y, sinz <siny. We estimate the numer in (3.52) and get

(1+6)/2

€

2z — 3(y)sin y)?

(z —y)
<2 / (€ |2 sin'™ d:c dy + 2 // | sin(1+9)/2 p _ gin(1+e)/2 y|
m—m2 [z —y/?

For 0<y<2r,

dz dy (3.53)

/ (@(z) sin(+o)

2

02162y ¢ 1

siny ~sin3T
holds. Therefore, for (z,y) € Q,,

2 i€
cosT —cosy|“sin‘z sin® x
| Y < sup sin?¢

|z —y|? SINY T ecloy] siny

holds. Hence,

=2 siny sin®x < 2

1+e€

sin "z 2sinzsiny

|z —y|2 = |cosz — cosy|?

Thus, the first integral on the right hand side of (3.53) is estimated by

)2 2
//|cosx—cos || sinzsiny dx dy<2//|(p |:g_g0‘(2y)\ dx dy.

For the last integral in (3.53) we proceed like this:

(14€)/2 1+e

/2 ¢ — sinl
@ = yl? |z — y2(sinF9/2 g 4 sin(1+9)/2 )2

| sin 1+e) /2y|2 |sin'*ez — sin'tey|?
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(1+¢€)? sup sin® ¢ |cos&|?

< g (1+ 2 siny
(sin9/2 ¢ 4 sin(179/2 )2 = (5in(1+9)/2 g 4 5in(1+)/2 )2
s 2€
, sin*y
< 2(1+e) pREvarE

So the last integral on the right hand side of (3.53) is estimated by

52( _sin*y
(1+e¢) // x1+e npyer dzx dy. (3.54)

To compute this integral with respect to z, 0 <z <y, we use the representation
as a geometric series:

Yy 1 g 1 . 1+e\ ™
dr = 11m/ — (—) dx
/ xl—f—e + y1+e gy J y1+e nz::() ( y
oo x(1+e)n+1 =y
= lim —— -1)"
i e OV @ gn g |
. 1+e\ ™ |Z=F z=y
T T T 1
< lim — [ - = — = 3.55
- gy y1—|—e E ( <y> ) o wH—e _|_y1+6 20 de ( )
Thus, (3.54) is smaller or equal
3m/4

0

It remains to show that the last term exists for ¢ € H'/2(0, B): Proceeding as in
the first version of the proof of Lemma 3.10 part (ii) we know that H'=H]
and get by using the Calderon-Lions Lemma (Lemma 3.6) that

wl—¢

o€ H'? =[L? H'yjp = [, H y-Jrja C (I, Lii-cija = Loy (3.57)

The last step in (3.57) is a well known interpolation property which can be
deduced with the K-method, for example.
(iii) On Q3 we use

/ / )sin™ "9z — ply)sinPy)? L
(z —y)?

<2 / ‘90 ‘228111 dx dy n 2// |Sin(1+e)/2 T — siI21(1+6 /2 y‘2‘
|x —y -y

instead of (3.53). Then, we proceed analogously to (ii). n
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Let us mention that the estimates (3.51)-(3.54) also hold in the case e=0. How-
ever, the left hand side of (3.55) equals In 2 for e=0. So in (3.56), the L2, ,(0, B)-
norm appears.

Conclusions. We have pointed out that the construction of an 'optimal’ pre-
conditioner acting on a Gauss-Lobatto boundary mesh seems to be more difficult
in the Neumann case. Proceeding as in (3.37), the bound (3.43) corresponds to
the possible preconditioner®

Carnme = w0 (=Ayxm)?(pocds) o cos ! + .

Numerical tests® suggest to orientate towards this bound (3.43) and not to (3.44);
i.e. to use Cgr,nm OF just

Cornm = w2 (—Anm)/?(pocds) o cos™ (3.58)

(compare the Dirichlet case (3.35)). Test runs in Section 3.1.5 show that this
preconditioner produces satisfactory results. There seems to be only a slight
decrease of the CGBI convergence rate if N becomes very large (N >>100).

Let us mention that there are possibilities to avoid this problem if we are
ready to use O(N?) operations for the preconditioner instead of O(N log N) for
(3.58):

Another possibility to construct a preconditioner is a matrix approach: The
Chebyshev collocation spectral solver performs a diagonalization of the negative
discrete 1d Laplacian operator (¢(yo), ---, ¢(yn)) — —(¢"(%0), ---, ¢"(yn)) for a
column of grid points of the subdomain, i.e. the eigenvalues and eigenfunctions
of this discrete operator are calculated (Sec. 2.5). This information could be used
to apply the square root of this operator to the boundary value function. Another
starting point for the construction of a matrix-type preconditioner may be the
representation of the H'/2(T')-scalar product related to the norm representation
(3.26): A coordinate transform as in Sec. 2.6 and the application of the trapezoid
rule lead” to a matrix preconditioner.

5 The other bound (3.44) would correspond to the operator ¢ — w(=9)/%(id —
Anm) 2 (sin@+9)/2. o o ¢ds) o (cds™!) + wl~9)/2 p, which could be used if combined with a
projection onto the space of functions with mean value zero.

6 As in the Dirichlet case, the weight w'/? is singular at the ends of I'. At those points we
use the boundary condition dCqrL, nme/0y = 0 to construct the values of Car nm.

7 As the denominator becomes singular on the diagonal z; =y, these values have to be
replaced by a limit (z,y) — (zx,yr) before the quadrature rule can be applied.
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3.1.4 Eigenvalues, eigenfunctions and preconditioning in
the case of more than 2 subdomains

In this chapter the eigenvalues and eigenfunctions of the operator A are calculated
for the case of more than two subdomains. In this case the eigenfunctions and
eigenvalues are more complicated than in the case p=2 (Lemma 3.1). But it is
still possible to give them in a (more or less) explicit way.

Then, using the technique of Lemma 3.4, we construct preconditioners of the

type

Croe = (=A)Y?*+cid,
C’globﬁo = (Oloc§0|1"17"'aolocgoh"p_l)- (359)

(Le. on each interface I';, the boundary value function ¢|r, is treated separately.
We will see that this preconditioner gives a condition number x independent of
N, but dependent on r with Kk — oo for » — 0. Let us mention that a precon-
ditioner of type (3.59) is less time consuming than the complete decomposition
into the eigenfunctions proposed for the case p=2 (Cor. 3.2). Furthermore, for a
preconditioner of type (3.59) it is obvious how to apply the results of Section 3.1.3
in the Gauss-Lobatto case.

The following lemma gives the eigenfunctions and eigenvalues in the case
p>2. It is convenient to use double indices Ay m, @k,m- Instead of just verifying
the equation

AQkm = MemPrm

the proof of the lemma shows a method how to find the Ax ,, @km- This method
might be applied to cases with different boundary conditions (e.g. Dirichlet on
I'Y and Neumann on I'Y or vice versa (see Chapter 5) or subdomains of non-
equidistant size. In the latter case, numerical methods seem to be necessary to
find these values.

Theorem 3.12 Let p > 2. The eigenfunctions of the operator A are:

(i) Case Neumann b.c. on 9€:

) k
r;(y) = sin T cos Y (3.60)
p

Pk,m B

(ii) Case Dirichlet b.c. on TW and Neumann b.c. on T UTO:

. mim . Tky
() — 3.61
r;(y) = sin » sin B ( )

Pk,m
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(111) Case Neumann b.c. on TW and Dirichlet b.c. on TT UTO9:

. mk .
Primlr(y) = F(mm (1= 5)) cos =2, f=sin or f=cos  (3.62)
(iv) Case Dirichlet b.c. on O2:
) . 7k )
Primlr.(y) = fmm (1= 5)) sin "=, f =sin or f=cos  (3.63)

m=1,...p—1, k=1,...,00. The eigenvalues are

2B coshrv/oB? + w2k2 — cos Yim

Mo = 3.64
b VoB2 + m2k2 sinh rv/ o B2 + m2k2 ( )
with
™m
Ve = 2 3.65
k ’ (3.65)

m=1,..,p—1,k=1,...,00, in the case of Neumann b.c. on T UTO.
In the case of Dirichlet b.c. on TTUTO, the ygm, m =1,...,p—1, are the p—1
roots within the interval (0, ) of the equations

m . m -2

cosh rvoB? + n2k? sin % = sin W, (3.66)
m m -2

coshrvoB? + w2k?% cos y = Cos W (3.67)

For all vy being a root of (3.66), f =sin has to be taken in (3.62)-(3.63), for
all Y m being a root of (3.67), f=cos has to be taken.
Forallk=1,...,00

mml%m<3 (3.68)

m=1,...,p— -

b
holds.

It is not very surprising that the results are simpler for Neumann boundary condi-
tions (see (3.65)-(3.67)) because the inner boundary conditions on the interfaces
involved in the definition of A are also of Neumann type. (3.68) is necessary to
get an estimate for the condition number also in the Dirichlet case.

Proof of Theorem 3.12. Similar to Section 3.1.2 we see that functions u(z,y) =
v(z) w(y) with
K K

v(z) = sinh g ISP v(z) = cosh B
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and

w()—sinﬂ—ky rs w()—cosﬂ-—ky
Yy)= B p. Yy) = B

are solutions of the partial differential equation (2.1) on each subdomain (2.
Here, we have used a local coordinate system with = €[0,7B], y € [0, B] and the
abbreviation

K :=rvoB? + n?k2. (3.69)

So we use the approach

K K
u(z,y) = (di sinh i—B + s; cosh %) coS WTIZy (3.70)

on each subdomain 2;;; in the cases (i) and (iii) rsp. cos replaced by sin in (3.70)

in the cases (ii) and (iv). The continuity of 2% on each T';; gives after division
K . . o2, *

by :% and the sine rsp. cosine term the conditions

di—l cosh K + 8i_1 sinh K = d,’, 1= 1, ey D — 1. (371)

The condition that ¢ = %|r- should be an eigenfunction of A means that [u(p)] =
Alp] on all Ty, i.e.

6’&1'
ui|z:0 - ui—l‘m:rB =A 9
z z=0
with A independent of ¢. This yields
. K .
d;_1 sinh K + s8;_1 coshK — s; = A B di, i=1,...,p—1. (3.72)
r

The boundary conditions on I'Y UT? give

dp=0, d,;coshK+s,sinhK =0 (3.73)
in cases (i) and (ii) and

so =0, d,_qsinhK +s, 1 coshK =0 (3.74)
in cases (iii) and (iv). Solving (3.71) for s;_; we get

d'i - di—l cosh K

— =1,...,p— 1. .
Si—1 sinh K ) ¢ yee D (3 75)
Using (3.75) for s;_1 and s; in (3.72) we get
AK sinh K
di 4 2coshKdy —dypy = 2200 g =1, p— 2. (3.76)

rB v
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We use (3.72) on the boundary conditions (3.73) rsp. (3.74) to eleminate s, 1,
then (3.75) to eleminate s, o, and we get

K sinh K
dy=0, 2coshK dy 1 —dy o=\ % dy (3.77)
r
in cases (i) and (ii) and
1
dy = d
" coshK "
1 AK sinh K
(2 cosh K — COSW) dp_]_ - dp—2 = 7'73 dp_]_ (378)
in cases (iii) and (iv). So we arrive at the discrete eigenvalue problem
AK sinh K
MD=——D 3.79
rB ( )
with the vector D = (di, ..., d,—1)" and the (p—1) X (p—1)-matrix
2cosh K -1
-1 . -
M= (3.80)
o
—1 2cosh K
in the Neumann cases (i) and (ii) and
2cosh K — cosﬁ -1
—1 2cosh K
M = (3.81)
2coshK -1
-1 2cosh K — COS;K
in the Dirichlet cases (iii) and (iv).®
In case (3.80), the discrete problem (3.79) can be solved explicitly:
di = sin @,
AK sinh K
ARSMR _ o (coshK — cos @) , (3.82)
rB P

m =1,...,p— 1 arbitrary. As already used for (3.71),

|—dK wky _dK,ka
Py =di 5 cos—5= 1sp. =di 5 sin—

8 So matrix (3.80) for the Neumann case (i), (ii) corresponds to a 1d boundary value problem
with homogeneous Dirichlet conditions.
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holds. So from (3.82) we get the eigenfunctions ¢y ., (3.60), (3.61) and the
eigenvalues A ,, (3.64) with (3.65).

In the Neumann cases (iii) and (iv) we may use Gershgorim circles to see that
M from (3.81) has all eigenvalues in the intervall [2 cosh K — 2,2 cosh K + 2]. So
we get

I 2Br cosh K — gy m,
km = TR sinh K

Thus, (3.64) holds with 7 ,,, €[0,7]. To find the 7 ,, we use the approach

with some g, € [—1,1].

d; :sin'y(i—g), i=1,...p—1. (3.83)

Obviously, for any y€IR D=(dy, ..., d,—1)" fulfils the equations no. 2 to p—2 of
the linear system (3.79) with

AK sinh K
rB

The boundary conditions (3.78) lead to the condition

= 2cosh K — 2cos. (3.84)

h K sin — = si
cosh K sin —- = sin 5

With the approach

TP v(p=2) (3.85)

di:cosv(i—g), i=1,..,p—1,

instead of (3.83) we get some more solutions of (3.79)/(3.81), if 7 is a solution of

P v(p—2)

cosh K cos 5 =8 (3.86)
AKsinh K __
and 222222 = 2cosh K — 2 cos .

The right hand sides of (3.85) and (3.86) are bounded between —1 and 1. The
left hand sides of these equations take the extreme values 4 cosh K where

cosh K >1 (3.87)

as K #0. Between these extreme points there is always one root of the equation
(see Figs. 3.5 and 3.6). Counting these extremums we find that (3.85) and (3.86)
together must have p—1 roots within (0, 7).
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3 ! ! ! ! ! !
: : : cosh K sin 22
2(p—2)

sin 55

0) 0.5 1 1.5 2 25 3 4

Figure 3.5: Visualization of the equations (3.85) (upper fig.) and (3.86) (lower
fig.) and their roots for p=7, cosh K =2.
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3 ! ! ! ! ! !
: : : coshK sin

sin 7——(1’;2)

0) 0.5 1 1.5 2 25 3 4

Figure 3.6: Visualization of the equations (3.85) (upper fig.) and (3.86) (lower
fig.) and their roots for p=8, cosh K =2.
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All the 7 ., (and therefore all the ¢y ,,) are mutually different: Assuming that
there is a 7 5, fulfilling (3.85) and (3.86), the addition of the squared equations
gives
+ co

cosh? K (sin2 y

2 Tk, p) _ (sz Vi (P — 2)

+m§%m@—%>
2

2 2

which is a contradiction to (3.87).

So all solutions of (3.79) are found. From the fact that the functions cos 2%
rsp. sin 2 are a complete orthogonal systems in H,,'/?(T;) rsp. H~Y/*(T;) we
can conclude that the ¢, K €IN, 1 <m <p-—1, form a complete orthogonal
system in H_1/2(T) rsp. H~'/2(T). Thus, all eigenvalues are found.

Now to (3.68). This estimate follows from the fact that equation (3.86) has a

root within [0, Z]. n
P

Visualization of the eigenfunctions in the Neumann case. Let uy ,, : Q0 —
IR be the function assigned to the eigenfunction ¢y ,,(y) by (2.69). In particular,

Q%?rzwm, (3.88)
then. The following two figures display some of the uym,, k€IN, m=1,...,p—1,
for p = 5 quadratic subdomains. In the left column of Fig. 3.7 cuts in z-direction
of upm for k=1, m=1,2,3,4 are displayed. In the left column of Fig. 3.8 cuts
in z-direction for k=4, m=1,2, 3,4 are displayed. In the right columns, x-cuts
of the (continuous) functions Quy,,/0z are plotted. In these diagrams the values
of ¢ m occur where the graphs of the functions aug’% meet the interfaces (see
(3.88)). The y-cuts of uy,, are just sine rsp. cosine functions with frequency
depending on k. In both figures, 0 =0, r =1, B =1 and Neumann boundary
conditions on I'Y UT? are assumed.

Visualization of the eigenvalues in the Neumann case and development
of a preconditioner. As the eigenvalues depend on B, r, o, p, m and k, it is
not easy to get an inpression about their distribution. But this is important in
order to construct appropriate preconditioners.

Let us assume o =0 and Neumann conditions on I'Y UT? at first. In this case,
(3.64) becomes

2rB cosh K — cos %
mURK sinh K

(3.89)

K=7nkr, m=1,...,p—1, k=1,...,00. (3.90)
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Figure 3.7: Visualization of uj ,, (left column) and 8%% (right column) for k=1,
m=1,...,4. See explanations in the text (p. 81).
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Figure 3.8: Visualization of uj , (left column) and 3%% (right column) for k=4,

m=1,...,4. See explanations in the text (p. 81).
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To reduce the dependence of the eigenvalues on k, it seems to be useful to multiply
each Ay, by

Gkm = k. (3.91)
To investigate the condition number of the so preconditioned operator we have
to find upper and lower bounds for the expression kA, or for

T sinh K
"~ 2B coshK—cos%'

(EXgm) ™"

As our interest lies only in the condition number, we may omit the k-independent
s

factor 5. Therefore Figs. 3.9 and 3.10 display the functions

sinh K ™m
— —cos™™. 3.92
folK) cosh K — ¢’ 4= o8 P (3.92)

In Fig. 3.9 the case p = 4, r = 0.7 is visualized, in Fig. 3.10 the case p = §,
7 = 0.2. Due to this choice of p the functions f, for ¢ =1, ¢ = cos 5, ¢ = cos %’T,...,
g = —1 are displayed. We see in both pictures that for k£ — oo (i.e. K — o0) the
preconditioning produces only values kA, very close to 1. For small K instead
(ie. k=1, K =mr), we get rather large and rather small eigenvalues. That
means that the values kM, for k =1 determine the condition number of the
preconditioned operator.

If » approaches zero the minimum value of K tends to zero due to (3.90),
and the ratio between the largest and the smallest eigenvalue becomes worse
(compare the case r = 0.7 (Fig 3.9) to » = 0.2 (Fig. 3.10)). Watching f,(K) for
q approaching 1 (which has to be taken into account for p — oo) we see that
lime-1 Supgen fq(mkr) = co. That means that for p — oo, 7 — 0 the condition
number approaches infinity.

So the condition number when multiplying each eigenfunction ¢y, by k (i.e.
application of (—A¢)'/2 rsp. (—Anm)'/? on @) is to be expected independent of
N but approaching infinity for ¢ =0, r — 0, p — o0.

All these facts are formalized in Theorem 3.13.

Now the case 0 >0. It is easy to see that for (3.91) the term gy mAr,m cannot
be bounded independent of o €[0, 00). Instead, we use

7r Vo
= Ly YO 3.93
9k, s~ Tt (3.93)
Using K from definition (3.69) in (3.64) we see that
4, VoB?+ m2k? sinh K

(gk,m)\k,m) =
By/o +mk cosh K — cosyim
Using (3.22), (3.23) we observe that the first of the two fractions is bounded

between 1 and 1/4/2 independent of o, r, B, k. Thus, for the visualization we
may

(3.94)
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I I I I I ™~
o
p — 1
- - ©
- 4 w0
o
I
~2
- <
- m
—
I
~2
4 «~
~H
\
(=9
ifi
=
g I
/E
{ —
\
\
\
\
\
\
N\
\
N\
N\
| | | | | | o
Lo ™ Lo o~ Lo — Lo o

Figure 3.9: Visualization of the eigenvalues (kAg.,)™" (3.64)-(3.65) (dots’) for
0=0,r=0.7, p=4 and Neumann b.c. on T'". K :=mkr on the horizontal axis.
Explanations in the text (p. 81/84). Compare to Fig. 3.10 where r is smaller and
therefore k bigger. The number of lines depends on p (see Fig. 3.10 where p is
larger). For Dirichlet b.c. on TV, the lines m=1,...,p—1 slightly change, but
the bounds m=0, m=p are the same.
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Figure 3.10: Visualization of the eigenvalues (k)" (3.64)-(3.65) ('dots’) for
0=0,r=0.2, p=8. K:=mkr on the horizontal axis. Explanations in the text

(p. 81/84).
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Figure 3.11: Visualization of the eigenvalues (kAg,)~" (3.64)-(3.65) ('dots’) for
0c=200,r=02 p=4 B=1 K :=rvoB?+ n2k? on the horizontal axis.

Explanations in the text (p. 84/88).
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omit this factor. So the visualization of (3.92) in Figs. 3.9-3.11 is still valid for
arbitrary o >0 (except fot the bounded factor, and taking into account K from
(3.69)).

Fig. 3.11 points out the difference for o > 0: The lower bound for K (see
vertical line in Fig. 3.11) is now rv/0B? + n? instead of just rm. So in the case
0 >0 the situation improves: For large values of ¢ we can expect that the above
preconditioning gives a smaller condition number than for ¢ = 0. Again, this
relation is formalized in the following theorem.

Theorem 3.13 Let (—A)Y/2 be from Lemma 3.4 and let p>2. For all the cases
(i)-(iv) of Theorem 3.12 the following three assertions hold:

(i) For gxm = ak+f5, a>0, >0, 0 >0 the eigenvalues ggmArm of the precon-
ditioned operator CA, C = % (—A)Y2 4 Bid, are bounded independently
of p and k,m € IN:

Cl(/ra g, B) S )‘k,m ) gk,m S 02(7", g, B)
(i) For c>0, r>0,

T \/E
= = — k _
gk,m 3 2B + 9 )

we can find the c; in (i) such that

e <2 (14 ) <2 (1 ) 099

(4] (pa r, o, B)
i.e. the ¢; are independent of o and B.

(i11) Under the assumptions 0 =0, r — 0, L =pr = const: For any Gxm = gk
independent of m, there is a constant c3 >0 so that

> c3r? (3.96)

holds.

Discussion of Theorem 3.13. Part (i) shows that the use of any preconditioner
of type

Cioe = a(=A)*+Bid, a>0, >0, (3.97)
Cglob(P = (Cloc(pla---acloc(;opfl) (398)



3.1. EIGENVALUES AND THE SPECTRAL PRECONDITIONER 89

(rsp. its discretization) should cause a condition number k independent of the
number of grid points and the number of subdomains. For (3.98) with

Cloe = (—A)V2 + /o id, (3.99)

(ii) shows that the condition number is even bounded independent of o > 0,
B>0.

(ii) and (iii) show the behaviour of the condition number if the number of
subdomains p is increasing. Let us consider the following two possibilities to
increase p:

e If r =const while p— oo (i.e. the length L = pBr of the channel tends to
infinity), x remains bounded, as the bounds in (i) do not depend on p, L.
This property is very important for the possible use of the CGBI method
on very long domains.

e If the length L is fixed while 0 =0, p — oo (i.e. 7 — 0), £ tends to oo as
O(p*) = O(r72) due to (ii). Part (iii) shows that for o =0 this estimate for &
cannot be improved. So the number of CG iteration steps to gain a certain
error reduction can be expected to behave like O(p) for very large p. That
means that a further increase in parallelism is senseless. This observation
is the starting point for some different preconditioners in Section 3.3. The
improvement compared to preconditioners of type (3.97) is gained by using
factors gy, which are not independent of m. But let us mention that the
loss of efficiency of the preconditioner (3.98)-(3.99) is no problem as long
as, let us say, rv/oB? + 1220.6. So only very narrow subdomains of r<0.2
require different preconditioners.

Numerical implementation of preconditioner (3.98)-(3.99) and the
Chebyshev case. To apply the operator (3.98)-(3.99), each ¢|r, is treated
separately. No additional communication is necessary. If there is an equidistant
grid on the interface I';, (i, can be applied directly via FFT. If there is a Gauss-
Lobatto mesh on T';, (—A)'/2 has to be replaced by Cgy from Theorem 3.9. So
we get (3.98) with

Cioc = Cqr + \/E id, (3100)

then, instead of (3.99). The assertions of Theorem 3.13 are still valid for the
Chebyshev case: Theorem 3.9 (see also remark on p. 66) says that there are no
additional dependencies occuring in the equivalence constants ci, cy if (—A)Y/?2
is replaced by Cgr. Cgr then is implemented by FFT again as explained at the
end of Section 3.1.3.2. Thus, the application of the preconditioner takes only
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O(N log N) operations for each processor which is again neglectable compared
to the local FDM/FEM-Multigrid solver and the local Chebyshev solver.

Proof of Theorem 3.13.
Ad (i). We have to estimate

(Ozk-ﬁ-ﬁ) )\k,m-

Obviously
2rB cosh K — 1 < < 2rB cosh K + 1
K sinhkKk "= K sinhK

with K =K (k) defined in (3.69). Both expressions

2rB (ak+p3) cosh K +1
K sinh K

are bounded for K € [ry/0B? + 72, 00) independendly of k, m, p.
Ad (ii). We have to estimate

I By/o + 7k cosh K — cosYim
Itk = /BTy 22 smhK

As already explained after equation (3.94), the first fraction in (3.101) lies be-
tween 1 and /2. The other fraction is obviously bounded between f;(K) :=
% and fo(K) := % where K > K, := rv/oB? + n2. Differentiation
shows that f; is monotoneously increasing and fs monotoneously decreasing for
positive K (see also Fig. 3.9-3.10 for these functions). Therefore it is sufficient

to estimate f1(Ky) and fo(Kp). So we arrive at

‘fﬁEKo;_‘/%Hm) =V ( KO)

from which (ii) follows.
Ad (iii). Let us consider the two eigenvalues g; 1 A1 1 and g1 ,-1A1,1. Under the
assumptions of (iii), the arguments of the hyperbolic functions and the cosine in
(3.64) tend to 0 rsp. to 7 for these values of k, m. (Here we have used (3.68) for
the Dirichlet case.)

Therefore a Taylor expansion of the hyperbolic cosine and estimate (3.143)
for the cosine yield for the Neumann case (3.65) and for the Dirichlet case (3.68)

(3.101)

Gip-1Mp-1 _ Ap-1  coshmr —cosyip 1 S cosh 77
g11A1,1 A1l coshmr —cosvy,1 ~ coshmr — (1 — 27;2 )
7.‘.2,,.2 9
+1 L ( 2
2
~ = 1+ ) : (3.102)

2p2 2 2 2.9

St L2 +1 w2r

Thus, (iii) holds. ]
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3.1.5 Numerical results

In this section test runs for the preconditioner(s) (3.98)-(3.100) developed in Sec-
tion 3.1 are documented. Tests with and without preconditioning are compared.
If not explicitely mentioned the tests were made with B=1, r=1, p=4 and the
CG starting vector ¢ =0.

In Fig. 3.12, p = 4 FDM subdomains are used with ¢ =0, r =1, NxXN
grid points per subdomain with N = 16,64, 256, and the exact solution (2.83)
(test function 4’). Three test runs were done with preconditioner (3.98)-(3.99)
on equidistant boundary meshes (full lines) and three without preconditioner
(broken lines). The test runs with preconditioner needed only half of the iteration
steps compared to the other test runs; for large N even less. We can see that the
final error when CGBI becomes stationary depends like O(N?) from the number
of grid points (as already in Fig. 2.13), but the final error does not depend on
the fact if preconditioning was used or not.

In the upper part of Fig. 3.13, the same tests were made with p=4 Chebyshev
subdomains and the exact solution (2.80) ("test function 1’).

In Fig. 3.12 and in the upper part of Fig. 3.13 the convergence rate when using
the preconditioner does not depend on N. This was predicted by theory (Theorem
3.13 and also Theorem 3.9). But the figures show that the convergence rate when
the preconditioner was mot used also is rather independent of N. This is not
really a contradiction to (3.64) which predicts an unbounded condition number
for N — oo, as we have used rather smooth exact solutions (2.80), (2.83). So
during CGBI, all the ¢ have hardly any highly oscillating components. Therefore
the bad error reduction property for highly oscillating ¢ of the unpreconditioned
CGBI cannot be observed. To make this effect visible I use two different ideas:

The first is to use a highly oscillating starting vector instead of the zero starting
vector. The CGBI process has to extinct these oscillations. So in the lower part of
Fig. 3.13 a CG starting vector with components which vary (between +10- 1 LLH)
by random is taken on I'p /5. Now we can see (lower part of Fig. 3.13, broken lines)
that in the absence of the preconditioner the convergence rate depends on N while
it is independent of N when the preconditioner is used (full lines). The number
of CG steps is reduced from several dozens to =~ 8. The error reduction rate in
the preconditioned case is quite constantly one full power of ten!

In Fig. 3.14 the same test is made for the mized boundary value problem
with Neumann boundary conditions on ' U I'V and the same exact solution
(2.80). In this case of Neumann conditions on I'" Cgr nm (3.58) is used, and
the random CGBI starting vector is generated in a way that ¢(y) = —p(B—y)
so that automatically the condition [ ¢ dy = 0, which was derived in Sec. 2.4.2
from the compatibility condition, holds. The effect of the preconditioner Cer, nm
is similar, but a bit weaker than Cg; (3.35) in the Dirichlet case. The influence
of the CG starting vector (upper part <> lower part of Fig. 3.14) is also similar
to the Dirichlet case Fig. 3.13.
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In 3.15 the same tests are made for the pure Neumann problem for the exact
solution (2.81). Again, the error reduction rate is worse compared to the Dirichlet
case (Fig. 3.13). It was observed that this problem can be made deteriorate by
using Cgr nm + ctd instead of Cgr nm- The non-connected dots in Fig. 3.15
show the effect for c =2 and N = 256. The alternative matrix preconditioners
mentioned at the end of Sec. 3.1.3.3 are not tested, yet.

The second possibility to investigate the effect of the preconditioner on bound-
ary value functions ¢ with highly oscillating parts is to use a solution which is
not so smooth. In Fig. 3.16 the solution (2.82) (test function 3’) was used. Its
Chebyshev series is decreasing slowlier compared to the more regular functions
so that the final error is large (as in Fig. 2.14). In the Chebyshev case (lower
diagram) the convergence speed is again one full power of ten per CGBI step.
In the FD case (upper diagram), we already reach the final error after only 1-2
CGBI steps!

The following figures deal with varying p, r, o:

Fig. 3.17 shows that the convergence rate is independent of the number of
subdomains p if the aspect ratio r is fixed. This observation corresponds to
Theorem 3.13 part (ii).

In Fig. 3.18 the dependence of the convergence rate on o and on 7 is displayed.
If both » and o are close to zero, the convergence rate drops. Again, this effect
could be foreseen by Theorem 3.13 (ii) and Figs. 3.9-3.11. For the case »r—0 in
Section 3.3 a better preconditioner is developed.

The case 0 =0, r — 0 is investigated more closely in Fig. 3.19. The length
L=pr of the domain is fixed, but p and r are varied. According to Theorem 3.13
parts (ii), (iii) the convergence rate decreases for » — 0. If we compare the test
runs » = 1/8 and r = 1/16 the estimates (3.95)-(3.96) let us expect that the
condition number increases by the factor 4. That means that the number of CG
iteration steps should double. This doubling can be observed in Figure 3.19 very
clearly.

In Fig. 3.20 the important case of mixing FDM and Chebyshev solvers is in-
vestigated. 10 subdomains were used with the FDM solver on the 4t subdomain
and Chebyshev local solvers on all the other (full lines). The broken lines repre-
sent the case where only Chebyshev solvers were used. Of course, on the FDM
subdomain the error is higher than on Chebyshev subdomains. But Fig. 3.20
shows that the 'pollution’ of the error on Chebyshev subdomains by the FDM
error is extremely small: It decreases exponentially along the channel. For >0
(lower diagram) the decay is faster than for o =0 (upper diagram). All these
results comply with theory.

Remark on discretization of (—A)!/2. The construction of our preconditioner
was based on the analysis of the non-discretized operator A. As a result we found
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that the preconditioner should be C = (—A)Y2, ¢ which was discretized, then.
Another possibility would be to use the square root of the discretization of —A;
an approach which was followed in [15] and [4] for the ’original’ Schur method
based on Dirichlet interface conditions and on the operator (2.85) and only for
the model case of two subdomains and an equidistant mesh.

This modified approach leads to the preconditioning

mkx

™ ap sin ™ s 3 g ag sin TEE
P k N klgk k N

kr instead of g, = k. Since + < lginfr < m

with gg = sin o5 ~¥ < % oN < 3, both precondi-
tioning operators are spectrally equivalent, and the condition numbers of the two
preconditioned operators differ by a factor of 7/2, only.

In fact, a comparison of the two preconditioners by numerical tests revealed
no relevant difference. This was true both for equidistant and for Gauss-Lobatto

boundary mesh'?, and also for tests with strongly oszillating CGBI initial vector
0.

""""" | ' N=-16:
1 N=-64:
I N=256: ==
» N= 16
o T N N= 64; = -
[ N=256:
0.01 -
0.001 | .
0.0001 ¢ -
1e-05 - 3 ‘1
0 2 4 6 8 10

Figure 3.12: The Dirichlet problem on 4 FDM subdomains for solution (2.83).
Full lines: using the preconditioner (—Ag)'/2. Broken lines: using no precondi-
tioner. Further explanations to all the figures in the text.

9 Let us assume o =0 for the moment.
10 ysing our technique of Sec. 3.1.3 for the Gauss-Lobatto case; numerical realization on p. 66
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Figure 3.13: The Dirichlet problem on 4 Chebyshev subdomains for solution
(2.80). Upper fig.: CG starting vector ¢ = 0. Lower fig.: highly oscillating
CG starting vector. Full lines: using the preconditioner C'gr. Broken lines: using
no preconditioner.
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Figure 3.14: The mixed Neumann/Dirichlet problem for solution (2.80) on 4
Chebyshev subdomains. Upper fig.: CG starting vector ¢ =0. Lower fig.: highly
oscillating CG starting vector. Full lines: using the preconditioner Cgr, nm. Bro-

ken lines:

using no preconditioner.
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Figure 3.15: The pure Neumann problem for solution (2.81) on 4 Chebyshev
subdomains. Upper fig.: CG starting vector ¢ =0. Lower fig.: highly oscillating
CG starting vector. Full lines: using the preconditioner Cgr, nm. Broken lines:
using no preconditioner. No lines: using Cgr,nm + 2 ¢d instead of Cor, nm.
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Figure 3.16: Dirichlet problem for the non-smooth solution (2.82). FDM (upper
fig.) and Chebyshev (lower fig.) method. CG starting vector ¢ =0. Full lines: us-
ing the preconditioner (—Ag)'/? rsp. Cgyr. Broken lines: using no preconditioner.
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Figure 3.17: Dirichlet problem on p Chebyshev subdomains for the solution (2.83)
for p — oo, r =1=const, N =64. Global error after 0, 3, 6, 9 preconditioned
CGBI steps. CGBI starting vector ¢ =0.
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1le-09
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Figure 3.18: Dirichlet problem on 4 Chebyshev subdomains for the solution (2.80)
for N=64 and different values of  and . The combinations r=0.1 (full lines),
r =1 (broken lines), 0 =0,1,100 are displayed. Oscillating CG starting vector
©#0. If o0 and r are close to zero, the convergence rate drops.

10 | T T I I
i p=2,r=1 . ——
1R Tp=4, =l
p=8, r=1/4: =—
01 p=16, =18 ~— ]

0.01
0.001
0.0001
1le-05
le-06
le-07

0 5 10 15 20 25 30
Figure 3.19: Dirichlet problem for the solution (2.80) on a channel of fixed length
L=pr=2. N=064, c =0 and an oscillating CG starting vector ¢ # 0. The
smaller 7, the slower the convergence is.
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Figure 3.20: Dirichlet problem on 10 subdomains with a combination of FDM
and Chebyshev local solvers. On subdomain no. 4 the FD method was used
and on all the other the Chebyshev solver (full lines). The local error on each
subdomain after 3,6,9,12 CG steps is displayed. The exact solution is (2.83).
0 =0 in the upper figure and =100 in the lower figure. r=1 and CG starting
vector ¢ =0. For a comparison, the broken lines show the case when Chebyshev
solvers are used on all subdomains.
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3.2 Preconditioning by interpolation from
Gauss-Lobatto grid to equidistant grid

On first sight, the easiest possibility to solve to problem of constructing a discrete
preconditioner acting on the Gauss-Lobatto points (see Section 3.1.3) seems to
be the use of an interpolation between the Gauss-Lobatto mesh values and the
equidistant mesh values on the interfaces: To apply the discrete Gauss-Lobatto
preconditioner,

1. calculate equidistant boundary mesh values of each ¢; from the Gauss-
Lobatto mesh values of ¢; by interpolation

2. apply the discrete equidistant boundary mesh preconditioner C' (see end of
Section 3.1.2) onto ¢;

3. calculate Gauss-Lobatto boundary mesh values of C'¢; from the equidistant
mesh values of C'yp; by interpolation

Let us refer to this preconditioner as ’interpolation preconditioner’ C;yr. The
question occurs which interpolation should be used.

One possibility is to expand ¢; into a Chebyshev series (by application of
FFT). Step 1 can be performed by evaluating the Chebyshev polynomials at
the equidistant grid points. Analogously, step 3 can be performed by evaluation
trigonometric functions at the Gauss-Lobatto points. Due to the evaluation of the
sums, this algorithm takes O(N?) operations for N+1 grid points per interface.
Let us call this ’full order’ interpolation.

Another possibility to perform the interpolation in step 1 and step 3 is to use a
piecewise polynomial interpolation. We checked piecewise 1°* and 2"¢ polynomials
as well as cubic b-splines. These kinds of interpolation require O(N) calculation
steps, i.e. the whole preconditioner O(N log N).

It was already mentioned in the beginning of Section 3.1.3 that the precon-
ditioners using interpolation onto an equidistant boundary mesh do not work
properly. Let us verify this by numerical tests. Fig. 3.21 shows that CGBI with
the interpolation preconditioner C;y7 becomes stationary earlier than in the case
of the Gauss-Lobatto mesh preconditioner Cgy, (or in the case of no precondi-
tioner (not displayed)). For the test runs that use a highly oscillation CGBI
starting vector (to simulate a 'worst case’ test run, lower fig.) the effect is more
grave than in the test runs using the ¢ = 0 CGBI starting vector (upper fig.).
A closer investigation shows that the preconditioners using interpolation are not
able to reduce the high frequency parts of the error. This sounds reasonable, as
near the boundary of I';, the oscillations of a Chebyshev polynomial of order NV
cannot be resolved by a trigonometric sum of the same order.
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Figure 3.21: Preconditioners on Gauss-Lobatto meshes based on interpolation
(piecewise linear, quadratic, cubic spline, full order) and the preconditioner acting
on the Gauss-Lobatto (G.L.) mesh. 4 Chebyshev subdomains, N = 64, test
function 4 (2.83). In the upper figure, CGBI starting vector ¢ =0, in the lower
figure, ¢ #0 strongly oscillating.
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This observation of the inefficiency of the preconditioning method by interpo-
lation is the starting point for the construction of a preconditioner that is acting
directly on the Gauss-Lobatto mesh (see Sec. 3.1.3).

Furthermore, Fig. 3.21 shows that in the beginning of the CGBI process,
the interpolation preconditioners have a slightly better error reduction property
than the Gauss-Lobatto preconditioner.!’ So it may seem reasonable to combine
both: In the first CGBI steps, use an interpolation preconditioner; then, if e.g.
the residual does not decrease any longer, use the Gauss-Lobatto preconditioner.
Such combinations are displayed in Fig. 3.22. Obviously, the saving of CGBI
iteration steps is not very large (=1 iteration step).

1E+0 l ' ' Ca Ll(no interlpol.) #
~ always Cinr N
1E-1 AN VVVVVVVVVVVVVVVVVV VVVVV ]- X CINT, then CGL————}K———— N
2 X CINT, then CGL””E””
1E-2 N """"""""" """ 3 x CrnT, then Cgr ----3 X--on ]
1E-3

1E-4

1E-5

1E-6

1E-7

1E8 L L L

Figure 3.22: A comparison and a combination of an interpolation preconditioner
(the one using second order piecewise polynomials) and the preconditioner Cgy,
acting on the Gauss-Lobatto mesh. Oscillating CGBI starting vector. Parameters
as in Fig. 3.21. In the first 1, 2, 3 CGBI steps, respectively, C;nr is used. After
these steps, Cgy is used. If Cyyr is used for the first or for the first two iteration
steps, a moderate acceleration of the convergence is reached.

11 The reason for this is obviously that the preconditioning by interpolation does not make
use of the approximation (3.33).
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3.3 Preconditioning by convolution

In Section 3.1.4, especially in Theorem 3.13 part (ii) and (iii) it was shown that
the method of using a preconditioner separately on each ¢|r, becomes inefficient
for r — 0. To illustrate this effect we give the following heuristic explanation:
The preconditioner C should be an approximation of the operator

0
Ao — %Q(WHF

where %(¢p) is the solution of the local partial differential equations with the jump
¢ at the interfaces I'. du(yp)/0z|r, depends on all ¢;.'? The smaller the subdo-
main aspect ratio r, the closer I';11, [';49,... lie to I';. Thus, the smaller r, the
more @p, and also 2 %(y)|r, should be influenced by ¢|r,,,, ¢|r.,,-.- Therefore
any approximation C of A~ where C is independent of ¢|r,.,, ¢|r,.,,..- should
become bad for r — 0.

Another approach to explain the quality of preconditioning for » — 0 is the
following: Beside the computation of the scalar products (i.e. the interprocessor
exchange of scalars), only next-neighbour communication takes place in CGBL
Therefore O(p) =0(r~*) CGBI steps are necessary to spread information over the
whole domain . This result of O(r~!) necessary CGBI steps corresponds very
well to the theoretical result that the condition number is O(r~2) (Theorem 3.13).
The spreading of information can be accelerated by a preconditioner which uses
interprocessor data exchange.

To find such a better preconditioner we will use the following two ideas:

e As in Section 3.1.1 explained (but different from approach (3.59)), we de-
compose a given ¢ into the eigenfunctions ¢y ., (see (3.60)-(3.63)). In the
case of equidistant grids we can multiply each coefficient with the exact
reciprocal value of the eigenvalue \g,, (see (3.64)-(3.67)) to get an ’ideal’
preconditioner C'=A"!:

C : R(A) —s D(A),

oo p—1 oo p—1
0= UmPhm > CO =33 Wm Ao Phym (3.103)
k=1m=1 k=1m=1

If we restrict ourselves to Neumann conditions on I'YUT? we can use FFT
to perform this decomposition.

It remains to investigate the Gauss-Lobatto case:

12 Whereas (Ap)|r;, = [u(y)]|r; depends only on ¢; 1, @i, Pit1-
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e In the case of a Gauss-Lobatto grid, we will decompose a given ¢ €
H/2(T) into its components Py, ..., B, 1¢ of the H}/2(T")-subspaces Sy, :=
span{ogm |k € IN}. As we assume Neumann conditions on I'V U T?, the
simplicity of the ¢y, (Theorem 3.12) allows us to do this decomposition
by FFT.

Then, convolution operators are applied to the P, . This enables us a finer
tuning of the eigenvalues of the resulting preconditioning operator than by
only applying Cgr nm+ctd. The backgrund of this idea is the well known
fact that for 2B-periodic functions ¢, 1 with the cosine series

o) = X ancos "R yly) = 3 B cos 1L, (3.104)

k€N keIN

the convolution

, 2B
(ex¥)w) =55 [ $ly—2)9(z) dz (3.105)
0
has the cosine series
(o *9)(y) = % > By cos %y (3.106)
keN

((3.106) can be proved by a short straight-forward calculation. A similar
relation is given if ¢, 1 are represented by sine series.) Let us remark
that the symmetry of the convolution operator (3.105) is an immediate
consequence of (3.106).

In the following we focus on Neumann conditions also on T and o =0. The
cases 0 >0 and/or Dirichlet conditions on 'V are discussed later on.

By identifying I'; = (0, B) and ’even extension’ ¢(B + z) = ¢(B — x) we can
assume that every ¢; € HY/2(T;) is a 2m-periodic function defined on IR. The
application of the new preconditioner C,ony,cr consists of the following steps:

1. Compute the sine-coefficients with respect to m (by FFT) onto the data
set of ¢ given at all the grid points on I'; i.e. perform the decomposition

p—1 .
p(2,9) = 3 Pup(y) sin ", z=irB, (3.107)
m=1 b
where
g bt Tm

P := - ©; sin —.
m p’; 7 D
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I will refer to this operation as

Py = (Pip,..., P, 19).

2. Processor m applies the operator

2
F, —id) Fp,
m (CGL,Nm+ "B Zd)
onto P, where

Fnp =0 — ¢ *tm, (3.108)
> wkr Tky

Ym(y) =2 exp|— cos ——, (3.109)
kz::l 2(1—cosym) B

Ym = Yk,m from (3.65), the convolution "+’ from (3.105) and Cg, nm defined
in (3.58). Let us define

F(QOl, ceey (pp,]_) = (F]_(pl, ceey prl(ppfl). (3110)

3. Apply the reverse sine transformation (by FFT ) with respect to m onto
the data set of F, (Cornm+ -5 id) FPre, m=1,...,p—1, ie. calculate

the sums
P21 mim 2
Ceomv,GLY = mZI sinT - F, (CGL,Nm+ B id) Fo Py
= P'F (CGL,Nm+ %B id) F P . (3.111)

Explanation to this preconditioner. Let us consider

p—1 .
. TIm 2 .
Comven® 1= mz_:l T Fom <(_AN”)1/2+ rB ’d> Fm P
2
= pP'F ((—ANm)1/2+ = id) FPyp (3.112)
T

instead of (3.111) at first. Due to (3.104)-(3.106), F,,, has the same set of trigono-
metric eigenfunctions as (—Aym,)Y/? + cid and the eigenvalues

wkr
l1—exp|— .
P ( ,/2(1—cosvm))
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Thus F, ((—Anm)'/?+-% id) F,,, possesses the same trigonometric eigenfunctions
on I'y,. Therefore Ceonyeqn has the same eigenfunctions (3.60) as A, and the
eigenvalues

2
1 k
Gkm = —= 2+ 7kr) [1—exp | — T . (3.113)
rB 2(1—cosym)

The preconditioner Ceony,equ is constructed in such a way that its eigenvalues g n,
are approximations of the reciprocals of the eigenvalues Ay, (see (3.64)/(3.65))
of the operator A; in fact we will prove in Theorem 3.14 that

C1 S 9k,m )‘k,m S Ca2, (3114)

with ¢1, co not only independent of p, B, L, but also independent of r. So,
different from Section 3.1, we can expect a condition number independent of r
from a discretization of (3.112).

To get a preconditioner which is easy to evaluate on a Gauss-Lobatto grid, we
substitute (—Ap,y,)Y? in (3.112) by its approximation Cgr nym and get (3.111).
The independence of the condition number on r is transferred from (3.112) to
(3.111): The operators (—Any,)Y? and Cgr, vm are defined locally on the Ty, i.e.
the relation between their two norms does not depend on r. This is formalized
in part (iii) of Theorem 3.14.

Let us remark that for the evaluation of the convolution integrals, a non-
equidistant grid is no obstacle:

Evaluation of the convolution integrals (3.105) and the convolution
kernel (3.109). To apply the operator F' in (3.111) the convolution integrals
(3.105) with kernel 9 =1, from (3.109) have to be calculated. In order to save
computation time, the series 1/, was chosen such that its limit can be computed
explicitely: Using the abbreviations

T Ty
Wy = y Wy = —
2(1—cosym) B

we get the expression

Ym(y) = 2 i e “* coswyek =2 Re (i exp((—w; + in)k))

k=1 k=1
— 9Re ( exp(—w; + 1 ws) ) _y €Y coswy — e 21

3.115
1-— eXp(—CU]_ -+ Z(,U2) 1—2 e %1 cos Wa + e—2w1 ( )

for the convolution kernel. 1, is visualized in Fig. 3.23.
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Figure 3.23: Visualization of the convolution kernel v, for m = p/2 and r =
1.0,0.5,0.2,0.1. The smaller r the steeper 1,,, and the higher discretization errors
are to expect.

To compute the convolution integrals (3.105) with high accuracy, we use the
transformation z =2 (1+cos z) which maps the Gauss-Lobatto points z; € [0, B]
onto equidistant points Z; € [0, 7]:

© * Uy (y) = %/ —(1+cosz)) 7,/Jm(§(1—|—cosz) y) sin z dz. (3.116)
0

This is discretized by the trapezoid rule with respect to the equidistant grid:

%) lNZ W (y; — i) sin L (3.117)
2 myk ON =~ y] m Yk N .

Bevore CGBI is started the values of 9, (y; —yy) are stored in an array to optimize
the evaluation.
Let us mention that ¢, € H/2(T,,) implies

Pm * Ym € Hyl (Trm) - (3.118)

Om *Ym € HY2(T,,) follows from the fact that 1, is in C®(IR) (see (3.115)).
3P Om*m(y) dy = 0 is a consequence of (3.104)-(3.106).

Remark on the costs of this preconditioner. As this preconditioner should
be used in the case r <1 only, we should consider the case that the number of grid
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points in z-direction NN, differs from the number of grid points in y-direction N,,.
The application of FFT with respect to m in steps 1 and 3 requires O(p N, logp)
operations. FFT with respect to y requires O(N, log N,) operations per proces-
sor. The calculation of the convolution integrals for the N, +1 grid points z €T,
requires O(N;) operations, as each integral is numerically calculated with respect
to the N,+1 grid points. So we arrive at

O(Ny (Ny + p logp)) (3.119)

operations which is - under the reasonable assumption plogp<SNxNy - ne-
glectable compared to

O(N, N, (N,+N,)) (3.120)

of the local Chebyshev solver.

In the case of equidistant grids the calculation of the convolution integrals
is dropped as the multiplication of the eigenfunctions by A; L km €an be applied
directly. Therefore in this case the total preconditioning costs are

O(N, (log N, + p logp)). (3.121)

This is tolerable compared to the costs of the local Multigrid solvers as long as
log Ny SNx and pSNy.

In (3.119) and (3.121), the term O(plogp) can be reduced to O(logp) by dis-
tributing the application of FFT among the p processors. However, this requires
additional communication.

Theorem 3.14 Let us consider Neumann boundary conditions on 0f).

(i) Let c=0. The preconditioner Ceony equ (3-112) concatenated with the oper-
ator A~! produces an operator with real eigenvalues uy which are bounded

by
0<c < <co

with cq, co independent of r, p, B, L.

(i) Let o > 0. Let F’ be defined similar to F in (3.108)-(3.110), but
with Y, replaced by exp(— TBI) Ym. The preconditioner Ceonyequo =

P'F ((=A)Y2+ (T—B—|—\/_) zd) F° P concatenated with the operator A~
produces an operator with real eigenvalues uy which are bounded by

O0<ec <pup<eco

with ¢y, co independent of v, p, B, L and o.
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(i4) Let 0=0. If on a subspace S(T;) C HY2(T;) the estimate

&1 (S) (= Anm) 20, 0))r; < (Carnm®, ©)r; < T (S) (=Anm) 20, 0))r
VeeS(;) (3.122)

holds, then

Co 21(8) <A_1S0a §0)>I‘l < <Cconv GL¥, ()0) ) <G (8) <A_190’ 30)>Pi

holds.

(iv) Let 0>0. If (3.122) holds, then estimate (3.123) holds for Ceony,cr Teplaced
bil/ Cconv,GL,cr = P_l Fe (CGL,Nm'f‘(TlB‘i‘\/E) Zd) Fo P,

Proof. Ad (i). Obviously, Ceonyequ multiplies each eigenfunction ¢y ., by the
factor gy m, from (3.113). We have to check that

0<c1 < MemGrem < €2 (3.124)

with ¢y, co independent of k, m, r, p, B, L. If we substitute K := wkr and
q:=1-—cos %, it is sufficient to prove that the function

K > coshK — 1+ q
F(K,q)=2+K) [1- — 12
(o) i= 2+ K) (1-em (-] ) R E (3.125)
is bounded from above and below by positive constants on (0, c0) x (0, 2). Assign-
ing exp(—¢) := 0 for all ¢>0, F is defined and continuous on S := (0, c0) x [0, 2].
It remains to prove that for (K,q) — (0,q0) and (K,q) — (00, q), o € [0, 2],

F(K,q) is bounded by constants 0<¢; < F(K,q) < cs.

Let us consider (K, q) — (00, ), g € [0,2]. Obviously, F(K,q) — 1 in this
case. Now the case (K,q) — (0,q0), go € (0,2]. A Taylor expansion of exp, sinh,
cosh shows that again F'(K,q) — 1. The case (K,q) — (0,0) remains: Suppose
that there is a sequence (K}, gj)jew in S with (K, g;) — (0,0) and F(Kj,¢;) — 0
or F(Kj,g;) unbounded. There is a subsequence, again denoted by (X}, ¢;), such
that

K
—c € |0, 00|.
vag, €0
If c=00, F(Kj,q;) — 1 again. If c=0, Taylor expansion of exp, sinh, cosh shows
that F(Kj,g;) — 1. If c€(0, 00), then

lim F(Kj,q;) =2 (1 —e™°)? (1 + i)

j—roo 2 2c?
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' o
N To) - 0 o
— o

Figure 3.24: Visualizations of the eigenvalues ('dots’) of the preconditioned op-
erator Cegugr A ! for 0 =0, r = 0.7, p=4. K := mkr on the horizontal axis.
Compare to Fig 3.9 where the simpler preconditioner (—Ay,,)'/? is used. As 7 is
rather large, both preconditioners produce a similar distribution of the eigenval-
ues. This is not the case for r=0.1 (Fig. 3.25).
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Lo

. o
N To) — To) o

Figure 3.25: Visualizations of the eigenvalues (’dots’) of the preconditioned op-
erator C’com,,e,j-mA’1 for c =0, r=0.1, p=8. K :=7kr on the horizontal axis.
Compare to Fig 3.10 where the simpler preconditioner (—Ayy,)Y/? is used and
to Fig. 3.24 where a larger r is used. As Theorem 3.14 predicted the ratio of
the biggest and the smallest eigenvalue now is bounded independent of r. The
figure shows that ¢z/c; &2. The comparison with Fig. 3.24 shows that we should
expect that the condition number using the convolution operator is better than
the condition number using simply Cgr, nm if 7 is smaller than ~ 0.6.
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which is bounded from above and below for all c€ (0,00). So the assumption is
false.
Ad (ii). Obviously Ciony,equ multiplies each eigenfunction (3.60) by

rB\/5+r7rk>)2'

rB \/2q

So complying with (3.64)-(3.65) we have to investigate the bounds of the function

1 (2 +rB+o + rrk) (1 — exp (—

o coshK;—1+¢
K]_ SinhK]_

F(Ky, Koy q) = (2 4+ Ko) (1 — e v3) (3.126)

where we have put
K, :==rvVB20 + n%k?, K, :=rB+/o+rrk.

As already stated in the proof of Theorem 3.13 (ii), 1< % < 4/2 holds. So it is
sufficient to find the infimum and the supremum of F' on

S = {(K1, Ky, q) € (0,00) x (0,00) x [0,2] | 1 < % <Va).

F' is continuous and strictly positive on S. Suppose F' is not bounded on S

by strictly positive constants. Then there is a sequence (K ;, Ks;,¢;) in S with

lim K ; = lim K ; € {0,000}, lim¢; = g €0, 2] and lim F(K; ;, Ks;,q) € {0,00}.
Let K1; — 00, Ka; — o0 at first. Then, due to (3.126),

K
lim F'(K1,4, Ka4,q) < limsupK—z’ <2
1,

and

K
lim F(Ky ;, Kaj,q) > lim ian—z” > 1.
1,2

Now let K;; — 0, Ky; — 0. There are three cases:
If lim £2L = 0 then

V24
2
K2. Kl,i+q_ K2.
lim F(K i, Koy, ¢;) < 2lim sup —2% « 2 ! = limsup —2 < 2
( 1,8 2,3 qz) = p 2% K121 1 pK12,Z ~

’

and analogously
lim F(Ky 4, Ka4,¢:) > 1.

If im f/{% = oo then

5 Ki;
im—= =
2¢;
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and

lim F(Ky;, Ky ) = 2lim —2— = = 1.

Ko i

If lim 2+ = ¢ € (0, 00) then

1 ,
lim F(Kl,i, Kg’i, Qz) =2 (1 - 676)2 (5 + lim q; )

where 517 < lim Iglgi < %. So F(Ky; Ky, ¢;) is bounded in this case, too, and

the assumption must be false.
ad (iii). We already know that ¢ := FPyp € HY2(T) for ¢ € HY2(T) (see
(3.118)). Due to the assumption,

((Cornm+2id)h, ¥)r < T (((—Anm)?+2id), )1

follows. Furthermore,

<Ccon'u,eq§07 (P>1" S Co <A_1()0: €0>I‘
is known from (i). As P~! = PT and F* = F we get

<Cconv,GL(pa (P>I‘ = <(CGL,Nm+27:d) FPQOaFP<P>P
< ¢ ((=Anm)Y?+2id) FPp, FPp)r

= ¢ <Cconv,equ(Pa (p>I‘ <TCiCo <A_1<P: <P>1"-
The other direction

<Ccom),GL(pa (;0>I‘ 2 €1 Co <A_1§0a ()0>P

is proved analogously.
Ad (iv). Analogous to (iii). n

Remark. Theorem 3.14 lets us expect that the discrete preconditioners associ-
ated with (i)-(iv) produce a condition number independent of r; and at least for
preconditioners in (i) and (iii), independent of p, B, L, N(, o). (iii) and (iv) show
that the replacement of (—A)l/ 210 Ceonv,equs Ceonv,equ,s DY @ spectrally equivalent
operator does not influence the quality of the preconditioner much. As it is not
sure if (3.122) holds on H}/2(T") (see Sec. 3.1.3.3), (iii) and (iv) are formulated
on a (e.g. finite-dimensional ’discrete’) subspace of H}/2(T).

The assertions of Theorem 3.14 still hold if the term 2id is replaced by cid,
¢>0, if in the definition (3.109) of 1, the factor 2 is replaced by the same factor
c. Numerical evaluation of the eigenvalues show that for ¢ = 2 the condition
number is quite small compared to very large or very small values of c.

Test runs. A comparison of the convergence rate of the two preconditioners
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1E+2 , . . | | l l
7":1/64—>> 5 | : : : 3 3
r=1/32—3
7“21/16—»;

1 3
7“:1/8 — :
7":1/2 —

1E-2

1E-3

1E-4

1E-5

1E-6

1E-7

0 5 10 5 20 25 30 35 40

Figure 3.26: Error decay with preconditioner Ceony r (full lines) compared to
Cer nm (broken lines) for the solution (2.81), p=8 processors, N =64, oscillating
CG starting vector and » =1/2,1/4,1/8,1/16,1/32,1/64.

Cer,nm and Ceony,cr Was made in Fig. 3.26. For all the tests, N =N, =N, =64,
p = 8 and an oscillating CG starting vector was used ('worst case’ test run).
The diagramme shows for example that for » = 1/16 there are 15 CG steps
with Cgr nm necessary, but only 4 with Ceony,gr to get an error reduction of
three powers of 10. To investigate the behaviour for » — 0, different values
r=3,% 5 = N ! were used. Asexpected (Theorem 3.13 (ii)) the convergence
rate drops for Cgr nm, 7 — 0. For Ciony g, however, the convergence rate is
constant up to r~ 327! =2N"1. Only for smaller r (which is not reasonable in
practical applications anyway) the numerical evaluation errors of the convolution
integrals for the highly oscillating modes cause a bad result. Calculations with
various NV show that the minimum r,,;, which is necessary to obtain good results
depends linearly on N !, rpm~2N 1.

Fig. 3.27 handles the equidistant mesh case. The new preconditioner C'=A~!
(3.103) is compared with the old preconditioner C' = (—A )2 for a subdomain
aspect ratio r = 1. For such a moderate r, the old preconditioner is already
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1E-1 . . T
N= 64 old precond. ——---
N=512 old precond. -
1E-2 N= 64 new precond. —— |
N=512 new precond. —=—
1E-3 : -
1E-4 1
1E-5 ]
1E-6 , , i
0 1 2 3 4

Figure 3.27: The equidistant mesh case. Error decay with preconditioner (3.103)
(full lines) compared to (—Any,)*/? (broken lines) for the solution (2.81), p=4
subdomains with FDM solver, »r =1, N = 64 and N = 512, zero CG starting
vector.

very efficient; the solution is found after 2 rsp. 3 CGBI steps. However, the
new preconditioner always finds the solution in the first CGBI step. In fact, this
preconditioner turns CGBI into an explicit method.

Remark on the symmetry of Ceony.gr- The symmetry of F,, in H}/2(0, B)
follows directly from the symmetry of the convolution. Thus, F' is symmetric in
H},/f (T). Ceonv,cr is symmetric because Cgr ym+cid and F' are symmetric.

The replacement of the two time-consuming applications of the convolutions
F,, by one convolution ﬁ’m seems to be difficult: The sole concatenation of
Cor,nm~+ %B id and F? is not symmetric, as the systems of eigenfunctions differ:
Cor,nm~+ %B td has polynomial eigenfunctions, F;, has trigonometric eigenfunc-
tions; and the same holds if we replace F2 by the approximation'® £,

Frp == ¢—@%m,
~ S (mkr)? nkx
Ym(xz) = 2) exp <—— cos ——,
(z) 162::1 2(1—cosym) B
FQO = (F]_(pl,...,prl(‘Opfl). (3127)

13 [, is an approximation of F2 | in the sense that both operators have the same set of
cosine eigenfunctions, and the eigenvalues (1 — exp(—w1k))? of F2 are approximated by the
eigenvalues 1 — exp(—w?k?) of Fy,. In fact, part (i) of Theorem 3.14 stays valid if we replace
the two applications of F' by one application of F as in (3.130), (3.131). The proof is similar.
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ésymm.' precoﬁd. —

,,,,,,,,,,,,,, C conv,GL -

+ — — L -

1E+1 % C GL,Nm - *’oooes
l; ,,,,,,,,,,,,,,,,,,,,,,,,,,,, id —mo |

1E-1

1E-2

1E-3

1E-4

1E-5

1E-6

1E-7 | |

Figure 3.28: Comparison of the different preconditioners id, Car, nm, Ceonv,cr and
the asymmetric preconditioners (3.128)-(3.131). All the asymmetric precondi-
tioners produce very similar results, so there is only one curve. p=4 subdomains,
Nx = Ny =64, solution (2.81), oscillating CG starting vector and r = 1/16.

Nevertheless, numerical test were made with

Coonvary = P! (OGL,Nm+ riB id) F?Py (3.128)
Coomvgrz = P! F? <CGL,Nm+ %B id) Py (3.129)
Coonv,cLs = P! (CGL,Nm+ %B id) F Py (3.130)
Coonvgra =P ' F <CGL,Nm+ %B z‘d) Py (3.131)

(see Fig. 3.28) though these operators are not really symmetric in H/2(T).

The substitution of the two operators F' in (3.111), (3.128), (3.129) by the
one operator F' in (3.130), (3.131) reduces the number of operations for the pre-
conditioning to roughly one half. For F in (3.130), (3.131), The values 9 (2;, 2x)
have to be computed numerically. This is justifiable because the series (3.127)
decreases rapidly.

However, Fig. 3.28 shows that the convergence rate drops drastically for these
non-symmetric preconditioning matrices: The non-symmetric convolution pre-
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conditioners (3.128)-(3.131) all produce very similar results, so there appears
only one line. Especially after some CG steps, the convergence rate drops even
below the convergence rate of the simple Cgr ny preconditioner. Although the
equidistant case analogons of (3.128)-(3.131),

P LF2((=Anm)?4+2id) P, P 'F*((—Anm)*?+2id) P,
PrF((—Anm)Y?+2id) P, P~ ((—Anm)Y?+2id) F P, (3.132)

all are identical to P~'F ((—Anm)Y/?+2id) FP. We see that the symmetry of the
preconditioning matrix is distorted too much to get a good convergence rate.

Preconditioning for Dirichlet boundary conditions. For Dirichlet condi-
tions posed on T'W the results of this section, especially Theorem 3.14, are still
valid (with Cgy, instead of Cgr nm) if we replace (—Anm)Y2 by (—Ap)Y/? (hav-
ing sine instead of cosine eigenfunctions). This exchange does not influence the
definition (3.109) of 9., as a cosine series; property (3.104)-(3.106) is replaced by

. 7k mk
oy) = X awsin2?,  Yy)= Y B cos g
keIN kEIN
1 . Tk
= (px9)(y) = 2 > b SlnFy
k€N

If Dirichlet boundary conditions are posed on ' UT'?, the algorithm developed
in this section fails because the decomposition (3.107) cannot be performed easily.
Instead, the complete decomposition

p—1 o

o(x,y) = > D km Pem(2,Y) (3.133)

m=1 k=1

into the eigenfunctions (3.62) rsp. (3.63) can be calculated by performing the
numerical integration

p—1
Z, T, d
~ (orm, Oy i:”fé Prnls 1) o8 )
= P) - p—1 ’
[0rml 2y > [ Grm(z,y) dy

i=1T;

r=1irB

Qp.m

after applying the frequently (e.g. in (3.116)) used integral transformation. Then,
each summand is multiplied by A, from (3.64), (3.66)-(3.67) and the summation
on the right hand side of (3.103) is performed.

This procedure takes O(pzNj) operations. Distributed among the p proces-
sors O(pN;). This may be more than the costs of the local Chebyshev solver
(3.120) if p>> N,. But the amount of CG iteration steps reduces from O(p) (see
Theorem 3.13 (ii) for pr = const) to O(1) (Theorem 3.14). So the total work is
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with the conventional preconditioner Cg;, compared to
O(N, Nj+pN;)

with this new preconditioner. So the new preconditioner is efficient if p>>1 or
N, >1. However, the ’elegance’ of the Neumann case preconditioner is obviously
lost.
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3.4 Preconditioning by sparse matrices

3.4.1 A first approach by tridiagonal matrices

As pointed out in the previous chapters the most important thing to construct
a preconditioner is to find a numerical approximation of (—A)'/2 on a given
grid. Beside the spectral approach of Section 3.1 there is the possibility to use a
matrix approach: We may search for a symmetric positive definite matrix Crp
being an approximation of the square root of the negative Laplacian operator.
Furthermore, it would be nice if Crp is a matrix with limited bandwidth. This
would reduce the number of operations necessary to apply Crp.

For the sake of simplicity we assume that for the width of the channel B=m
holds.

To compare the operator!? (—A)
introduce the function space

1/2 to a discrete approximation Cpp, we

N-1
Tvo :={>_ c sinkz|c,€IR}
k=1

for the case of Dirichlet b.c. on T'" and

N
TNNm == {Z cp coskz | e, eIR}

k=1

for the case of Neumann b.c. on I''". We define the restriction operators

Ryo: Tvo—=RY, ¢ (p(n/N),p(21/N), ..., o(m(N=1)/N))"

RN,Nm : TN,Nm — KNa p = ((P(O), QO(//T/N)a (a3} QD(W))ta
N-1
where Ky := {(2o,...,zn) ERV | % + ) a+ N _ 0}
k=1

Obviously Ry, Ry nm are well defined and bijective an have inverse operators
(interpolation operators)

N-1
Ino : IR — TN,O:
Innm @ Kn = Tnnm-

Now we define the discrete analogon (—Ag)¥? to (—Ag)Y? and (—Anm)Y? to
(_ANm)1/2 by

(—20)n° = Rwp(—20)Y* Iy,
(~Anm)¥” = Ryvm (—Avm)"? Innm. (3.134)

14 (~A)'/? as in Lemma 3.4
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At first we are going to search a tridiagonal matrix which approximates
(3.134). Let us focus on the Dirichlet case at first. We will use the approach
a f
Crpo=| P (3.135)
. . B
B «
for the approximation of (—AO)%?'.
It is well known that the (N—1) x (N—1)-matrix (3.135) has the eigenvectors

. ik
Vp = (/Ulzc)i:]...N—l = (sin Z—ﬂ-) y k= 1, N N-1 (3136)
N Jiina
and the eigenvalues
km
ur =a+28cos—, k=1,..,N—1. (3.137)

N
The eigenvectors vy and eigenvalues uy correspond to the eigenfunctions
Yy, = sinkzx (3.138)
and the eigenvalues
v =k (3.139)

of the ezact operator (—Ag)'/? defined on the intervall (0, B) = (0, 7). We con-
clude that (—AO)}\;2 has the same eigenvectors (3.136) as Crp. That means that
we only have to find o, 3 € IR such that the u; are a good approximation of the
v in the sense that the condition number k = k(N) of the symmetric positive
definite matrix ((—AO)%Z)_1 Crp =Crp ((—Ao)%z)_l is small. Obviously,

max
k=1,...,N—1

|‘i: t|‘:
|

o — : (3.140)
min
k=1,..,N-1 Yk

If we would take the most simple choice Crp := id (o := 1, § := 0) we would

have puy = 1 for all k£ and therefore k(N) = N—1. In order to get a formulation
km

less dependent on discrete values, we introduce z := 77 and substitute problem

(3.140) by the (slightly stronger) problem to find «, 3 € IR for which

max 2]
g 2R (3.141)
' min 9 .
zelfm ©
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is small (possibly independent of N), where
g(z) :=a+2p cosz.

This problem is visualized in the left part of Fig. 3.29. That diagram suggests to
focus on the points = §; and r== and to postulate

o(m/N) _ gm)
/N 0

to determine a = a(N), f=LB(N). So we choose a= %-I—%, B= —i because for
this choice of a, 8 we have
g(m) 1+ 1/N
T T
N N
% = gt (1+5(1—cos %)) =a1(1+0(N)).

The resulting ¢ is displayed in the left part of Fig. 3.29 (upper dotted line).
The approximation quality of C'rp for this choice of a, § is investigated in the
following lemma.

2.5 T
z/m (1—cosz)/2— /
g(z)=a+2B cosz, a=1/2+1/N, B=—1/4 11:2/4 ,,,,,,,,,
g(z)=a+2B cosz, a=1/2, B=+~1/4 wZ/ﬂ.Z ,,,,,,7‘/{
2 K
1
1+4—
15
1
05
05
1 -
N I S T R IR [
0 0 ‘ s s 3n T 0 0 s s 3n T
4 2 4 4 2 4
ks
N

Figure 3.29: Left part: Visualization of function g. The term 1/N in the definition
of « is necessary because otherwise the ratio g(z)/x would behave like O(N~1) for
xz = /N (see lower dotted curve). — Right part: Visualization of estimate (3.143).

Lemma 3.15 Let a = % + %, B = —%. Then the symmetric positive definite
(N—1) x (N—1)-matriz Crp ((—Ao)¥?>) ! has the condition number

k= O(NY?). (3.142)
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Proof. Due to the explanations above it is sufficient to show that & = O(N/2).
For this, we have to find the extreme values of @ on [+, 7]. Using the estimate

2 1— 2

%_ ;:os:cga:z forall0<z <7 (3.143)
(see right part of Fig. 3.29) on @ = & + 5 (1—cos ) we get

2,19 @ 1T (3.144)

—+—< =< -4+ —, —<z<m )

72 Nz~ x — 4 Nz° N~ —

The lower bound in (3.144) takes its minimum at x = 7 N~'/2 the upper
bound in (3.144) takes its maximum at z = 7. So (3.144) leads to

2 glz) = 1
<y
mNY2 — ¢ — 4 N
and therefore
w2 1
kSRS o N2 4 5 N-1/2 (3.145)
[ ]
N Kk without K est. K acc.
precond. | by (3.145) | to (3.140)
16 = 24 15 5.060 2.332
256 = 28 255 19.770 11.402
4048 = 212 4047 78.965 45.648

Table 3.1: The condition number x = O(N'/2). The comparison between the
unconditioned value, the estimated value (3.145) and the true value according to
(3.140).

The Neumann case. Obviously, Lemma 3.15 and its derivation stays valid in
the Neumann case. We just have to replace 8 in the first and in the last line of
matrix Crp by 28. This is necessary because Crp has the same eigenvectors

(3.146)

as (—Anm)N?, then.
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3.4.2 Multidiagonal matrices

Sec. 3.4.1 showed that a tridiagonal matrix preconditioner can reduce the condi-
tion number from O(N) to O(N'/2).'5 Now we will investigate how the condition
number can be reduced if matrices with larger bandwidth are used. We construct
the matrix CM, as a symmetric (2M +1)-bandwidth matrix with the structure

0 0 0 ay ... a a o o a ... ay 0 0 0
(3.147)

Let us focus on the Dirichlet case. As we want CM, to have the eigenvectors
(3.136), we have to modify the first and the last M —1 lines of the matrix (3.147)
by taking into account the symmetry of these vectors (after odd extension). As
an example, (3.148) displays CM, in the case M =4:

Qp— Qg OQ1—03 OGo— 04 Q3 O4

a1 —03 Opg— 04 Q7 (6]
Qog— 0y O (o)) Qg
(6% (6] - el Tl Qo o3 (3148)
Oy o (831 Q2—0y
Qs Q1 Cp—Qg Q1—0Q3
(8 7) g OQo—0yg OCO1—0Q3 Og—0Qs

The eigenvalues of this matrix are obviously

M .
k
,uk:ao—i-ZZajcos I

— k=1 .. N-1. 3.149
— N ) ) ) ( )
]7
So we have to find «; such that
M
g(z) =ap+2 ) o cosjz (3.150)

j=1

is a good approximation of the function f(z) = on [f;, 7] in the sense that the
expression (3.141) is small. An idea which suggests itself is to compare (3.150)
with the truncated Fourier series fj; of the 27-periodic extended function

z, 0<z<m
f(x)_{27r—x, T<r<2m

To improve the approximation property in the sense of (3.141) we add (similar

to the case of the tridiagonal matrix) a constant such that g(0) = %, so
m

9(z) = fu(z) — fu(0) + N

15 equidistant boundary mesh supposed

(3.151)
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See Fig 3.30 for f and g. f has the Fourier coefficients

27

1

Q= /f(:z:) coskz dx = {
0

™

so the truncated Fourier series f, of f is

! M M
4
fu(z) = 2 +> aj, coskx = T_ > —
2 k=1 2 k=1 k=1
k odd k odd

From the representation (3.152) we conclude

4 | 72 M o1

==|—=-> =

F(0) | 8 ~ k2
k odd

and therefore
T M 4
= —_(1- .
g(x) N + Z e (1 — coskx)

A comparison of (3.150) and (3.154) gives the matrix entries

s M 4
R+ X k=0

ol
Qy = j odd

0, k=2,4,6,

-2, k=1,3,5,

for CH,.

We now take

M :=[N®] with 0<a<]1.

125

M
4
—= > m(1—coslcac). (3.152)

(3.153)

(3.154)

(3.155)

The costs of the application of the preconditioner C¥, behaves like NM ~
N'*e. The following lemma shows the dependence of the condition number on

o and N:

Lemma 3.16 Let the matriz CM, with M from (3.155) be constructed as
above discribed. Then the symmetric positive definite (N —1) x (N —1)-matriz

CM (= A)N?)! has the condition number

k= O(N(-9/2),

(3.156)
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Proof. We have to proof that expression (3.141) is bounded by ¢ N(1=®)/2,
(i). Consider 77 < x < 7 at first. From the approach (3.151) we get

9(@) = F@)| = |fule) = F(£) = fu(0) + |

T o0
< § @+ X0 eyl (3.157)
k=M+1
k odd
As 3 L =7 (3.153) yields
K odd
4 X 1
fu(0) = — 73
RN
k odd
So we get

8 8 T dz 4
)+ Y dekl= > o en <o | =
kkgdtll k (Z” (2k+1)2 = m J (2z+1)*> Mn

This in (3.157) yields

and analogously

_ z 4
g(m)21_|g(a:) w‘zl_Nth 42 M_>1_i_

(ii). Now let T <
(3.154) and get

7  4Mz (z) T (M+1)z
— < —_— 1
Nz * ™ T Nz * ™ (3-158)

For z € IR*, the left part of (3.158) takes its minimum at z = \/— The right
part of (3.158) takes its maximum for z € [x/N,n/M] at x = L. So we get

4 M _g@) M1
T -z - N M
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Figure 3.30: Visualisation of f and g with M =3, N =9 on the intervall [0, 27].
As expected, the approximation quality measured by g(z)/f(z) becomes worst
for small values of z because ¢ is a linear combination of cosine functions and
behaves like a second order polynomial for small . See Fig. 3.31 for the ratio

g(x)/f(x) = g(x)/z on [0,7].

N

058 N=2% M=4
, N=28 M=16
Y0.6
] N=212 M—64

0.4+

0.2

70 02 04 06 08 1 12 14 }(.‘6 18 2 22 24 26 28 3
Figure 3.31: Visualisation of g(z)/z on the intervall [x/N, 7] with M = N'/2 (i.e.

a = 0.5). The three lines represent the cases N = 24 28 212, As expected, the
approximation is worst (i.e. g(z)/z < 1) for small values of z, see Fig. 3.30.
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for all z € [%, 7] and N, M sufficiently large, and therefore (3.141) can be esti-
mated by

2 1/2 —1/2 2
m+4 (ﬂ) 4T (ﬁ) = T4 Nuaz f T-0-a)2 (350
4

4r M 4 \M 4
~ 1104 NU-9/2, .
N M = N2 K est. K acc. K acc.
by (3.159) | to (3.141) | to (3.140)
16 = 24 4 2.207 1.75 1.745
256 = 28 16 4.415 3.52 3.500
4048 = 212 64 8.830 7.08 7.045

Table 3.2: The condition number & in the case a =0.5. We get x = O(N/*).
The comparison between the estimation (3.159) and the true value according to
(3.140) shows that the estimation is very sharp. Compare to Tab. 3.1.

The Neumann problem. In the case of Neumann boundary conditions the
matrix CM,, should have the eigenvectors (3.146); taking into account their sym-
metry (after even extension) we get

(') 2 (03] 2 (67)] 2 [0 %] 2 (87)
a1 Qptoy oa1+a3 Qot+oyg O oy
oy aitoaz optag oq

(0%} Qo+0y4 07 Qa3 Oy

oM — (3.160)
o4 O3 .. .. .. oq ast+oyg O3
Qi aptoyg a1tasg g
Qg (0% oty o1+ opgtoe oy
2 (6 7] 2 [0 %] 2 (6] 2 i (%))

The (N+1) x (N+1)-matrix (3.160) is symmetric in the scalar product

To Yo
2

IN YN
2

N-1
(z,y) = + ) iy + (3.161)
i=1
and has the same eigenvalues (3.149) as in the Dirichlet case, but now for k =
0,...,N instead of kK =1,..., N—1. For the definition of the condition number
(3.140) the index k£ = 0 does not have to be taken into account because the
related eigenvector is constant and not in K; the related continuous function ¢
is not in H}/2(0, 7). Thus, in (3.140) k runs from 1 to N.
We can use the same o, B rsp. «; and, obviously, get the same estimate
(3.156) for the condition number as in the Dirichlet case.
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3.4.3 Condition number independent of N

In the last section we found matrix type preconditioners consuming O(N**!) op-
erations producing a condition number x = O(N®)/2) 0<a<1. We will show
that it is possible to construct a matrix type preconditioner with less operations
and a condition number independent of N! We just have to drop the requirement
that the non-zero bands of the preconditioner matrix are side by side.

Lemma 3.17 Let Cyp be the matriz of type (3.148) (M := N) in the case of
Dirichlet boundary conditions rsp. (3.160) in the case of Neumann boundary
conditions with the entries

m+en, J=0
YT -1, j=24,816,.. |log, N
257 J =440, 7"')L0g2 J

0, else,

1 [log, V]

CN :=1—<§> .

Then, the symmetric positive definite matriz Cyp ((—Ao)}\{z)_1 has a condition
number

3
K< L +2R075 (3.162)
independent of N.

Proof. Using (3.149), the matrix C}, from Lemma 3.17 has the eigenvalues

km [log, V| 1 — cos 27 km
= 1—cos — — N 3.163
Ui =T ( Cos N) + ; 5 ( )

So, by replacing z := %’“, it is sufficient to show that ? with

log2 Nl 1 _ o520 T
= 1— e —— cl—
g(z) =7 (1—cosz) + 1221 5 , T [N,7r],

is bounded by constants ci, c; from above and below with 2 = 7-+2. As 7 < N,
we can write

[y

[logy = | ] [logy V| j
1—cos2x 1—cos2x
g(x) =m(l—cosz) + E _ + E _

— 27 oz ™41
J= j=|logy 7 |+
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and use (3.143) on the first term and on the first sum. We get

922 [logs =] i+ 3.2 - [logs =] . 0 »
3 aose@s -+ X P+ > 2
e i=1 j=log, = |+1
thus
2_$ + 4_323 (2|_logz fj _ 1) S ﬂ S x_ﬂ- +z (2|_10g2 %J _ 1) + 1 21—Llog2 %J
T T T 2 T
Using £—1 < [£] < & we get
4 4
o, & (1—1) cda) o, <I_1>+__
T w2 \2z z 2 T T
So,
2
2 9@ = 4
T x = 2 T
for z €[, 7].
This yields (3.162). ]

3 3
/NS o1

N e

2 \N\::24 il
o N:28 :216 e N_216 N—28 N 224

1 ’ 1
0.5 0.5

(o] (o]

(] 0.5 1 1.5 2 2.5 3 % % % % % ™

Figure 3.32: Visualization of @ on the intervall [T, 7r]. The three lines represent
the cases N = 2% 28 216 For the left figure a linear scale and for the right figure
a logarithmic scale is used on the z-axis. Obviously, 2 < @ < 3. That means
k < 1.5, which is even better than (3.162). The value of k is evaluated more
exactly in Table 3.3. The advantage of C}, over Crp is obvious by comparing
Fig. 3.32 to Fig. 3.31. Furthermore, C}p is even less costly than Cpp.
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N K

2% | 1.47559
28 | 1.48126
211 1 1.48298
220 | 1.48307

Table 3.3: The ’true’ condition number « of the matrix C’;D((—A)}f)*l calcu-
lated by evaluating (3.140) with p; from (3.163).

Application of the results. In Section 3.4 approximations Crp, C}p of
(—A)Y/2 were derived. In the equidistant grid case, these matrices can be used to
construct preconditions by replacing (—A)'/2 by Crp, C}p in Section 3.1. We
will get the condition numbers of Tab. 3.1 (right column) and Tab. 3.3.

But also in the Gauss-Lobatto mesh case these matrices apply: Using The-
orem 3.9, we can use Cpp, Cy, to replace Cgr. In this case, we should expect
slightly larger condition numbers 2, where  is from Tab. 3.1,3.3 and the ¢; are
the (not explicitely known) equivalence constants of Theorem 3.9.

Test runs. In the following we are comparing the effectivity of the multidiag-
onal preconditioner C%p, the tridiagonal preconditioner Crp and the spectral
preconditioner C' from Sec. 3.1.

Fig. 3.33 uses 4 FD subdomains and an equidistant boundary mesh. As
expected, the multidiagonal and the spectral preconditioner show a better per-
formance than the tridiagonal. Comparing the upper and the lower diagram, the
effectivity of the multidiagonal and the spectral preconditioner does not depend
on the discretization parameter N. The tridiagonal preconditioner looses effi-
ciency for large N. This complies with the theoretical results of Lemmas 3.15,
3.17.

In Fig. 3.34 four spectral subdomains with Chebyshev-Gauss-Lobatto bound-
ary mesh are used. As explained, Crp, C}, are used to replace the spectral
realization of (—A¢)/2 in (3.35).

According to theory and to the numerical tests, the multidiagonal matrix
preconditioner and the spectral preconditioner generate (in the Dirichlet case) a
condition number independent from N. Comparing both, the spectral precon-
ditioner needs 0-2 CGBI iteration steps less and the multidiagonal. This can
be explained by the approximation error of the approximation C} =~ (—AO)%z
displayed in Table 3.3.
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1E+1 | T ]

: : multidiag. C —+—
gpectral C ——->---
tridiag. C ----%---

1E+0 noC . '—
el N, o .
lE-2 R N N \\\\\\‘ """" " """""""""""""" =
lE-3 T \\\\ “\\\ """" """"""""" A ' """""""""""""" =
N L : - i1
e
0 2 4 6 8 10
1E+1 | T ]

: : multidiag. C —+—
gpectral C ——->---

1E+0 tridiag. C x|

1E-1
1E-2

1E-3

- |
1E-5 | | | <

’ i * 6 8 10

Figure 3.33: The Dirichlet problem on 4 FD subdomains for the exact solution
(2.83). Comparison of the multidiagonal preconditioner C%,, the tridiagonal
preconditioner C'rp and the spectral preconditioner from Sec. 3.1. =0, r=1. —
Upper fig.: N=64. — Lower fig.: N=256.
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1E+1 ) ) T — T
multidiag. C —+—
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Figure 3.34: A comparison of the multidiagonal preconditioner C}p,, the tridiag-
onal preconditioner Crp and the spectral preconditioner on 4 Chebyshev subdo-
mains. =0, r=1. — Upper fig.: Dirichlet problem for solution (2.83), N =64. —
Lower fig.: Neumann problem for solution (2.81), N =256.
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3.5 Irregular meshes

Up to now, preconditioners for equidistant boundary meshes and for Chebyshev-
Gauss-Lobatto boundary meshes were developed in this Chapter. In the context
of FE solvers, different boundary meshes may occur. In this section we handle
the case of quasi-uniform boundary meshes, which are defined as follows: Let
us consider a sequence of meshes (M) on I'. For each mesh, let 0 =2y < z; <

. <zy =B, N=N(M,i), z; = z;(M,1) be the boundary mesh on I'; and
hj=hj(M):=z;;1—z; the local mesh size. We postulate that there is a constant
¢>0 such that

hmin(M) > ¢ hpaz(M) ¥ M, (3.164)
where

hmin(M) := i_n]fh]-(./\/l, 1),  hmaz(M) :=suph;(M, i),
1, i,j

i.e. the ratio of the largest mesh size and the smallest mesh size is bounded
independent of M.

We will show that under the assumption (3.164), any discretization (the spec-
tral approach of Sec. 3.1, the matrix approach of Sec. 3.4.3) of the preconditioner
Cyiob (3.59) can be used on the non-equidistant data set (¢;(2;))i=1,...p—1,j=0,....N-

Let us prove the following lemma at first:

Lemma 3.18 Let us identify T'; = (0, B) for all i=1,...,p—1. For any function
w : [0, B] — [0, B] with

w(z) - w(y)
z—y
and w(0)=0, w(B)=B, the norms generated by Cyop(-) and by Cyup(- 0 w) (see

(8.59)) are equivalent, i.e. there are ¢, ca >0 depending on 1, L, but independent
of ¢ such that

1< <L Yz#yel0,Bl,

c1 (Caop(p o w), p ow)r < (Chiopp, )1 < 2 (Caap(pow),pow)r Ve R(A).

Proof. (i) Let us consider the case of Neumann conditions on I'". Cyp =
(—Anm)'/? +id is a norm equivalent to the H'/?(T')-norm. It is well known that
the H,,,(I')-norm is equivalent to the norm

1/2

B
(Hls0|||2+0/<p2dx) , ¢>0 (3.165)
0

B B ) 1/2
el = ( = dxdy)
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(see Sec. 3.1.3.1). (3.165) can be rewritten as

1/2

(/Bf ((p(wufzi - z((z)(y))yw'(w)w'(y) dz dy + C/B(goow)zw’ ds:) (3.166)

0

B B 9 B 1/2
< ( 0//(90010 jow(y)) da:dy—i—cLO/((pow)zdx)

< emax{L/l, VL}[lp o w]| ;2

(0,B)"

Similarly we get the lower bound c¢min{l/L,/1} || o w||H1/2(0 p) for (3.166).
(ii). In the Dirichlet case, Cyp is equivalent to the H(}({z(I’)-norm, which is, by
using (2.12)-(2.13), equivalent to (|[|¢|l|>+l¢/+/2(B—2)|[32(,5))"/>- This can be
estimated similarly to the Neumann case (i); the constants

max{L/l,vL}, min{l/L, I}
in (i) are replaced by

max{L/l,VL/1}, min{l/L,v1/L},

respectively. "

Let us return to the sequence of quasi-uniform meshes (M). To apply the lemma,

let us introduce the mesh distribution function w=w(M, 1) : [0, B] — [0, B] with

w(jB/N) = x;, which is piecewise linear on the intervals [jB/N, (j+1)B/N].
Obviously, w meets the assumptions of Lemma 3.18 with

|=hminN/B, L=humeN/B.

By appling the lemma we conclude that Cyiopai(-) and Cyiopai(- © w) are spectrally
equivalent operators with equivalence constants bounded independently of M. So
we have to proceed similarly as in the Gauss-Lobatto case of Sec. 3.1.3: Instead
of applying the preconditioner Cjgopq; 0n ¢ We apply Cyiopar OD ¢ © w.

Let us mention that the equivalence constants in the proof of Lemma 3.18
can be estimated as follows: As <1, L>1, L/l>1,

maX{L/l, \/E} < maX{L/l, \/T/Z} = L/l = hmaa:/hmim < Cila

min{l/L, v} > min{l/L,\/l/L} = /L = hmin/hmaz, > ¢
max{L/l,VL/I} = L/l <c?,
min{l/L,V1/L} = 1/L> ¢,

with ¢ from (3.164) which is independent of M.



Chapter 4

The Characteristics Method

4.1 Introduction

In the past decades a variety of schemes for solving transport dominated problems
were invented. Especially the Lagrange-Galerkin methods associated with the
names Morton and Siili (e.g. [13] [38] [39] [48] [49], but also [14] [44]) are of great
importance. They are combining the characteristics (Lagrange-) method with
the finite element method. Another approach combining a spectral method with
the method of characteristics is given in [50].

Error estimates for the Lagrange-Galerkin method are e.g. available [13] [39]
for the transport equation

U +au, =0 (4.1)

with a = a(t,z) or a = a(u) and in [44] [48] for the Navier-Stokes equations.

As pointed out in the previous chapters, we want to involve a spectral collo-
cation method for the solution of the diffusion equation (5.3). To be consistent
with this

e we have to use a high order method of characteristics
e we prefer a collocation approach instead of a Galerkin method.

For our Navier-Stokes solver, the elliptic solvers determine the mesh which should
also be used for the hyperbolic step. Therefore one main aspect of our study is
to extend the theoretical and numerical behaviour of the characteristics solver to
non-equidistant and non-quasi-uniform (Chebyshev-Gauss-Lobatto) meshes.

For the Lagrange-Galerkin method numerical integration may be a source of
instability, even in the linear case a =a(t, z) and using linear elements, if standard
quadrature formulars are applied [39] [49]. Thus, a detailed stability analysis of
our approach seems to be indispensable and is carried out in the course of this

136
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chapter. Let us mention that the lack of diffusivity in (4.1) may aggravate the
question of stability.

As we are interested in a highly accurate characteristics solver, we use high
order interpolation in space and time for the trace-back of the characteristic lines.
The spatial interpolation may be regarded as the representation of a function with
respect to certain (finite element) piecewise polynomial ansatz functions (see right
parts of Figs. 4.1, 4.2). For the sake of simplicity, the theoretical investigations
of this chapter are restricted to the case of one space dimension. In Chapter 5,
the method is also applied to 2d flow problems.

An error estimate of type

h2
lu — 1o < cAtz—i-cmin{Kt,h} (4.2)

can be proven for the nonlinear (quasi-linear) equation (4.1) with
a = a(t,z,u(t,x)) (4.3)

and periodic or Dirichlet inflow boundary conditions when linear ansatz functions
are used. No restriction on the time step size At is necessary, i.e. the method is
inconditional stable (see Section 4.3).

In Section 4.4 higher order ansatz functions are used. Let p be the polynomial
order in space and g the polynomial order in time. Then we get the error estimate

B+l
|u—ut||s < c AT + cmin{ ,hp} (4.4)
At

for the nonlinear equation and periodic boundary conditions if a certain stability
condition is met. An interesting property of the scheme is that, though the
differential equation may be nonlinear, the stability of the spatial interpolation
operator (which is linear) implies the stability of the whole scheme. Sections 4.4.2-
4.4.6 deal with the question under which restrictions on the Courant number and
on the mesh type this stability condition is fulfilled. It turns out that on a
quasi-uniform mesh a bounded Courant number is sufficient whereas on a Gauss-
Lobatto mesh a very severe stability condition occurs.

Numerical tests (Sec. 4.4.6) confirm that the error estimates (4.2), (4.4)
are optimal. The fact that the estimates reveal a lower order than the best-
approximation is coherent with the previously mentioned publications on the
Lagrange-Galerkin method. Concerning stability, our numerical tests on the
Gauss-Lobatto mesh revealed better stability properties than could be expected
due to theory.

A different approach to combine a spectral method with the characteristics
method is presented in [50]. That approach uses a projection onto the space of
shape functions which consists of trigonometric functions; the underlying mesh
is equidistant. Both methods ([50] and our) have in common that polynomial
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interpolation is used to avoid the expensive ’full order’ evaluation of a function
at the characteristics foot points (Sec. 5 in [50]). A main difference is that the
scheme [50] performs a spectral decomposition into the ansatz functions.

As in our method no global systems of equations occur, our method is easy
to parallelize even when used on 2d or 3d domains.
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4.2 The scheme

In this section we will define some operators describing the extrapolation in time
and the interpolation in space of the numerical solution which is a cruxial point
of the algorithm. After that, the numerical scheme is given. In the Sections 4.3
and 4.4 the stability and the convergence of the schemes is investigated.

Let 2 = (0,L) C IR be an intervall and €2}, be the set of grid points xy,
0==2¢<..<z1=0Land h:=max{zg,; — z} be the mesh size. Let u"(zy)
be the numerical solution at the grid point x; € €2, at the time step t, = n At
and u™" = (u%,...,u") the totality of the previously calculated time steps.

Spatial interpolation. For linear interpolation, we define S;u™ : IR — IR as
the piecewise linear function with (S;u”)(zy) = u"(zy,) for all grid points zy € 2,
(Fig. 4.1).
For higher order interpolation, we define the interpolant as follows:
For p > 2 let S, Akt : IR — IR be the polynomial of degree p which is defined!
by

(Sparru™)(z;) = u"(z;) for i =k + Ak —p, ...,k + Ak. (4.5)
Let

Spart"(z) == Sp arpu" () for € [zg, Tpi1) (4.6)

be our spatial interpolation function (see left part of Fig. 4.2). 2 We notice that
the definition of S; is consistent with definition (4.5)-(4.6) for p=1, Ak=1.

U
A

| | | | [y [y
T T T T - 1 | I -

v Tk—-1 Tk Tk+1
Figure 4.1: Linear interpolation (p=1) and related ansatz function.

Spatial ansatz functions. We want to identify the ansatz functions oy, = p A
related to the interpolation operator S, ar and the mesh (zy), i.e. the functions
ay such that the expansion

Spaku(z) = ulzy) ax(z) (4.7)
k
L If 2, lies close to the boundary, a boundary condition may be necessary to define S, x Ak
properly. We will assume periodic boundary conditions.
2 Tt is possible to replace the interval [z, 2+1) by (2x—1,2%]. This would flip the ansatz
functions (Fig. 4.2, right part).




140 CHAPTER 4. THE CHARACTERISTICS METHOD

> e i >
Tk-1 Tk Tk+1

Figure 4.2: Left part: Second order interpolation (p =2, Ak =1). Right part:

related ansatz function az;. For Ak=2 the ansatz function would be reflected

at the y-axis. Only for odd p (and equidistant mesh) the ansatz functions are

symmetric.

X

holds.
Let L, , be the Lagrangian polynomial satisfying
Lﬁ,b(‘rj) = 1,
Liy(z) = 0 Vi=a,..b;i#j (4.8)

if a<j<b and Lé,bEO for j<a, j>b.
Then it is easy to verify that

ag(z) = L?+Ak_p7j+Ak(:v) for all z; <z <xj41. (4.9)

In Figs. 4.1, 4.2, a3, for p=1 rsp. p=2, Ak =1 are displayed. For equidistant
mesh, all the ansatz functions have the same shape:

ar(z) = apyi(z+ih)

Polynomial extrapolation in time. Using the numerical solution at the time
steps tn, th_1,...,tn—q, We define for ¢ € INy and each z € € the interpolant

(I3, axu™)(-, ) as the polynomial of degree ¢ with

(Iszkuh’")(t,,, ) = Spart™™(t,, ) forn>v>n—gq (4.10)

for p > 2. For p = 1 we define correspondingly (I7';u"")(-,z) as the polynomial
of degree ¢ with

(Igluh’")(t,,, z) = Sul"(t,, z) forn>v>n—q. (4.11)

We will use the abbreviation I" = I}, A, tsp. I" = I};.

Now we can state the algorithm: For given u", w1 is determined as follows:



4.2. THE SCHEME 141

(i) At each grid point z calculate X (t,;tn41,2), where the characteristic
X(-) = X (-;tp41, k) is the solution of the initial value problem

—X(t) = a(t,X(t), "u""(t,X(t))) (4.12)
X(thi1) = -
(i) Set
u" T (ag) = UMt X () = Su™ (X (t))- (4.13)
So we are using the extrapolated field I"u™ to calculate backward in time

the characteristic starting at the point x; at time ¢,,1.
For a visualization of this process see Figs. 4.3, 4.4.

A
t
tn—|—1“ x x
T+ x X x
tn
-+ x x x
tn—l
| , -
T
Tr—1 T Tr+1

X<tna tn-}-la xk)

Figure 4.3: Visualization of a timestep.

Remarks.

e Our method has features both of an implicit and of an explicit method: It
is implicit in the sense that the characteristics are calculated backward in
time (¢t <t,41) from a point (¢,.1,2k). It is explicit in the sense that an
extrapolation of the flow field in time is used.

e The described spatial interpolation by & may be substituted by spline in-
terpolation, but that would mean to solve a global system of equation in
each timestep which is also a disadvantage in case of parallel computing.
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U

T Tr+1

X (g stnt15tn) X (Tpt1stntitn)

N~~~ N——
length of characteristics

Figure 4.4: A timestep with ¢=0, p=1. The two graphs show the velocity dis-
tribution at time ¢, and ¢,.;. The hollow dots are the endpoints X (t,; tn i1, Zk),
X (tn;tns1, Ter1) of the characteristics. The two dotted horizontal arrows show
the action of the update (4.13).

However, tests do not show any improvement of the spline interpolation
compared to the application of our piecewise polynomial interpolation op-
erator S.
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4.3 A convergence theorem for linear ansatz
functions

In this section we will prove the unconditional stability and the convergence of
the scheme for linear spatial interpolation (S = &y, I" = If';, see Sec. 4.2) for
the nonlinear transport equation (4.1) in the L*®-norm.

We assume that for the time step size At taken from an interval (0, Aty the
numerical integration method for the ordinary differential equation (4.12) has the
following two properties:

If y(At) and §(At) are the numerical solutions of ¢/ = f(¢t,y) rsp. 7' = f(t,7),
y(0) = §(0) = 5o, and f, f are smooth, then after one timestep

(i) ly(At) —g(At)| < P(At)At  sup [(f — f)(t,2)|V At€[0,T] (4.14)
(t,2)€[0,Af] xR

where P(t) = P(t, f) is a bounded function for ¢ € [0, A¢o] independent of
f, and

(ii) |y(At) —y(0)| < CoAt sup  |f(t,z)| (4.15)
(t,z)€[0,Af] xR
for a positive constant Cj.3

For the Runge-Kutta methods, (4.14) holds with P(¢) = 1+ || f;||c for the 2"
order Runge-Kutta method

At At
y(to + At) :yo-i-Atf(to-i-?,yo-i- 7f(to,yo)) (4.16)

and P(t) =3 _, tmﬁ‘)’% for the classical 4 order Runge-Kutta method.
For the first timestep we may use I, instead of I'; or we may assume that

we know an approximation of u(—At).

Theorem 4.1 Let u € C?(Q) be the exact solution of (4.1), a € C*(Q xIR),
Q= [0,T]xQ, 8a/Ou bounded, u™ the numerical solution according to Section 4.2

with I" = I, (i.e. linear interpolation in space and time). Let us consider a
numerical integration method fulfilling (4.14), (4.15) of order>2. For At, h*/At
small enough, the following error estimate holds:

: h?
|lu — uh||Lzo < C At* + C min {h’Kt} (4.17)

where || -||1 denotes the mazimum over all grid points xy € Qy and all time steps
n=0,..T/At and h::mlstxwkﬂ — T

% For all methods of type y(At) = y(0) + At Y, @i f(&;) (e.g. Runge-Kutta methods, Adams
methods), (4.15) holds with Co = }_, |a;|. For all consistent methods of this type with positive
coefficients a;, (4.15) holds with Cy = 1.
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Remark. This theorem can easily be generalized to higher order estimates in
time: If we replace IT'; by I} (¢ € INg) and tighten the regularity assumptions
on a and u, then (4.17) holds with A#? replaced by At?*!. The increase of the
spatial interpolation order requires a special investigation of the stability. This is
pointed out at the end of this section.

Proof of Theorem 4.1. Let us assume a being bounded on @ xIR at first.
We will use the abbreviations U = maxq |u(t,z)|, A = supg.p |a(t, z,u)|, Ay =

maxg |M\, Uy = maxgq |M| and so on.

du at?
We suppose that we have already computed u°,...,u™ with an error
|Su”(z) — u(t,,z)| < E, (4.18)

for v =n—1,n and all points xeﬂh with*

Q=0 0N (U [zr — CoAAt, 2 + CoAAL).
T EQY

We have to derive how E, .; depends on E,,.
(i) Error of the characteristics. Let X = X(t;t,41, zx) be the exact characteristic
according to the exact flow a(t, z,u(t,z)), Xpum the numerical characteristic for
the same a and X}, num the numerical characteristic according to the numerical
flow a(t, z, ["u™"(t, x)).

Using (4.15) with f(t,2) = a(t,z,u(t,z)) 1sp. f(t,z) = a(t,z, ["u"(t, 2)),
we get Xpum (tn; tni1, Tr), Xnnum(tn;tny1, Tx) € Qp. Using (4.14) with f(t,z) =
a(t,z,u(t,z)), f(t,x)=alt,z, ["uP"(t, z)), we get

(f = Dt 2)| < Au[I"uP"(t,2) — u(t, o)
and

‘Xh,num(tna tn—i—la mk) - Xnum(t'na tn—f—la a:k)|
< A, At P(At) sup [I"u™™(t, 2) — u(t, z)| (4.19)
(@) €[t tnt1] X
with P(At) depending on a, u, At, but independent of u"".
By standard estimates for polynomial interpolation (see e.g. [47] Satz 3.4),
we get for zey

sup  [I"uP"(t,2) - u(t, )|

te[tn,tn+1]
< sup MU —u(t) (@) + sup  |(I"u— u)(t, )]
te[tn,trﬂ—l} tE[tnytn+1]
< 3E, + UyAt? (4.20)

4 This definition of Qj, turns out to be useful in (4.23) in part 3 of the proof; obviously all
endpoints X (¢,; tn+1,2k) (and, due to (4.15), also its numerical versions X,um, X, num defined

below) are contained in Q.
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for all z € Q. The factor 3 results from the extrapolation in time. Hence, the
error in computing the characteristics is

| X b num (tn; tnt1, Tk) — X (En; tns1, Tk)|
< | Xhnum(tn; ta1s Tk) — Xpum (o) tng1, T)|
+ Xnum (tn; tna1, T) — X (En; tnrt, Tk)|
< (3B, + UyAt?) A At P(At) + Co A (4.21)

where C5 depends on the numerical integration method for the calculation of the
characteristics.
(ii) Error of uy at the grid points xj,. With (4.13) and (4.21) we obtain

Tx) = U(tnt1, Tn)|

|Su"™ (Xn pum (tn; tns1, Tk)) — w(tn, X (tn; tns, Tk))|

|SU™ (X num (tn; tnt1, Tr)) — ©(tn, Xbpum (o o1, Tk))|

+|u(tn’ Xh,num(tn; tn—i—la xk)) - u(tna X(tn; tn—i—lv xk))|

En + Uy | Xhpum (tn; tns1, k) — X (n; tng1, k)|

(143U, A, At P(At)) E, + C5A#? (4.22)

|un+1(

IN

IN A

with 03 U (02 + UttA P(At))
(#43) Error of Tuy for = €. Using standard approximation results (again [47]
Satz 3.4) and the definition of Qn, we get for arbitrary z € Qy:

[Su™ (tns1, ) — ultnia, )]

< S = u(tn))(@)] + [Sultns, @) — ultns, 2]
< max ("™ — u(te))(z)| + 1Umh min{AAt,ﬁ}. (4.23)
zREQ 2 4

Taking the maximum of (4.23) over all z € Q) and (4.22) we get the recurrency
inequality

E.1<aE,+p (4.24)
with
1 h
a=14+3U,A,AtP(At), B =CsA + §Umhmin{AAt,Z}. (4.25)

Assuming Ey < we have
n n+l 1
E. < Y a=8"
k=0 -1
exp(3 U, A, (T+At) P(At))
- 3U, A, P(At)

(4.26)

Uzz h h
2y T -
(03 At” + 5 mln{A At, })
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We now may drop the assumption that a is bounded. If a is unbounded on QxIR

we just have to replace A in the proof by A := sup |a(¢,z,u)| which is < occ.
P
] X z Ll T 2
Here we have set U := PG (gU‘: A(j}i—(AAtzt)P (A1) (03 A2 4 Ussh ) .

Unfortunately, this proof fails for higher order spatial interpolation S, A with
p>1. Then, the estimate

Spane(@)] < max|e(a) (.27
which was used in (4.23) no longer holds (see Fig. 4.5),

Su™ Su™
A A

> >

Figure 4.5: For linear interpolation, the maximum is always taken at a grid point.
For higher order interpolation, this is false. This can be a cause of instability.

but only
[Sp,are(@)] < Crmaz(p) max [e(zx)|- (4.28)

See Lemma 4.4 (i) where (4.28) is proved.
However, numerical tests indicated the stability also for higher order ansatz
functions. This is investigated in Section 4.4.
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4.4 Stability and convergence for higher order
ansatz functions
In this section we will prove the stability and the convergence of the scheme for

higher order ansatz functions (p > 2). To avoid the problem of (4.27)-(4.28) we
will use a discrete L2-norm

1/2

f (xk)|2> (4.29)

-1
||f||Lg = (Z Wk,h
k=0

instead of the Lp°-norm because in Lp° we are not able to prove stability. In
(4.29), the wy p, are positive weigths with

-1
w :
Cuwt > D Wi, AR Cuw2, Wi > Cys min 1 — YV k,h (4.30)
— Wk,h
k=0 ,

where the constants Cy1, Cy2, Cys are independent of k, h. An appropriate
choice of wy , could be® wyj = %(le—wk_l); see Sections 4.4.3, 4.4.5 for this
point.

Throughout this section we will assume periodic boundary conditions.

In contrast to the linear interpolation &; in Section 4.3 the use of higher order
interpolation Sp Ak Will lead to a restriction on the time step size At. The
validity of the stability condition (4.34) (taking the role of (4.27) in the linear
case) is investigated in the Sections 4.4.2-4.4.6.

Before this, in section 4.4.1 we will show that this stability condition implies
the convergence of the scheme in the L-norm.

4.4.1 Convergence

We are going to prove an error estimate for our characteristics method for higher
order interpolation.

Let hy := 21—, h:=max hy and hp;, == min hg. Let us assume that the
"local variation’ of the mesh size is bounded: There is a constant Cpesp = Cesh (D)
independent of h, A, for all the meshes under consideration such that®

R Tk h;
% < Cesn VE=0,...,1. (4.31)
J=k¥1ktp 7

® For this choice of wg,p, ||ul|3. is the approximation of ||u||2, with the trapezoid rule. As
h

we are dealing with periodic functions, the trapezoid rule provides extra high accuracy.
6 For the Gauss-Lobatto mesh, (4.31) holds with Ci,esn, = p?.
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Theorem 4.2 Let Q@ = (0,L). Let u € C¥?(Q) be the ezact solution of (4.1),
ac Cmaxlatleti}(Q x R), Q=[0,T|xQ and uP" the numerical solution according
to Section 4.2 with I=1,, Ax, P>2, ¢>0 and

< chimin, (4.32)
At L P < eRI2T e 0. (4.33)

We propose that we are using a numerical integration method fulfilling (4.14),
(4.15) of order >q+1 and that (4.30) holds. Suppose that the stability condition

ISF(X (tns tnrs, Dllzz < (1+ Cotar At) || f]] 22 (4.34)

holds for any discrete function f given on the grid points with Cy.p tndependent
of h, At, f. Then for all h<hg, ho>0, the following error estimate holds:

potl
max ||u(t,) — Uh’nHL}zz <cAttt! 4 min{ AL ,hp} (4.35)

In (4.35) the mazimum is taken over all time steps to = 0, t; = At,....ty =
N At =T and the c are independent of h, At, u™.

Before the proof we present two preparatory lemmas which are proved at the
end of the section:

Lemma 4.3 Let
Py 0,5 :={P : [0,s] = IR| P is polynomial with degree <p}

and 0 = z9 < ... < &, = s be grid points on [0,s]. Then there is a constant
Cy=Cy(p) independent of s, P and the distribution of the xy such that

p — P(xy—
max |P'(z)| < Cy max |Plaw) (@1-1)
z€[0,s] k=1,...p Tp — Tg—1

(4.36)
for all P€IP, o 4.

Lemma 4.4 Under the assumption (4.31), for all functions e given discretely on
the mesh,

(1) (4.28) holds with Cree = (p+1) (pCrmesn)?,

(1) sup |(Sp,ake)'(2)] < Cs by

min AX_e(24)]
z€[0,L) =0,...,1

holds with Cs = 2 Cy.
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Proof of Theorem 4.2. Let us define the discrete error
e’(zy) == u”(zg) — u(ty,zx), v=0,..,T/At, z,€Q
and its norm

E, := max |¢” [z, n=0,..T/At

0<v<n

The estimate

E, < Cpa?h \? E, (4.37)

mwn

holds due to (4.30).

Let us assume that a is bounded, at first.
(i) The decomposition of the error. We have to find an estimate of E,,; in
dependence on E,. So we have to estimate e”™1. We perform the decomposition

[ () = wltnga, ')||L,‘§

|Su™ (Xh,num (tn; tnt1, ) — ultn, X (s tnsa, <)l 22
”‘Sun(Xh,num(tn; tnt1, )) - Sun(X(tn; tnt1, ))”Lﬁ
+|Su™ (X (tn; tnt1, -)) — Su(X (s tasa, ))“Lfl

FSu(X (tn; tnt1, ) — w(X (En; tnra, )22 (4.38)

le™*H Iz

IN

Similar to (4.23), the last term in (4.38) is estimated by T;"—Jr; h? min{A At, h}.

Using the stability, the second but last term in (4.38) is estimated by (1 +
Cstab At)En Let

be the Lipschitz constant of a function f. The remaining term in (4.38) can be
estimated by the Lipschitz constant L(Su™) and the error of the characteristics:

“Sun(Xh,num(tn; tnt1, 7)) — SU™ (X (tn; taia, ))“Lf1
< L(Su™) | Xnnum (tn; tntts ) — X (Ens tntt, )|z (4.39)

(ii) An estimate for the Lipschitz constant in (4.39). It is
L(Su™) < L(Su(t,)) + L(Se™).

L(Su(t,)) is bounded due to the regularity of u: With help of Lemma 4.3 and
the mean value theorem we get L(Su(t,)) < C4U,. The Lipschitz constant of
Se" is estimated by Lemma 4.4 (ii) and (4.37):

L(Se™) < Cs hot E, < CsCa/*h* B, (4.40)

min mm
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(iii) The error of the characteristics. Similar to (4.19)-(4.21) we get
‘Xnum(tn, tn—l—l; xk) - X(tn’ tn—|—1a xk)| S 02 Atq+2 (441)
and

|Xh,num(tn; tn—l—la mk) - Xnum(tn; tn-i-la ajk)|
< A, AtP(At)  sup  [I"uM(t,x) — u(t, )| (4.42)

|lz—zp|<CoA At
t€ltn tn41]

< A, AtP(At) (C'(q)  sup  [Se¥(z)| + Uwn AtTT)
|z—2p|<CpA At
v<n

where C'(q) is a constant such that |P(¢g+1)| < C'(q) max |P(v)| for all poly-
v=0,...,q

nomials P of degree <gq. The interpolation operator S has local character: The
values of the above supremum only depend on the nodal values e”(z;), j€G,

G = {—|CoA At] /hmin + Ak — p, ..., [CoA At] /humin + Ak}

Due to (4.32), |G| is bounded independent of h, At (the Courant number is
bounded). So with (4.28), (4.30) we get

Y wkh  sup  |Se’(2)* < Craa(p)* Y wi,nsup e (zhs;) |
% |z—zk‘|/§goAAt % iegi

< Chaz (p)2 CJUC;| Z Slelg wk+j,h|ey($k+j) |2
k J

v<n

< Cuas(p)’ Cu3 |G| B (4.43)
(iv) Collecting the results. (4.39)-(4.43) yield

”‘gun(Xh,num(tn; tnt1, ")) — SU™ (X (tn; taga, ))”Lﬁ
< A2 L At RTEE L cALE, + e Ath 2 E?

min min

< cAEY? 4 cAtE, + cAth,? B2 (4.44)

where the constants c are generic and where we have used (4.33) in the last step.
All in all we get from (i) and (4.44)

Eni < CoAth2PE? + (14 C7 At)E, + Cs At 4 Cy h? min{A At, h}. (4.45)

min n

Unlike the proof of Theorem 4.1 we have to treat the term At h;j,/fE'fL

(v) Solving the recurrency inequality. Let Ci9 >0 be an arbitrary constant. As
an abbreviation we use

o = 07 + 06010; /8 = Cg Atq+2 + Cg h? mln{A At, h}
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Suppose that h, At are small enough that
8 el < op3? (4.46)
a At — 107min '

(here we have used (4.33)). Using the inductive hypothesis

~ (14 alAt)" -1
E, < 4.47
<p el (1.47
and the estimate (1 + aAt)" < e*T we get
E, <8 e < C1oh3/-2 (4.48)
— Q{At — mwn

and therefore the first summand in (4.45) is estimated by CsC1o At E, and
Eopn <(1+aAt)E, + 8

follows from (4.45). With (4.47) we get

(1+ alAt)"™ —1
alAt ’

Hence (4.47) holds for all time steps n, and the left part of (4.48) shows that
(4.35) holds.

The generalization to unbounded a follows analogously to the proof of
Theorem 4.1. "

E~'n+1 S /8

Proof of Lemma 4.3.
(i). On the finite dimensional quotient space

@p,10,5] = Py 0,51/ TPo0,5]

both [|[P]||. := s m%x]|P’(x)| and [[[P]llq == s max Pl Perll gre norms.

=1,...,

Therefore there is a constant Cy=Cy(p, s, 21, ..., Tp—1) With

max |P'(z)| < Cy max Plew) = P(@i-1)

z€]0,s] k=1,...,p Ty — Tp_1
for all PE]Pp,[O,s]-
(ii). Let us fix s at first. We have to show that Cy in (4.49) can be chosen
independently of the distribution of the mesh points.

Suppose that there is no constant C, independent of z,...,2, 1 such that

(4.36) holds. Then there is a sequence of meshes Oza:gn) <..<zW=snelN
and a sequence of polynomials P, € IP, o ) such that max |P'(z)| =1 for all n

’

(4.49)
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|Pa(zg™) =Pa(zg™))| oo (n)
OREND) — 0. As the sequences x;,’ are bounded, there are
e

and m]?x

convergent subsequences, again denoted by x,(cn), acgl) =z for all k=0, ..., p.

As P, o, has a finite dimension, there is a subsequence such that additionally
P,"3 PP, o4 in || - ||z (o For arbitrary e>0 and n sufficiently large we
get

|P(z) = P(zk-1)|
|Pn (k) — Po(2k-1)|

< |P(xy)—P,(x)| + s
P(ze) = Pa(es)| o

+ |Py(zp—1)— P(zk-1)| < 2€+ se.

Hence, P(xo)=... = P(x,)=const. So P is a constant polynomial. As IP, 1, is
of finite dimension, the convergence P, — P = const holds in arbitrary norms,
especially max] |P!(z)| "= 0 which is a contradiction.

)

(iii). We have to show that Cy=Cy(p, s) in (4.49) can be chosen independently
of s. For every linear transformation £ : [0, s'| — [0, s], the mapping P + PoL,
Ty — o s'/s is a norm preserving isomorphism Q05 — @p0,s] both in the
sense of || - || and || - ||¢- So for all s’ >0, (4.49) holds with the same constant
Ca(p, ). .

Proof of Lemma 4.4.
ad (i). Without loss of generality we can assume |e(z;)| < 1. Let 2* :=

arg m[;c)ué] |Sp,ake(x)|. Then Sy are(x*) = Spakk,(x*) for a certain kg (see (4.6)).
zec|0,
Using the representation of Sp agx, through Lagrangian polynomials

ko+Ak ko+Ak

¥ — x;
Spacke() = Y, e(z;) ]I :
j=ko+Ak—p isz,J;éA.k*” T~ T

1)

we arrive at

|S ,Ake(x*)‘ S (p+1) (pcmesh)p-

ad (ii). Let z* := arg m[0a>£] |(Sp.ake)'(z)| and let kg such that (S, axe)'(z*) =
zeg|0,

(Sp,ak ko) (x*). Let &g := Tyt Ak—py--Tp ‘= Try+ar be the grid points on the
interval [Try+Ak—p, Tko+ak)- With Lemma 4.3 we get

|(Sp.ane) (@) = [(Sp.ankoe) (z7)]
5 i) — S i) 2C
k:l,...,p hmzn hm'm k:O,,p ’ ’

20y

hmin

(max [e(Z)]-
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4.4.2 Stability on equidistant grid

In this and the following sections we investigate the question of stability of the
update step (4.13) in the sense of (4.34). We will make use of the Lax stability
theory [32].

Throughout Section 4.4.2 we assume the grid points to be equidistantly dis-
tributed:

.’L‘k:%, k=0,...,l, h = %, Qh = {$k|k=0,,l}

Let v : 2x [0,7] — IR be the flow field which is used to calculate the end
point X (t,;tn11,2k) of the characteristic starting at (¢,,1,zx). We will assume
that v(t) is C! in x. This regularity assumption is justified by our purpose: For
the application of the stability (4.34) (on the second but last term in (4.38)), the
characteristics X are computed with respect to the ezxact flow

v(t,z)=a(t, z,u(t, z));

the less regular approximation a(t, z, I"u™"(¢, x)) is not involved.

We assume that v(t, ) is L-periodic. So for the sake of clarity we will use the
writing x;_1 = T_1, T;==2¢, Tj41 ==T1,-..

Furthermore, we write

6(xx) := X(tn; tngr, T) — Ti,

and we define the Courant-Friedrichs-Lewy number

mac{|5(a) }

Ceorr := - (4.50)
which is bounded by 42¢, A:(t’s;;gQ la(t, z, u(t, ))|
The stability problem (4.34) can be written
[Su(- +6()llzz < (1+Citas A) ||ullz2 (4.51)
or
I1Dvullrz < (1+Catap At) [Jull2 (4.52)

for all u : Q, — IR being I-periodic. Here,
Dyu(zy) := Su(zy, + 0(zx))- (4.53)

We cannot assume any regularity’ of the u because (4.51) is applied to the error
e™ in part (i) of the proof of Theorem 4.2. Therefore we will have to focus on
the regularity of the d(z)) using the regularity of the flow field v (see proof of
Lemma 4.5).

7 like e.g. a bound for |u(zgi1) — u(zk)|/|Tre1 — Tk
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Lemma 4.5 On an equidistant grid the coefficients c; in the representation

N

Dyu(zi) = > cj(zk) u(zr—;) (4.54)

j=—N

have bounded differential quotients, and the bound L(c;) depends linearly on At/h
for all At<Aty, Aty >0:

lcj(z) — ¢j(a)| < L(cj) |z — 2’| for all z€Qy, j=0,...,1 -1, (4.55)

L(Cj) S C %

Proof. Let k be the index such that x; + &6(z3) € [2f, T5,1)- Let Lib be the
Lagrangian polynomial defined in (4.8) and «ay the ansatz function (4.7)/(4.9).
So we get the representation in the following (finite) sum:

Dyu(zr) = Sparu(zr+d(zy))
= Zzu(m]) aj(zr+0(zr))
= Z u(z;) L%—kAkfp,l_c—e—Ak(xk + 6(xx))
= 2 ulony) Ly i an (@ + () (4.56)

As the mesh is equidistant,

Lﬁ,b(ﬂf) = Lﬂiﬁ',bﬂ(‘r—{—ih) (4.57)
holds. So
Do) = XL e e psan0(@) (i ) (4.58)
jez

and the coefficients in (4.54) are
Cj(iEk) = ngjk+Akfp,l?;fk+Ak(5(xk))' (459)

We can set N:=[Ccpr|+p in (4.54).
We have to estimate L(c;). Obviously

L(e;) < L(5) max L(L},) (4.60)

J=0,....p

and L(L{;’p) < ¢(p) k™! where c(p) is a constant only depending on p. Hence, we
just need an estimate for L(J):
Define Xj(t):=X (¢;tni1, Tk),

B(t) := (Xps1(t) — @pr1) — (Xi(t) — k)
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and o := A, + A,U,.% Then,

Lo(t) = alt, X (t), ult, Xe (1)) — alt, Xele), ult, Xi(1)))

dt
< a (X —Xi)(2)
= « q)(t) + o ($k+1—$k)
and ®(t,41) = 0. Using Gronwall’s lemma (e.g. [56] Chapter 1.1) we get

At
§(wpy1)—0(zx) = @(tn) < a(mkH—xk)/ea(At—s) ds
0
= (@pp1—ap) (e —1) < (wpy1—71) 2 At e,
Thus
L(0) = alte™, (4.61)
L(c;) = ac(p) — e**. ]

We are going to apply the result of Lemma 4.5 in the context of a stability
theorem by Lax?:

Theorem 4.6 For any operator D of type

-1

Du(zy) = Y cj(wk) u(zpj) (4.62)

Jj=0

we define the so-called amplification factor

C(z,§) := . > ci() e, (4.63)

7=0,...,1-1

and let us restrict ourselves to the non-weighted case wyp :=h in the definition
(4.29) of the L2-norm. D is stable in the sense that

[Dullzz < (1+ch) |lullzz (4.64)
holds for any L-periodic u : Q;, — IR if the following conditions are met:
(i) C has bounded difference quotients with respect to z, i.e.

IC(z) —C(2)|ls <clz—2'| Vaz,z'€Qy (4.65)

where the norm ||C(z)||. is defined as the mazimum of |C(z,&)| with respect
to & in some strip around the real &-axis.

8 See definitions in the beginning of the proof of Theorem 4.2.
9 A short overview over the development of stability results on difference schemes is given
in [36] Chapter 8.1.
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(i) For all z €y, and all real €

C(z,8) < 1. (4.66)
(i5i) There is a representation

1— |02, 6) = Q(z) €4 + O(€xH) (467)

with ¢ €IN independent of x and Q(z)>0 for all x.

The same result holds for arbitrary (non-periodic) I12-summable u if the summa-
tion in (4.29), (4.62), (4.63) is adapted to an infinite sum.

Proof. Theorem 4.6 is a modification of Theorem 3.1 in [32] by Lax. The Lax
theorem handles the higher dimensional case, i.e. the ¢; and the C are matrices.
When reduced to the scalar case, condition (ii) of the Lax Theorem would become

|IC(z,€)| <1 VE&#0mod 2w

instead of (4.66) which would be insufficient for our purpose. But condition (ii)
of the Lax Theorem is only used to guarantee (3.3) in [32]. However, in the one-
dimensional case our weaker condition (4.66) is enough to guarantee (3.3) (with
M=1in [32]). .

The formulation of (i) guarantees the exponential decay of the ¢;(z) for |j| — oo
und thus the analyticity of C(x, &) with respect to £&. Therefore the boundedness
of the diffence quotients with respect to & not only holds for C, but also for the
§-derivatives of C. In the case that only a bounded number of ¢; are non-vanishing
(i.e. the difference scheme is explicit), (4.65) can be replaced by

max |C(z,&) — C(z',&)| <clz— | (4.68)
£€[0,27]

or by!?
lcj(z) — cj(z)| < ez — 2| (4.69)

We will prove that the amplification factors C(z, §) related to our interpola-
tion operator S, ax fulfil condition (ii) of the previous theorem:

10 See Theorem 4.8, a new version of the stability theorem 4.6.
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Lemma 4.7 For the following combinations of p and Ak, 1 —|C(zy, €)|? has the
representation

p|Ak|1—]|C?
1 | (1—cos(€)) 26 (1—46)

2| 1 | (1—cos(€))? (1-6)6%(1+0)

2| 2 |(1—cos(€))? (2—0)(1-0)%0

30 2 | (1—cos(€))? 2 (2—-6) (1-6) 6 (1+6) +
(1—cos(§))® 2 (2—0) (1—06)% 4% (1+9)

4| 2 | (1—cos(§))® L (2-0) (1-0) 6% (146) (2+0) +
(1—cos(€))* % (2—0) (1—6)26% (1+0)% (2+0)

4| 3 | (1—cos(§))® (3-0)(2—8) (1-6)26 (1+0) +
(1—cos(€))* % (3—0) (2—6)2 (1—6)2 6% (1+0)

5 3 | (1—cos(€))® (—55) (6—3) (6—2) (6—1) 6 (6+1) (6+2) +
(1—cos(€))* & (6—3) (6—2) (6—1)262 (6+1) (042) +
(1—cos(§))® (—&) (6—3) (6—2)% (6—1)28% (6+1)% (6+2)

Table 4.1: The amplification factor of our scheme S, A.

where & := 6(xy,) := 6(xx)/h — |0(xx)/h] € [0,1). So for these combinations of
Ak and p, condition (ii) in Theorem 4.6 is met.* Condition (i) is not met for
any other couple (p, Ak) with p<5.

Proof. By simple calculus using Lagrangian polynomials (see (4.8), (4.9),
(4.59)). .

Remark. Condition (iii) is not met for any p=2,3,4,5 and arbitrary Ak, as
d(zx) =0 is possible which means that 1—C(zy,-) =0. To avoid condition (iii),
we will derive another, less restrictive version of the stability Theorem 4.6. We
will also give a concrete estimate for the constant ¢ in (4.64):

11 See Figs. 4.6, 4.7
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p:l L .

p=2, Ak=1 - ¢ *

p=2, Ak=2 L ® .

p=3, Ak=2 PY ® ® °

p:4’ Ak=2 —e @ & & ®

p=4, Ak=3 . . ’ . -

Tr—2 Tr—1 T Thy1 Lhk+2 Lk+3
fAS

Figure 4.6: Let # € [z, x5y1). The figure shows which mesh points
Tk+Ak—p)--Tkt+ak are to be taken for the interpolation S, g, i.e. which com-

binations of p and Ak (p<4) are possible to comply with stability condition (ii)
in Theorem 4.6.

1.4 1.4-
* N 12 1%
1; W
08"
Y0.6 o.ev
0.4- 0.4-
02" 02"
1 050 o5 1 "1 050 05 1
X X
Ly L
08"
Yo.6
0.4-
0.2
1 050 o5 1 05 1
X X

Figure 4.7: Visualization of |C(z, £)| which is a function of §(x) and ¢ (see Ta-
ble 4.1). & on the horizontal axis. For p=1 (upper left), p=2 (upper right), p=3
(lower left), p=4 (lower right), |C| is displayed as a function of §. In each dia-
gram, the curves for £ =0, 7/4,7/2,3n /4,7 are displayed. As §(z;)€[0,1)V xz,
the diagrams show that property (ii) is fulfilled.
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Theorem 4.8 Suppose that the following two conditions hold:

(%) ej(z) —c;(z')] < Llz—2 (4.70)
ci(z) = 0 VzeQy, |j|>M (4.71)
|Cj(33)| < Oy V.’IZ‘EQh, ‘j‘SM (472)
(i) C(2,6) <1 Va2’ ey, E€R

Then (4.64) holds.

Proof. We are following (only) partially the idea of Lax in [32]. From definition
(4.63) and condition (ii) we derive that, for arbitrary fixed z € Q, 1—|C(z, -)|?
is an analytic, non-negative function. As a consequence, its Taylor series with
respect to £ starts with an even power of £, i.e. there is a representation

—|C(z,6)]> = Q(2) (€4 +7,(€)) Yae, (€R (4.73)
with g(z) €Ny, Q(z) >0, r.(£) = O(£22@)+1). Now let us define

) 2q(
D(z,€) := (e — 1)1 €|ei$—1|2qw \/Q(z) Vez,f€lR. (4.74)

The argument of the first root in (4.74) is an analytic function, and therefore, as

%in% % =1, the first root in (4.74) itself is analytic in &, too.'? So D is
—

analytic in £. Let!?

K(z;:&m) = C(,€)C(z,n),

K(z;&,m) = D(z,£) D(z,n). (4.75)
It is

|D($a£)‘2 = 1—|C($,§)‘2,
hence

K(z:6,6) + K(z;6,6) = 1, (4.76)

K(z;6,6) > 0.

12 Here it is essential that the argument of the first root in (4.74) is bounded away from zero
to derive the analyticity of the root. To illustrate this point, let us mention that the square
root || of the non-negative C°°(IR)-function f(¢) = ¢2 is not C*°(IR).

13 In [32], K(z;¢,n) := C(z,£)C(z,n) + D(z,€)D(z,n). The regularity requirements on K
in [32] then lead to regularity requirements on D; in particular the Lipschitz continuity with
respect to z of {-derivatives of D. Our definition (4.75) of K avoids any regularity assumptions
on D with respect to = and allows ¢ = g(z), especially 1 — |C(z,-)|*> = 0. See the remark on
p. 157.
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We get
77 K(z;&,m) U(n) d§ dn = 70(3:,5) U(¢) de|
7 / K (e;&,m Un) dg dn = 719(96,6) U(€) de (4.77)

for all U € L*(0, 27). Let us consider the Fourier expansion of K, K:

K(z;6,n) = Y, Kim(z i(mn—1¢)
l,meZ

K(z;6m) = Y Kyn(x) em=9) (4.78)
lmeZ

From (4.75) and (4.63) we know that

Kim(z) = &(z) em(z) VI, meZ. (4.79)
Thus, using (4.70), (4.72), we have

|Kim(z) — Kim(2')| <2CnL |z —2'). (4.80)

K and K are analytic in &, 7, therefore their Fourier series may be rearranged.
The combination of (4.78) and (4.76) yields

> (Kim(2) + Kin(2)) €™ = 1. (4.81)
ly)meZ

A comparison of the Fourier coefficients of both sides of the equation results in

1, r=s
Z Kk rk— s + Kk: rk— s(x) = { ’ (482)
e 0, r#s.

For every real-valued square-summable sequence (w;), U(€) := ¥ w; e7¥¢ is
jez
in L?(0,2m). Using this fact and (4.78) on (4.77) we get

2w 2w

// eijlﬁ Z Klm(x) elmn—1§) Z wjze_ijw d¢ dn
00 ]162 l,meZ Jo€Z
2

e s en

lez jez

Using orthogonalities, this equation simplifies to

> w Kyp( =12 ci(z) wf”. (4.83)

l,meZ jezZ
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Analogously we get
2

Z w; Klm(:v Wy, = (4.84)

l,meZ

/st U(e) d

(4.83) reads for w; :=u(zg_;)
(Du)(@)l* =13 ¢j(i) ul@p—j)* = > w(@r-1) Kim(zk) u(@k-m). (4.85)

JEZ ly,meZ

Summing over k we get

%”pu”%% = > > u(@e) Kim(zk) u(zp-m)

keZlmeZ

= > > wlmwer) Kim(zr—i) w(@k—m)

keZlmeZ

+3° > ul(apar) (Kim(ar) — Kim(2e-1) w(Tr-m)

keZlmeZ

= Z Z :L'r Kk r.k— s(xr) U(:L's) (486)

k€eZ r,s€Z

+Z Z Kk rk— 3(3319) Kk—r,k—s(mr)) ’U,(LCS),

keZ r,scZ

where in the last step r:=k—1, s:=k—m was put.
The first summand of (4.86) is due to (4.84) and (4.82) estimated by

1
Z Z ) (Kk—re—s(@r) + Ky rk—s(Tr)) u(zs) = n ||u||%,2l
r,s€ZkeZ
The second summand of (4.86) is estimated by
S5 1 () + u(e)?) i) — Koo (487)

kEerEZ

The terms containing u(x,)* are estimated (see (4.80)) by

r+M k+M
Z Z Z 2011[/ |.T}k — .T},-|
rEZ k=r—M s=k—M
r+M
< > u(x)? > (2M+1) CulL |y, — .
reZ k=r—M

For an equidistant mesh this is equal to

> u(z,)? (2M+1) (M+1) M Ci1Lh. (4.88)

reZ
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2

The estimate for the terms in (4.87) containing u(z;)? is similar; all in all we get

||Du||§% <(1+2M(M+1)(2M+1) Cy;Lh) ||u||%%. (4.89)
For periodic u the sums 3 ;.7 must be replaced by > ;_1- "

Applying this theorem to our interpolation scheme (4.53) we get:

Corollary 4.9 For the scheme (4.53)
1Dyl < (142 M (M41) (2M+1) O A1) ]

holds where L= a c(p) e*t from the proof of Lemma 4.5 and M = [Cepr]+p and
C11 = Conae(p) from (4.28)/Lemma 4.4 (i)

Proof. Lemma 4.5 and Theorem 4.8. n

Cor. 4.9 leads directly to the following improvement of Lemma 4.7, which is in
fact the main result of this section on stability for equidistant meshes:

Corollary 4.10 For all the combinations of p, Ak mentioned in Ta-
ble 4.1/Lemma 4.7 and bounded Courant number, the stability assumptions of
Theorem 4.8 are met, i.e. the convergence result of Theorem 4.2 holds.

4.4.3 Stability on quasi-uniform grid

In this and in the following section we investigate if the stability results from the
equidistant mesh case (Section 4.4.2) can be applied to the non-equidistant case.
In the non-equidistant case, the following problems arise:

e The property (4.57) for the Lagrange polynomials and the shape functions
gets lost. As a consequence, (4.60) is no longer valid.

e The explicit knowledge of the C(z, &) (see Lemma 4.7) gets lost.

To avoid these problems, we introduce new coefficient functions cj which are close
approximations of the ¢;. It is possible to check all the required conditions for
the ¢j. This will imply the stability of the scheme also for the coefficients c;.
Let us define the quasi-uniformity of the given mesh at first.
We assume that for a sequence of meshes (M) the grid points zy = (M)
are given by

zy = Tpm = w(kL/N), k=0,...,N.

w is a function w : [0, L] — [0, L] independent of M with Lipschitz continuous
derivative ',

w'(x) — w'(2')

W' > Cyy > 0, < Cyo. (4.90)

r—T
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We will call such a sequence of meshes fulfilling (4.90) quasi-uniform. Let N+1=
N(M)+1 be the number of mesh points of the mesh M and let us denote the
average mesh size h := L/N. The local mesh size is given by w':

he = Tpp1— 7 = w((k+1)h) — w(kh) = w'(§) h =~ W' (kh) h
Obviously, the following very important estimates follow:
hmin Z Cwl l_l; hma:z: S Cw3 ]_7‘7 (491)

C,3:=maxw’. We may define the Courant number by
1
CC’FL = mka,X Z \wil(wk—i-é(xk)) — wil(iﬂk)'. (492)

This definition is consistent with definition (4.50) for the equidistant case.
Another, very graphic property of these quasi-uniform meshes is that the ratio
of adjoint mesh cells tends to 1 for A — 0 as®*

Thyitl = Thti  _ w'(fl)_ﬁ < w'(§) + Cu2 (i+1) h
Thi1 — Th w'(§)h ~ w'(§)
< 1+ Cun (i+1)h (4.93)
Cwl

As a consequence of (4.93), the shape of ansatz functions tends to the shape
of equidistant mesh ansatz functions for h — 0. This important property is
investigated in the following lemma which proves that the ’error’ between two
Lagrangian polynomials can be estimated by a constant depending linearly on
the difference of the affiliated mesh points:

Lemma 4.11 Let h>0.

(i) Let us consider the Lagrangian polynomials with respect to the grid points
0,h,2h,...,ph rsp. €,h+€1,...,ph+ ¢, 6 €EIR,

p p
0/ N x — kh N z —kh — ¢
Py =11 53— B = L Sht ¢ — kh— e

= k=
#j k#j

o o
S o

With €mag = max lex| < C1a2 %, Cio<1. Then'®

|P)(z) — Pj(z)| < Cis 6";::” for all x € e, hp+ep) (4.94)

with C13=C13(p, C1a) independent of h, €maz-

14 This is untrue for Gauss-Lobatto meshes

15 From the fact that the minimum and the maximum of P;(z) depend continuously on the
p+1 mesh points we can conclude that |PJO(J:) — Pj(z)| — 0 uniformly for €pq,; — 0, h fixed.
The estimates (4.94) and (4.95), however, require a closer investigation.
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(11) Let f rsp. ag, k=0,...,p, be the ansatz functions (see (4.7)/(4.9)) with
respect to the grid points (ih);cz rsp. (ih+€;)icz, €, €IR. Again, an estimate

lap(z) — ag(z)| < Cha Gn;:w for all z € ey, hp+ep) (4.95)

holds with C14=C14(p, C12) independent of h, €nqq-

Proof.
ad (i). Let us consider the expansion

k=0 i=0 i=k+1
k£i \ iz i

Po(Et g —ih ? z—ih—g¢
K@) = F@ =2 (H jh —ih Akl 11 Jh+e€; —th — e,-) (4.96)

where

, x — kh — ¢, x—kh
N (z) = — .
+(@) jh+e —kh—e, jh—kh

The last line evaluates to

z (e, —€j) + khej — jheg

Al (z) =
@) = G (Gh + € — kh — e)
Thus,
j (4ph + 2€max) €maz
Aj(w)] < e S

The other factors from (4.96) can be estimated by p rsp. ’Z’_%:‘:;, each. So (4.96)
is estimated by

ph + 26ma:t: P 4ph + 2€maw €maz < (p + C’12 >p—1 4p + C’12 €maz
h — 26maa: h — 2€maaz h — P 1-— 012 1-— 012 h '

ad (ii). The interval [ey, ph+¢,] decomposes into the sets
M, = {z|3j:jh+e;<z<(j+1)h+e€j1 AN jh<az<(j+1)h} and
M, = {z|3j:jh<z<jh+e;V jh+e€;<x<jh}

(see left part of Fig. 4.8 for My, M,). Let & € M;. Then the estimate follows
directly from (i):

emaw

k,0
|042(33) — ag(z)| = |Lj+Ak—p,j+Ak(5U) - L?+Ak—p,j+Ak(x)| < Cis A

(L*Y is defined as L* but with respect to equidistant grid points).
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(k—l)}:z "

|25ma|p | 2Ema}z | 25ma{z | 2€ma|z

My: — - - -

Figure 4.8: Left hand part: Visualization of two ansatz functions ag, af; the
first related to a non-equidistant mesh (broken line), the latter related to an
equidistant mesh (full line). Right hand part: Visualization of estimate (4.97).

Now let z € M,. Let jh<z <jh+e¢;. (The case jh+ ¢; <z <jh is analogous.)
Then!®

|a2(m) —ag(z)| = |L]—|—Ak p]+Ak($) - Lf 1+Ak—p,j—1+Ak(ﬂ3)|
S |L]—|—Ak p]—|—Ak(x) L] 1+Ak—p,j— 1+Ak(m)| (497)
+|LJ 1+ Ak—pj—1+ak(T) = L?—1+Ak—p,j—1+Ak(a:)|'

The second difference is estimated as in the case z € M;. The first difference is
estimated by

k,0
|LJ+Ak p,]+Ak(x) L “14+Ak—p,j— 1+Ak( z)|
k,0
< |LJ+Ak p,J+Ak(Jh) L —14+Ak—p,j— 1+Ak(]h)|

+L(L]+Ak p]—|—Ak) €maz + L(L] 1+Ak—p,j— 1+Ak) €maz

where L denotes the Lipschitz constant of the polynomials. Due to the equidis-
tance of the related mesh, both Lipschitz constants are ( ) , further we know that

LJ+AI<: pit+ak(ih) = Ok = ?7()1+Akfp,j71+Ak(.7h)' (4.95) fOHOWS- .

Let *(x) be the piecewise polynomial shape functions with respect to the equidis-
tant mesh zy,+ihy, i€ Z. Analogously to the c;(zr) =ap—;(zr+6(zy)) let

cf(ax) == og_;(zp+6(xk)) (4.98)
16 See right hand part of Fig. 4.8.
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be the corresponding coefficient functions,
Dju(xy) == _cj(zx) u(zk—)
J
the corresponding scheme and
C*(z,€) == Zc;‘(m) elié
J
the corresponding amplification factor.
We show
e that the c; are approximations of the ¢; (Lemma 4.12) and

o that the difference scheme with the coefficient functions c;*- instead of the
c;j is stable (Lemma 4.13).

This will imply the stability of the original scheme with the coefficient functions
¢j (Theorem 4.14).

Lemma 4.12 (approximation property) There is a constant such that the
estimate

65(0) — ¢5()| < ch
holds for all j, k.

Proof. From definition (4.98) and Lemma 4.11 (ii) we get

emaa:

hy ’

i (zr) — cj(zr)| < Cha

where €02 = |n|1<zaJA)/<I |Tk—j — xx + jhi|, M = [Ccrr|+p. A Taylor expansion of
j|<

zr_j=w((k—j)h) and the mean value theorem for hy =w((k+1)h)—w(kh) gives
|wr—j — 2k + hil = | — W'(§)jh + w'(€')5h] < Cun(l5]+1) ||
So, using (4.91),

h? M(M+1) -
i (1) — cj(zr)| < CraCu2 M(M+1) Z—k = 014Cw20 (M+1) h. .
wl

Lemma 4.13 (stability of c;-scheme) The difference scheme with the coeffi-
cient functions c; replaced by c; fulfils the requirements of Theorem 4.8 with

At
L<e—. (4.99)
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Proof. Due to the equidistance of the mesh which is used for the definition of
the c;, properties (4.71), (4.72) and (ii) of Theorem 4.8 are obviously met (see
Sec. 4.4.2 for the equidistant case). The Lipschitz continuity (4.70) follows like
this: For k#Kk',

(@) — )| = |og_j(@e+6(ar)) — (@ +6(z))]
h
= |ag_j(ze+8(z)) — g (p+8(zp) h:)‘
h
< L(egiy) [8(zx) — 8(zw) h,f:'

h

k k

< L(ag_y) <L(5) @k —aw| + max|d(x)] (1— hk))
< chy' (cAtlog—zp|+ c At (k—K|+1)R)

where the equidistance of the meshes was used in the second and (4.61), (4.93)
were used in the last step. (4.70) with (4.99) follows with help of the estimate

\kh — k'h| < C} lw(kh) — w(K'R)| = C! |2k — 2. .

Theorem 4.14 If
h < cAt (4.100)

18 respected, the difference scheme with the coefficient functions c; is stable in the
sense (4.64) for all combinations of Ak, p given in Table 4.1/Lemma 4.7. Under
these conditions, the Convergence Theorem 4.2 holds.

Proof. Due to Lemma 4.13, the scheme D; with the coefficient functions cj
meets (4.51). By Lemma 4.12 and (4.100) we see that the scheme D, with the
coefficients ¢; fulfils (4.51), too. n

Remark. Of course, the convergence result also holds in any equivalent norm.
Due to the quasi-uniformity of the mesh, any discretization of the L?(Q2)-norm,
e.g. (4.29) with wy,=w(kh)h, is an equivalent norm.

4.4.4 No stability on Gauss-Lobatto grid

Many discretizations do not fulfil the condition w’>const >0 rsp. Amin > const h
which was made in the previous section, e.g. when adaptive remeshing is used or
when a Chebyshev-Gauss-Lobatto mesh is used; in the latter case we have

war(x) = g (1—cos %) (4.101)
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and wgy(0) =wg (L) =0. The question arises if the stability conditions of the
previous section, especially the regularity of the coefficient functions ¢; (4.70),
are necessary to derive (4.52). In the following we will show that for a Gauss-
Lobatto mesh and p=2 the stability statement (4.52) is not met even if arbitrary
weighted L%-norms are used. We will use a grid point distribution function w
which is w(z) =x? for small z. The result also applies for the Gauss-Lobatto case
(4.101) as wgr(w) =cz®*+0(z*) for small z.

Lemma 4.15 (instability) Let Q= (0,1), w(z)=2% on (0,¢), ¢>0, i.e. z =
k%/N? for k small enough. Let N=N(At) be given for each At >0 with N(At) —
oo for At — 0. We assume that the velocity field for the calculation of the
characteristics is v = —1, that means 6(xy) = At for all k. Let the Courant
number (4.92) be bounded by 1. Let 1<s<oo and w : [0,1] — IR be an arbitrary
weight function with w(z) > 0Vx € (0,1). Let the order of the interpolation
polynomials be p=2 and Ak=1."7
Then there s no constant c>0 such that

[Dyullsw < (1+c Ab) [|ullsw (4.102)

holds for all discretely given u : 0, — IR. Here,

1/s
Irllsw = ( 12 w(zy) |r(zk)] ) . 1< s< oo,

Il o= max (e (o))

Proof. As v=const the maximum in (4.92) is taken for k=0. So 1> Ccrr =
Nw™'(6(0))= Nw™(At)= N+/At. Thus,

N2At < 1. (4.103)
We will show that (4.102) is false for u defined by u(z2) =1, u(xg) =0 other-

wise. As Ceopr <1, (Dyu)(zs) = (Su)(x2+0(z2)) = P(x2+6(x2)) where P is the
Lagrangian polynomial L3 ; (see Fig. 4.9).

It is
_ (z—z1)(z—23)
Ple) = (zg—1)(22—13)’
Plas) =1, P'lzs) = % N2, P"(z3) = —1—25 Nt

17 For Ak=2 a similar situation for instability can be found.
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T4

Figure 4.9: The interpolation curve Su for the Gauss-Lobatto mesh. The ratio
of adjoint mesh cells does not tend to 1 for N — oo (see the remarks on (4.93) in
Section 4.4.3), i.e. the ansatz function P has a non-horizontal tangent at (z3,1)
even in the limit N — oo. This property is used in the proof.

Therefore
1
P(zy+6(z2)) = P(ze+At)=1+ 1—5N2 At (2—N?At)

1
> 1+ —N?A
= 1+ 15 t
because of (4.103). Together with

lulli = N"'w(za),

IDoulli = N7'w(zs) |(Dyu)(@2)l*

(1 < s < o0) we have

||Dvu||sw | -
1Potllecw | (Dyu)(as)| > 1+ = N2A
[/l 15
even for all 1 <s<oo. The contradiction to (4.102) follows as N(At) — oo for
At — 0. ]

4.4.5 A ’stable’ scheme on Gauss-Lobatto grids

In the last section we have seen that there is no stability for our scheme if a
Chebyshev-Gauss-Lobatto mesh is used. The source of this instability on meshes
which do not fulfil (4.90) seems to be (see proof of Lemma 4.15 and Fig. 4.9)
that the shape functions (for p = 2) have a nonzero derivative at the related
mesh points. In this section we will introduce and investigate a modified scheme
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not having this defect. This scheme is based on local transformation onto an
equidistant mesh.

Another point is the norm in which the stability is investigated. The norm
(4.29) with wy, = h on the one hand and e.g. wy, = hw(kh) (which is a dis-
cretization of the L?(2)-norm) on the other hand cannot be estimated mutually
with constants independent of A any more. It is obvious that L? with wk,hzﬁ is
the wrong norm to expect stability on Gauss-Lobatto grids: Even for v=1 it is
easy to find examples where the exact flow u (restricted to the mesh) is instable
in this norm whereas it is stable in the L?-norm.

Let us assume the following requirements on the grid point distribution func-
tion w: Let 0=ro< r1 < ... <rpy =L, m>1 be a number of points, fixed for all
considered discretizations.!® Let us assume that w is piecewise C? with respect
to the r;, i.e. we CY([0, L)), wlpr_, ] is a C* function (i.e. the first and second
derivatives from the left and from the right exist at the points ;). Let us assume

w'<e, W'<e, (4.104)
Tp1—p = w((k+1)h) —w(kh) > ch®> Vi (4.105)

holds.

We may remark that (4.104)-(4.105) are weaker than the assumptions on w
in Section 4.4.3 in the sense that we do not assume that w’>c¢>0; in the case
of a Gauss-Lobatto mesh (or a stringing together of Gauss-Lobatto domains) the
conditions (4.104)-(4.105) are met.

As we are expecting a strong stability restriction on At¢, we may restrict ourself
to the case that the local Courant number is bounded by 1:

Corr < 1 (4.106)

Furthermore, we restrict ourself to second order ansatz functions (p=2).

Let us introduce the new interpolation scheme at first. To avoid the problem
mentioned above we will use a mapping of the non-equidistantly meshed domain
onto an equidistantly meshed domain. Then, we will perform the interpolation
on the equidistant mesh. Let w; ,11 be that mapping where wy , denotes a smooth

function defined on the interval [(k—1)h, (k+1)h] =: [Zy_1, Ty41] with values in

[@r_1, Zpr1] =[w((E—1)h),w((k+1)h)], with
wra(jh) = w(jh) for j=k—1,k k+1. (4.107)

So our mapping wy,, is locally defined on the two adjacent mesh cells of the grid
point z and it may depend on the discretization parameter h. Furthermore, we
assume that

wy, > ch  at least on [kh—ch, kh+ch] (4.108)

18 In case of a multi-domain approach, the r; are the interfaces between the subdomains.
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and that the properties
w}c,h <eg, w}c',h <e, w}c':h <ec (4.109)

hold for wy, 5, on [(k—c)h, (k+c)h]. All the c are generic and independent of A, k.
The existence of such a wy, is checked in the next lemma.
The new interpolation operator $* =&y, is then defined by

= (S(uow)) (wk_,,ll(a:)) on [(k—c)h, (k-+c)h] (4.110)

where & = 81 denotes the interpolation operator defined in Section 4.2 with
respect to the equidistant grid Z, = kh.'® So instead of interpolation e.g. at
a point & = zx+0(zx) we interpolate at Z = wy ;s + 6(xx)) with respect to
the equidistant grid, see Fig. 4.10. In the transformed space the length of the
characteristics is

0(z) = winlext+0(zx)) — win(@x) = Wih(Wen(@r) +8(wWen(Z1))) — Tk,

Tr = wip(zp) (4.111)

This length can be used to define a local and a global Courant number:

C'CFL(:ck) = |(5(£Ek)|, CCFL = mkax CCFL(wk;) (4.112)

The reasons for using wy, + instead of w™! for the local mapping and the definition
(4.110) of the scheme are enumerated after Theorem 4.17.
The stability condition (4.52) has to be replaced by

IDulls < (14 Cotas A) lull 2, (4.113)
(Dyu)(zg) = (S*u)(zp+o(xy)) (4.114)
=: ._Z_lc;(:vk)u(a:k,j). (4.115)

Concerning the norm (4.29) we will use the weight function wy : hwj, ,(kh).

Lemma 4.16 (existence of wy ) Under the assumptions (4.104), (4.105) on
w there is a function wyy fulfilling the requirements (4.107), (4.108), (4.109).
Herein, the constants c do not depend on k, h. As a consequence, wyp %5 mono-
toneous on [kh—ch, kh+ch], ¢>0, and wk_,ll exists locally.

19 The equivalence in (4.110) is a consequence of (4.107).
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non-equidist. grid| ,{’i

CTp Tht1

equidistant grid

:l_tk;lz(k—l)h Zr=kh Tr+1=(k+1)h

i:w;:,;lz(wk-f—ﬁ(zk))
Figure 4.10: In the lower part the piecewise Lagrangian ansatz function af in the
transformed space, in the upper part the related ansatz function o = wy0af.

The problem on the non-vanishing gradient of the ansatz functions at the related
mesh points (see Fig. 4.9) disappears for wy, soa).

Proof. Let wyp be the second order polynomial matching (4.107). It is

wk,h(a_:k—i-l_z) — wk,h(a_:k—l_z) W(fk'f‘}_l) — w(i’k—l_z)

Fo(m) — _ = - 4.11
_ _ Wk, h(T +h) — 2w ARG +wk,h(fk—h)
al@) = ufp(ze) = 2B~ Beald)
w(Zp+h) — 2w(Zg) + w(@r—h)  _
_ w@th) i;k) VZ, (4.117)
wep = 0.

From (4.105) and (4.116) we derive that wj, ,(Zx) > ch. Taylor expansions of w
around Zj in the right hand sides of (4.116), (4.117) yield w;, ,(Zx) = 3(w'(&1)+
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w'(&2)), win(®) = w" (M) +w" (7). Thus, wy ,(Zx) <c, [wi ,(Z)| <c. Hence

@] = (@) + (-3 (@)
> ch—|Z—Z|c>ch
and
<ch+c|z—2| < ch
for |z—x;| <ch, for a ¢>0. All c are generic and independent of k, h. n
Theorem 4.17 (convergence) The interpolation operator S* = i, from

(4.110) is of order 3 in h in a neighbourhood of y, if u€ C3.

Proof. Setting Z=wj ;(z) we have
(S*u)(z) — u(z) = (S(u o wkp))(Z) — u o wyn(T).
Thus,

|(S™u)(z) — u(z)| < ch® Sup [(u 0 wen)"(€)].

Wby Wi s Wh gy Wiy, are bounded. n

The reasons to introduce wy,j, instead of using w in (4.110) are:

e Property (4.108) is required in the stability investigation. For a Gauss-
Lobatto mesh, w does not meet this condition.

e w may not be given explicitely, or it may be more difficult to evaluate w™!

than WI;};’ as wy, », can be chosen as a second order polynomial (Lemma 4.16).

e The use of w instead of wy,, in the definition (4.110) would lead to a loss of
convergence order (see proof of Theorem 4.17) because w is less regular at

Toy-sTm-

Lemma 4.18, 4.19 and Theorem 4.20 deal with the stability of the scheme D)}
and therefore check some conditions of the coeflicient functions cj of this scheme.
The new estimate (4.120) takes the role of the 'Lipschitz’ condition (4.70). Un-
fortunately, the stability proof reqires a severe stability restraint (4.119) which
apparenty cannot be weakened (see Lemma 4.21).

Lemma 4.18 Suppose the assumptions (4.104)-(4.109) hold. Let Dy, c;() be
defined in (4.114), (4.115). Then, (4.71), (4.72), (ii), (iii’) in Theorem 4.8 hold
with c; replaced by cj.
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Proof. (4.71) with M =1 is a consequence of the definition of the interpolation
operator §*, =38, and (4.106). Now (4.72), (ii), (iii’): Similar to (4.56)-(4.58)
we get the representation

Diu(zy) = S*u(zp+6(xx)) = So1(uowypn)(wis(ze+0(zr)))

= > u(xy) of(wip(e+6(xr)))

j=k—1

Il
x

|
-MH

u(@h—5) Ly L (@en (@ +0(21)))
-1

Il

J

where the af are the piecewise Lagrangian ansatz functions Lﬂ’,?, which are defined
with respect to the equidistant grid (jh);jez. So the coefficients in the scheme D
are

clar) = Ly ko (@in(ert+o(zi))) = L% (Wih(@r+o(zi)) — kR)
= L71%,008(z) (4.118)
where (4.111) was used. Using Lemma 4.4 (i) and Table 4.1, we get (4.72), (ii),

(iit’). .

Lemma 4.19 Suppose the assumptions of the previous lemma and the stability
restraint

At < h? (4.119)

hold. Let the Courant number (4.112) be so small that wi,ow exists on
[(k—Ccrr)h, (k+Ccrr)h] (see 4.108), especially Copp <1. Then the estimate

Wi |wy, n(Zk) €5 (21) € (28) — Wiy p(Frs1) 6 (Thi1) € (Tr41)] < ¢ At (4.120)
with
1

\/w;‘H'"l ’h(fk‘FnI ) w;c—knz,h(:z‘k—knz)

Wi = Winins

holds for all k,i,j€Z, 1*+3j2#0, |ni|, |na| <1, the constant c being independent
of At, h.

The rather technical proof of this lemma is given after the following main theorem
of this section.

Theorem 4.20 (stability) Under the assumptions of the previous lemma the
interpolation operator Dy is stable in the sense ({.113) where the L2-norm 1is
defined using the weight wy p:=wy,(Zx)h.
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Proof. We are following the proof of Theorem 4.8. The estimate (4.86) is
replaced by

1 *
7 IDyulla= > > w(zk) wep Kim(2r) u(@r—m)

k€Z lmez

= > > w(@eat) We-i,p Kim(@r—i1) u(Th—m)

k€eZ I;meZ

+ 3 ulzk—t) (Wi Kim(r) — wi—ip Kim(Te—1)) w(Tk—m)

keZ l,meZ
1#£0

= Z Z xr wrh Kk rk— s(mr) u(xs) (4121)

keZr,scZ

+ 33 w(@r) (wip Ki—rjo—s(@r) — wrp Ko p—s(@r)) w(@s),

keZ r,seZ
r#k

where again r:=k—I[, s:=k—m was set. Again, the first summand of (4.121) can
be estimated by ||u||%2 The second summand of (4.121) is estimated by

Z Z Wy pu(2,)? + ws pu(zs)?
keZ rseZ 2\/ w?‘ hwsh

r#k

| W h K k—r k—s(Tk) — W p Kp—p s (T ) |-

(4.122)

As the Courant number is bounded by 1, only those indices r, s with |[r—k|=1,
|s—k| <1 have to be considered in (4.122). Using (4.120) instead of (4.70) we
follow the rest of the proof of Theorem 4.8. "

Proof of Lemma 4.19. From (4.118) and Lemma 4.7 we derive that the
c}(xr) ¢;(ax) are polynomials of order 4 in §(Zy)/h. Due to the condition 724+52 #0
and Lemma 4.7 the trailing coefficient of these polynomials vanishes. So it is suf-
ficient to prove

! = ) o™z
Wi |win(@k) =77 = wk+1h($k+1)% <cAt (4.123)

for n=1,2,3,4.
Before, let us state that
wi »(ZTk + €h) . wi p(Ze + &) €h
wy, x(Zr) wy, (Zr)
which is bounded for bounded €.2° Furthermore, a Taylor expansion of (4.111)
with respect to ¢ leads to

<1l+ce (4.124)

5@ = (wih) (w0n(50)) Bun@0) + 5 (GFAV'(E) B (wn(z)

= A(Zy) + B(zy),
20 Here we have used (4.108).
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where
.1 _ _ wh p (Wi 1 (€)) _
A(Zy) == WNEN 6(wk,n(Zx)), B(Zk) 2w (1 (E))P 8% (Wi n(Z1)),
2
A< B <e S (4.125)

where (4.61) and, again, (4.108), (4.109) were used. With this notation, the left
hand side of (4.123) is equal to
Wi - (1 - — Ni DA \n—i ~ . i D n—i
T3 () ha(on) AGan) B0 = s (01) Al Blansn)

(4.126)

=0

n=1,2,3,4. We are using (4.124) and the estimates (4.125) on the summands
Wy wjn(Z;) A'(%;) B"'(Z))
h™ ’

from (4.126) to get the bounds

j=kk+1, n=1,2,3,4, 0<i<n,

At2n*’i

¢ B4n—2i ’

Using the stability constraint (4.119), this is estimated by
At ]_,L4n—2z'—4.

Only in the case n=1, i =1, the exponent of h becomes negative. So to prove
the boundedness of (4.126) by ¢ At, we only have to estimate the summand for
n=1i=1in (4.126), i.e.

W, _ _ _ _ 4% _ _

S Wi (@) AEr) — Why1 p(Frr1) AErr1)| = Tk |0(wi,n(Zk)) — O(wWrs1,8(Zr+1));

h
by
At W, _
¢ =5 [wen(Tr) = Wi p(Trir)| = € AWy w0 (€) < e At
where we have used (4.61) and (4.124). n

Of course, the question arises if the stability result of this section can be im-
proved, i.e. if the severe stability restraint (4.119) can be weakened. We cannot
answer the question here. However, we can prove that the 'Lipschitz continuity’
of the coefficient functions in the sense of (4.120) is violated whenever (4.119) is
weakened:
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Lemma 4.21 Under the assumptions of Lemma 4.19, but with (4.119) replaced
by

At :=ch* ™, O<e<l,
and using the grid point distribution function w(x) which is equal to z* at least

on an interval [0,¢], ¢ >0, there is no constant c>0 independent of h, At such
that the estimate (4.120) holds.

Proof. Let us consider the velocity field v(¢, z) := —(1+z)e’/(2—e!) in a neigh-
bourhood of (¢,2)=(0,0). The length of the characteristics according to (4.12)
is 0(xx) = (1+z;) (1—e™2Y), 2, =72 = k2h%. For grid points z >0 (k>0 small
enough) we can obviously choose wy , =w (Lemma 4.16), and therefore the length
of the characteristics in transformed coordinates is

5(z) = /22 + (14+22) (1 — e 2%) — &,

(see (4.111)) for At >0 small enough. A Taylor expansion of § with respect to
At yields

- 1
5@ =~ At R, Ry >0,
2£Ek
as well as
1+ 72 1+z2)? 1+ )
6 At — At + R Ry >0
(@) = 2% 8z3 * 4z, Tz, M2
for small At. Therefore the estimates
6(zr) < A(zr), 0(Tr) > A(Zr) — B(Z) (4.127)
hold where we have defined
- 1+$k - (1+33k) 2 1+$k 2
A = At, B = At* + At°. 4.128
(Zk) 2%y (Zk) Sxk 47 ( )

Evaluating the Lagrangian polynomials in the left hand side of estimate (4.120)
for k=2, ny=ny=0, Ak=1 by (4.118) and then applying (4.127) we get

1 ! T * * _wl 7 C* T C* To
_ \/wéh COERED (wh 5 (3R) co(3) c; (z3) — wh ,(2h) cf(x2) cf(2))
= < 3L%0,(5(3R)) LZ19(5(3R)) — 2L°9 1 (5(2R)) LZ1(3(2R)))

1 (8(
A () (552 9) )
_ h2)
1

o o,y o)
_2 A(;h) (1 B A(2E)%B(27z)) (  (A(2h) %23(2’3))2)] (4.129)

>
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Introducing At:=h*=¢ (4.129) is equal to

1 1
7 Z+5h—f+R At (4.130)

24 6 .. —
where the rest R has the shape R = 3 3 ¢;; h*77¢, c;; €IR independent of h, At.
i=2j=1

(4.130) cannot be bounded by any expression c At for A — 0. .

4.4.6 Summary and numerical results

Stability. In Chapter 4 it was pointed out that the stability criteria of our
scheme depend on

- whether the interpolation in space is linear or not (p=1, p>1) and on
- the mesh

Let us summarize the main results of this chapter:

If linear interpolation in space is used, the scheme is stable in L* for arbitrary
meshes and arbitrary At.

If the interpolation is space is nonlinear and the mesh is equidistant or quasi-
uniform, L2-stability can be proved for a bounded Courant number. This weak
restriction is rather unimportant for a practical use of the method.

In the context of our Navier-Stokes solver, the stability on a Chebyshev-
Gauss-Lobatto mesh (which is not quasi-uniform) is of significance. For the
original interpolation scheme, instability (in the sense of Lemma 4.15) can be
proven even for arbitrary small timesteps. When the interpolation is modified
using a local mapping onto an equidistant grid, stability is gained if the severe
condition

At = O(R2 oun) = O(R2.00) (4.131)

is fulfilled.

‘ spatial interpol. ‘ grid H stability cond. ‘
linear (p=1) arbitrary none
higher order (p>2) quasi-uniform | CFL no. bounded
higher order (p=2) G.L. always unstable
higher order (p=2) modified scheme G.L. see (4.131)

Table 4.2: Stability restrictions depending on the spatial order and the mesh
type.

We are faced with the question if the condition (4.131) is necessary. An
indication that the condition cannot be improved was given in the last section:
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When (4.131) in weakened, the coefficients of the interpolation scheme lose their
Lipschitz property which is usually required for stability proofs.

However, numerical stability tests seem to be useful. For our tests, the space
interval consists of a concatenation of three Gauss-Lobatto domains. We used
several smooth initial conditions and the nonlinear equation

u+uVu=0 (4.132)

in one space dimension. We could not find any stability problems, even if the
exact solution becomes discontinuous within the time interval [0,7], and even
if the non-modified scheme is used! Even if the initial values at the collocation
points were independently chosen by random (i.e. the transport field a is, at least
at time t=ty, at random)?!, the scheme was observed to be stable.

Let us discuss this discrepancy of theory and numerics. Obviously, a local
(in space and time) violation of the Lipschitz condition rsp. of the stability
condition (4.51) does not necessarily mean that the calculation becomes instable.
Let us concentrate on the example which was used in Lemma 4.15 to show the
violation of the Lipschitz condition. If we start a test run with the linear equation
(i.e. a independent of u in (4.1)) with the non-modified scheme, the initial flow
field u(to, xx) = Okk, (ko fixed) of 'Dirac type’, the fixed transport field a(¢, z) =
u(to, x), then the situation of proof 4.15 and Fig. 4.9 is recovered at each timestep
at ¢ = xy,: In each timestep, the characteristic starting at xy, ends at a fixed
position & where Su"(Z) > u™(zg,). As expected, in this test run, u"(zy,) =
(Su™(Z)/u™(xg,))" goes to infinity rapidly for n — oo for arbitrary At. If we
replace the transport field a by a(t, z)=u(t,z) then the described situation only
takes place in the first timestep or in a limited number of timesteps, and the
solution stays bounded. (In the case a(t,z)=u(t, z), the value of u(t, zy,)) and
therefore the length of the characteristic at zy, increases at first from timestep to
timestep. But when the end point Z; of the characteristic approaches 1, then
u(Zy) is not any longer larger than u(zy,) (see Fig. 4.9) and the solution does
not increase any more.) In that situation the violation of the Lipschitz condition
does not lead to instability.

Accuracy. Let us consider the initial condition
up(z) =1 — 22

on [—1,1]. The exact solution of (4.1) with a=w for the initial condition u(0, z) =
uo(z) is

o 2(z—1t) ?
u(t,z) =1 (1 n m) (4.133)

(see Fig. 4.11) for z € (—1,1), t > 0. We made test runs for this problem on

21 For the stability proofs in Sec. 4.4, we assumed the transport field to be smooth.
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-1 -0.5 0 0.5 1
Figure 4.11: Exact solution (4.133).

the spatial interval (—1,0) on an equidistant grid. Figs. 4.12-4.14 show the
L*>*(—1,0)-error at time 7'=1. In Fig. 4.12 we set At=h, i.e. the global CFL
number is 1. As predicted by the estimates (4.17) and (4.35), we get an error of
order min{p, ¢+1} = 1, 2, 3 for the parameter sets (p, ¢) equal to (1, 1),(2,1),(3, 2).

To investigate more closely the accuracy of the error estimates (4.17), (4.35),
Figs. 4.13-4.14 show test runs where we have dropped the coupling At=h. In
Fig. 4.13, At=2"? is fixed and the error decay for h — 0 is studied. For h>> At,
we recover the same error decay as in Fig. 4.12 as the error in (4.17), (4.35)
is governed by the term hP. For h < At, the error estimates are dominated by
the term At?*!. Therefore the error in Fig. 4.13 becomes constant for h — 0.
For higher order methods (p =2, p=3) the transition from the h-dependent to
the h-independent behaviour takes place at a Courant number of 1. This could
be expected, as for smaller h, the characteristics begin to cross adjacent grid
points where the spatial interpolation function is only C°regular. For our test
runs with linear interpolation, the error becomes stationary for h ~ 2712, i.e.
CFL = 8. So for the lower order method, the crossing of adjacent grid points by
the characteristics is unproblematic.

However, let us point out that our higher order methods (p > 2) are not
restricted to Courant numbers less than 1. It is just more efficient to chose h, At
such that the Courant number is not bigger than 1.

A closer look at the curves of Fig. 4.13 shows that the error decay is stronger
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Figure 4.12: L*-error for h=At — 0. In this and the following figures, dotted
mesh lines to indicate the (even) powers of 2 are displayed. They serve to facilitate
the check of convergence order.
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Figure 4.13: L*-error for h — 0, At = const.
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Figure 4.14: L*-error for At — 0, h = const.

in the intermediate part than in the left part of the curves. Even this behaviour
is reflected by the estimates (4.17), (4.35): For certain 'intermediate’ h, the term
hP*1 /At dominates hP causing a stronger error decay than the term AP which
dominates the left part of the curves.

Fig. 4.14 shows test runs for fixed h=27%=const and At — 0. For At>>h, the
term At?! is dominant in the error estimates (4.17), (4.35). This causes the error
decay in the left part of the curves. For certain At, the term hP*!/At governs
the estimates, i.e. the error increases. For At < h, the term h? is dominant, i.e.
the error becomes independent of At.

All these observations show that the error estimates describe very accurately
the behaviour of the error; they seem to be ’optimal’.

Fig. 4.15 shows a comparison between the equidistant and the Chebyshev-
Gauss-Lobatto discretization. The test example (4.133) with At ~ h and T=1
is used on the spatial interval [—1,1]. 22 The full line in Fig 4.15 represents the
use of an equidistant grid with h = At. The two broken lines represent the use
of a Gauss-Lobatto mesh, the upper line with A,,cqn, = At, the lower line with
himae = At. For the latter, about three times more grid points than for the first
(and for the equidistant) case have to be used.

Of course, if the mazimum mesh size of the Gauss-Lobatto mesh is equal to

22 On this interval, the gradient of the exact solution becomes unbounded at t=1/2. Obvi-
ously, this singularity does not perturb our numerical scheme.
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Figure 4.15: L%-error in dependence on At for h~ At — 0, p=1, ¢ =1;
comparison of equidistant grid and Gauss-Lobatto grid. In the equidistant case,
h:= At was set. For the two Gauss-Lobatto curves, hpeq, := At (upper curve)
Sp. hmaz := At (lower curve) was set.

the equidistant mesh size, the Gauss-Lobatto mesh causes a smaller error. But if
the mean Gauss-Lobatto mesh size is equal to the equidistant mesh size (i.e. the
same number of grid points is used), the equidistant mesh causes a smaller error.



Chapter 5

The Navier-Stokes Solver

5.1 Remarks on the code

In a first stage, the CGBI solver was implemented with a Chebyshev spectral
solver and a FD solver (see test runs in Sec. 2.8, 3.1.5, 3.3, 3.4.3). In this chapter,
test runs with the newly implemented FE solver replacing the FD solver are
presented. However, the FD solver still may be used for comparisons of the test
results.

Let us begin with the description of the Navier-Stokes time scheme (fractional
step scheme). Afterwards, we will remark on some parts of the parallel Navier-
Stokes solver.

1. The Navier-Stokes splitting scheme. Our time splitting scheme (proposed
in [5]) is of the pressure correction type.!

Let 4™ be a numerical approximation of the velocity field #(t,) at time ¢, and
p" an approximation of the pressure. The Lagrangian ('material’) derivative

Dy =t +uVu

of the velocity field at time ¢t =¢"*! in (1.1) is approximated by the first order
backward Euler method:

,L-I:n—l—l —gqnr

Dyii(tni1) ~ “— (5.1)

*
called foot point of the characteristics X (¢; t, 11, ) starting at (¢,41, ) and ending
at time t =t,,. The computation of the characteristics, however, consists of the

Here, we have put @™ (z) := @™(X (tp;tn 1, 2)) where X (tn;tns1;2) is the so-

1 Pressure correction schemes (’fractional step methods’) where introduced by Temam and
Corin in the 1960s, see [51].

184
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numerical solution of an ordinary differential equation

d - .
@X(t) = u(t, X(t)), (5.2)
X(tn—kl) = T

for each mesh point z. The numerical approximation of the flow field @ in (5.2)
may be time-dependent; instead of @™, a combination of @™, ¥™ !,...,&™ 7 may be
used to extrapolate @ for t € [t,, t,1].> In this chapter we use ¢=1. A higher
value for ¢ is reasonable only if a higher approximation order in (5.1) is used.
When @™ is known, an implicit ’diffusion step’ is performed. The resulting
velocity field @™ is not yet solenoidal. Hence, a pressure correction step yielding
@™ and p™*! is performed.

So each Navier-Stokes time step is splitted into the following three problems:

(i) Solve, for each mesh point z, the initial value problem (5.2) on the time
interval [t,,t,,1] and set " (z) := @™ o X" (tn; tni1, T)-

(ii) Solve the elliptic partial differential equation?

,a'n—i-l _ ﬁn-l-l " o
= . AN TS Vp" = f. 5.3
A Y +Vp" = f (5-3)
Each component of the vector equation (5.3) is of the Helmholtz resolvent
type
(cI-Aw=f, o>0. (5.4)

_ 1
In fact, 0= ;-

(iii) The pressure correction step: Solve

1
—All" = ~ A7 div @t (5.5)

and do the update

a"tt = gttt — At VIITY, (5.6)
= +H". (5.7)

—n+1

The new velocity field 4 is solenoidal, then.

2 The parameter q is the same as in Chapter 4 (p. 140).
3 In the following simulations we use no external force (f =0 in (5.3)).
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Let us mention that in (5.3) the ’old’ pressure p" is used. This deviation from
the original Temam/Chorin pressure correction method is known as a measure
to increase the accuracy.

The characteristics solver. On each subdomain the characteristics solver uses
the same grid as the local elliptic solver, i.e. the characteristics scheme presented
in Chapter 2 is implemented for two-dimensional equidistant, Chebyshev-Gauss-
Lobatto and finite element meshes. Each processor computes the characteristic
lines for those grid points z which are situated in its domain €;. The problem of
characteristics crossing the interface to §2;_; or €;; (Fig. 5.1) is handled by intro-
duction of overlapping stripes (Fig. 5.2): The flow field data of these stripes are
exchanged before each timestep (rsp. subtimestep, see below) so that during the
computation of the characteristics, no interprocessor communication is needed.
This technique reduces the number of communication startups drastically.

interface

Figure 5.1: Characteristic lines crossing an interface.

interface
Q. l l Q l | Qi
I:)i- Pl I:)i+1
overlapping stripe overlapping stripe

Figure 5.2: Overlapping stripes to reduce communication.

Each Navier-Stokes timestep may be subdivided into substeps (’subcycling’).
This enables us to limit the length of the characteristics (even for large At) such
that
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e this length is smaller than the chosen width of the overlapping stripes and

e that, on FE subdomains, the characteristics do not leave the elements adja-
cent to its starting point which simplifies the tracing of the characteristics
on FE domains.

So substeps are introduced to simplify the computation/data management, but
they are mot a consequence of any stability restriction. As a matter of fact, we
could not observe any restriction of At due to stability problems although also
higher order interpolation (p=1,2, 3) on Gauss-Lobatto meshes was used.

Calculation of derivatives. The pressure correction algorithm involves the
calculation of derivatives:

e The calculation of the divergence for the intermediate velocity in (5.5),

e the calculation of the gradient of the pressure p™ and of the pressure differ-
ence II" in (5.3), (5.6).

On the Gauss-Lobatto mesh, these derivatives are calculated by using the dif-
ferentiation matrix (see [12] p. 69). This ensures that the velocity @™ is solenoidal
for all snner grid points of the subdomains €2;. On the interfaces, the divergence
is not forced to be absolutely equal to zero, as our spectral collocation approach
imposes the differential equation only on inner grid points. However, due to the
regularity of the solution and the fineness of the mesh at the interfaces this effect
was not observed to influence the flow rate across the interfaces.

On the FD subdomains, the gradient and the divergence are approximated by
using forward and backward difference quotients, respectively. So the concatena-
tion of both discrete operators is equal to the discrete Laplacian operator (2.74).
This ensures that the velocity field #™ is solenoidal in the sense of the discrete
divergence operator. This holds even on the interfaces between FD subdomains,
as the FD approach imposes the differential equation not only on interior nodes,
but also on Neumann boundary mesh points.

On FE subdomains, derivatives of the piecewise linear functions are piecewise
constant functions which are only well defined on the elements and discontinuous
at the edges and the nodes. For the divergence in (5.5), this is not a problem, as
the equation is solved in the weak formulation, i.e. the divergence of the interme-
diate velocity field has to be known in the sense that integrals over div @™ ;
(p; being a FE ansatz function) have to be calculated. The same holds for the
gradient of the pressure in (5.3). Equation (5.6) requires the nodal values of
VII" which are not well-defined.* To handle this problem we use (5.6) in a weak
formulation in combination with the so-called 'mass-lumping’® technique for the

4 VII™ is discontinuous
5 The mass element matrix is replaced by a certain diagonal matrix.
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—n+1 n—l—l

terms u and «, which avoids the solution of an additional system to get the
nodal values of 4 *"“ This approach leads to a nodal value being an average over
the (constant) values on the surrounding elements, weighted by the size of the
elements. Another possibility is to weight the values on the elements by angles
instead of elements size. Both methods for the FE case lead to a discrete velocity
field which is at least approximately solenoidal.

Boundary conditions. For the characteristics part of the Navier-Stokes solver
we have to pose boundary conditions only on the inflow part I'! of the boundary.
If a characteristic crosses the inflow boundary we use a constant prolongation of
the velocity field outside the domain.

For the elliptic problems (5.3), (5.5) we are using the following boundary
conditions:

| ™ rf | ro
u-n| u-n=0 U-f=wupr | OU/O =0
u-T| 4-T=0 u-7=0 0u/ot7 =0

P 8p/8n20 Op/0n = @r1 p=20

Here, 72 denotes an outward normal vector field on 02 and 7 a tangential vector
field. So we have 'no-slip’ boundary conditions on the physical wall TW. wur:
and @rr are chosen according to a Poiseuille flow, i.e. if I'/ is identified with the
interval (0, B) we set

4y (B—y) 8

uri(y) = Unag g P (y) = v Unaa ook (5.8)

Initial conditions. We have used two different methods to start the flow. The
first one is to start with a zero flow field and to increase the inflow velocity
smoothly over a time interval (0,7): For t>7 we use (5.8). For 0<¢<T we use

C(t) urr(y)

instead of urs(y), where the time-dependent amplifier C(¢) is the third order
polynomial with C(0)=0, C(r)=1, C'(0)=C"(7)=0. We took 7=0.5.

The second method to start the flow is to assume that @ =0 in 2, but to
impose the inflow condition (5.8) immediatly at ¢t = 0. By discretization, this
discontinuous initial field is represented by a smooth field, so the solver can
be applied. As this initial velocity field is far away from being solenoidal, a
'shock’ (large values for the pressure during the first time steps) occurs. The
CGBI-characteristics-pressure-correction solver turned out to be robust enough
to handle this shock without any problems.
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5.2 Test runs

5.2.1 Flow past a backward facing step

As a first example, we present the computation of a flow past a backward facing

step [31]. The Reynolds number is moderate so that the flow becomes stationary

after some time. The reason to choose this example is the following: As we focus

on the stationary state of the flow, the time discretization error of our scheme is of

minor importance; we choose the rather large time step size At=0.08. This test

case enables us to investigate the spatial accuracy of the Navier-Stokes solver.
In a first stage, our domain is rectangular of size

Q = (0,6) x (0,1), (5.9)

and the step of height 0.5 is modelled by posing a Poiseuille inflow profile on the
half of the left edge of the computational domain. This simplified geometry of the
computational domain enables us to use the spectral solver on all subdomains.
The maximum inflow velocity is 1.0, and the Reynolds number with respect to
the step size and the maximum velocity at the inlet is Re=150. We compare the
test runs of

1. Chebyshev solvers on all 6 subdomains ("CC’-coupling), interpolation in the
transport step by polynomials of order p=1

2. Chebyshev solvers on all 6 subdomains (’CC’-coupling), interpolation in the
transport step by polynomials of order p=3

3. FE solver on first subdomain, Chebyshev solvers on the other subdomains
(’FC’-coupling), p=3 on the Chebyshev domains, p=1 on FE domain,

4. FD solvers on all subdomains ('DD’-coupling), p=1.

In a second stage, we include the upstream part of the channel into the compu-
tational domain in order to make a computation comparable to the benchmark
[37]; our new computational domain € is L-shaped:

Q = (0,0.75) x (0.5,1) U (0.75,6) x (0, 1). (5.10)

It is devided into 6 subdomains of the same width; on the first, the FE solver
is used. This geometry and the Reynolds number correspond to the benchmark
tests in [37]; except that the length of our channel is smaller. However, our
computational results showed that the influence of a longer channel in down-
stream direction on the numerical result is neglectable. The spectral solvers use
(N+1)x(N+1) grid points on each subdomain, N = 8,16, 32, 64,128, and on
the FE domain, a regular mesh of triangles with a similar number of nodes is
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used. See Fig. 5.4 for the visualization of the x-component of the flow for both
geometries (N =64, t=51.2) and Fig. 5.5 for the pressure.

For the analysis of the results, we focus on the length L of the recirculation
zone at time ¢t =50. At this time, the recirculation length is already stationary
up to £0.005. Fig. 5.3 shows L in dependence on the method and on the spatial
discretization parameter N. Fig. 5.3 reads that all test runs 1.-4. using the rect-
angular domain (5.9) lead, for N — oo, to a limit of about 2.67.® Furthermore,
we see that for the case of Chebyshev solvers on all subdomains, the order of
the spatial interpolation in the transport step is essential for the accuracy of the
whole Navier-Stokes solver: For the high order interpolation p=3, the result for
N = 8 is more accurate than for the lower order interpolation p=1 and N =64!
Fig. 5.3 also shows that the influence of the lower order FE domain onto the error
of L is limited; the '"FC’ result is clearly more accurate than the DD’ result.

L
f — T

CCp=3 —x—
CCp=1 —+—
FCp=3 — %

2.7

2.6

25

24

2.3

22

21

N

Figure 5.3: The length of the recirculation zone for different combinations of local
solvers. CC=Chebyshev method on all subdomains, FC=finite element method
on first subdomain and Chebyshev on the other subdomains, DD=finite difference
method on all subdomains, FC2: as FE, but with the different geometry (5.10).
p = order of polynomial for spatial interpolation on Chebyshev domains for the
method of characteristics.

Let uy denote the numerical solution for (N +1)x (N +1) grid points per

6 Recently, the result L =2.67 was confirmed by a computation with another parallel Cheby-
shev collocation code which uses an explicit matrix representation of the operator (2.77) [43].
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subdomain. Assuming a simplified” law
||uN - uewact||L2(Q) ~cN ®+ f(At) (511)

for the error, we can compute the order @ approximately without knowing uegqct
by

lun — UN/2||L2(Q)

a=lo .
%2 sy — unll o)

We get the following results:

method ‘ order o
CC (p=3) | 2.6
CC (p=1) | 0.8
DD 0.7

Table 5.1: Approximate order of the different methods for the backward facing
step

Results very similar to Table 5.1 are gained by regarding L(IV) instead of the
L*(Q)-error of uy.

The fact that o <p seems to be a drawback of the fact that the A¢-dependent
terms of (5.11) for different N do not extinct each other completely, pretending
a smaller value for a. The lack of regularity of the solution near the step seems
to be of minor importance, as tests with a smoother solution suggest.

Finally, let us compare our test runs 'FC2’ on the L-shaped computational
domain (5.10) with the benchmark [37]. We find a good correspondence of our
results; in [37], most results are situated between 2.2 and 2.6; using a coarse
discretization comparable to [37] (N =32), 'FC2’ in Fig. 5.3 reads 2.46.

" The simplification consists in the substitution of the ’<’-sign by the ’~’/’=’-sign.
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5.2.2 Channel flow past a cylinder I

In the following we present the computation of a non-stationary 2d flow past a
cylinder. The channel hight is 1, and the length of the computational domain 6.
A circular obstacle of diameter 0.2 is situated on the symmetry axis. The center
of the obstacle has a distance of 0.7 from the inlet. At the inflow, a Poiseuille
profile scaled to Up,.; =1 is prescribed for the x-component of the velocity:

u(y) =6 Umean ) (1_y)a Umean = 2/3

The Reynolds number Re = Upean D /v with respect to the mean velocity at the
inlet and the diameter D of the obstacle is Re=133.

Our computation uses 6 square subdomains. The first, containing the obsta-
cle, uses the FE solver and the other the spectral solver. Within 0 < ¢ < 0.5,
Umean = Unmean(t) is increased smoothly from 0 to 2/3 and is constant afterwards.
To break the symmetry and accelerate the beginning of the periodic vortex shed-
ding, the inflow profile is disturbed asymmetrically, but only within the time
interval [0, 0.5].

To make a comparison between different At, N, p, ¢ and to get an impression
of the accuracy of the numerical result, we are focussing on the Strouhal number

D D

St = =
Umean T Umean

where f is the frequency of the vortex shedding and 7' its reciprocal. We compute
T and St by monitoring the y-component u, of the velocity at a fixed point £ =1.5,
y=0.5 behind the obstacle. If ¢, 5, t3,... are the moments when u, is zero, then
the difference t; o —1; is a value for the period 7.

In Fig. 5.6 and also Fig. 5.7, u, as a function of ¢ is displayed for several set-
tings of the numerical parameters. Fig. 5.6 shows that a periodic flow establishes
rapidly. Several tests were made for the discretization parameter N =64. Those
which are using linear spatial elements in the transport step on the spectral sub-
domains (i.e. p=1) show an amplitude of u, which is obviously much too small if
we compare it with the higher order/finer discretization test runs: For both p=2
and p=23, the amplitude is much higher, and both curves are very similar. Both
curves show ’double peaks’; a feature that is missing in the result for p=1. We
can conclude that for the chosen test problem higher order interpolation (p>2)
is essential to get realistic results. If we increase the number of mesh points to
N =128, the shape of the u, curve only changes moderately, but the amplitude
of one of the two peaks increases.

To give a clearer view, Fig. 5.7 shows a magnification of Fig. 5.6 for certain
settings of the numerical parameters. Now, also the dependence of u, on the
timestep size At is investigated. We see that the shape of the curves is not influ-
enced by At, but only the period length. Focussing on the three computations
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for p=1 we see that the period depends linearly on At¢. This impression seems
reasonable as the whole Navier-Stokes time scheme is of first order.

As already explained, the u,-curves are analyzed to find the period T and
the Strouhal number St (Fig. 5.8). Again, the p = l-computations give rather
inaccurate results of 7'~ 1.4 with a linear convergence for At — 0. The use
of ¢ =1 instead of ¢ = 0 improves the result slightly, which can be explained
easily: If the larger value ¢=1 is used, one of the two leading error terms of the
Navier-Stokes time scheme vanishes.

Higher precision is gained by p > 2. Comparing test runs for different At in
Fig. 5.8, we can conclude that the error in time of the Strouhal number is about
2—3% for At=0.01. The refinement of the mesh from N =64 to 128 diminishes
the Strouhal number again about 4%.

The results are very satisfactory if we take into account that the discretization
of the FE mesh is rather coarse; no refinement is used close to the obstacle. As
long as the discretization on the FE domain is not finer than the discretization on
the spectral domains, the global spatial discretization error is of course governed
by the FE discretization error.

Finally, Fig. 5.9 visualizes the flow field. The x- and the y-component of
the velocity, the Euclidian norm of the velocity and the pressure for N = 128,
At=0.01, p=3 8 at time t=13.1 are displayed. In the left part of Fig. 5.13 the
accompanying vorticity field is displayed. Very clearly, the Karman vortex street
appears. Especially the vorticity field shows many details which are resolved by
the highly accurate spectral method.

8 p=3 on the Gauss-Lobatto domains only
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Figure 5.9: From left to right: the x-, the y-component, the norm of the velocity
and the vorticity for N =128, At =0.01, t=13.1. For the first three columns,
each colour maps a range of 0.152; for the last column, a range of 0.12.
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5.2.3 Channel flow past a cylinder II

In this section, another computation of a flow past a cylinder is presented where
the parameters are adapted to the benchmark computation introduced in [46]°.
The computational domain and its substructuring into subdomains is the same
as in Sec 5.2.2, but now, the circular obstacle is of diameter 0.244 and its center
is positioned 0.49 from one channel wall and from the inlet. At the inflow,
a Poiseuille profile with Upeqn, = 1.0 is prescribed for the x-component of the
velocity. The Reynolds number is Re=100 now.

Due to the asymmetric position of the obstacle the periodic vortex shedding
establishes rapidly; no disturbance of the inflow profile is needed. In Fig. 5.12,
the x-, the y-component, the norm of the velocity and the pressure for N =128,
At=0.005 at time t=11.8 are displayed. The right hand part of Fig. 5.13 shows
the accompanying vorticity field.

Although a coarse spatial discretization on the FE domain (no local refinement
close to the obstacle) and the first order time scheme was used, we found a
Strouhal number of St=0.272 for N =128 (St=0.259 for N =64). These results
were confirmed by a computation using a parallel code with Chebyshev spectral
solvers on all subdomains, modelling the obstacle by a penalty method [25] and
making use of a second order time scheme, which gave a Strouhal number of
0.288 [43]. the benchmark computation [46] gives St = 0.300 £ 0.005 to be the
‘exact’ value. A further improvement of the numerical results can be expected by
implementation of a second order time scheme, by improvement of the outflow
boundary conditions and by grid refinement close to the obstacle.

% The parameters coincide up to a scaling in space and time.
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Figure 5.11: Cycle length T' (and the related Strouhal number) as a function of

the cycle number.
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Figure 5.12: From left to right: the x-, the y-component, the norm of the ve-
locity and the pressure for N =128, At = 0.005, ¢t = 11.8. For the first three
columns, each colour maps a range of 0.25; for the last stripe, a range of 0.3. The
time ¢ within the vortex shedding period was chosen such that the pictures are
comparable to Fig. 5.9.
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5.3 Outlook

The results presented in this chapter show that CGBI is a well suited paralleliza-
tion tool for the coupling of FE solvers and spectral collocation solvers, and the
highly accurate computation of a Navier-Stokes flow. A high spatial accuracy is
reached on the spectral domains. Presently, the FE solver uses approximately
the same amount of grid points as the spectral solver. To balance the error and
also the processor load, we intend to use a refined FE mesh (which requires a
preconditioning or a multigrid method for the local FE problem) coupled with
rather coarse Gauss-Lobatto grids for future computations.

The implementation of a higher order time scheme is presently under investi-
gation. Without much modification of the code, a higher order method of char-
acteristics (i.e. a higher order of the approximation of the Lagrangian derivative
(5.1), (5.3)) is possible. Another possibility which is under current investigation
is the introduction of a semi-Lagrangian method [42] which avoids costly spa-
tial interpolations. However, the semi-Lagrangian method leads to a restriction
of the timestep size used in the transport equation, but we intend to overcome
this problem by ’subcycling’: In [42] at least for a sequential Navier-Stokes solver
based on the Chebyshev spectral method, it was shown that the stability restraint
concerns only the subtimestep size, but not the global time step At.

Another possibility is to replace the collocation-type computation of the in-
terface jumps by weak formulations as they are used by the mortar methods (e.g.
[2]).

In my opinion the most important task for the next future is the investigation
of CGBI for domain decompositions with interior crosspoints. The most impor-
tant question is whether a preconditioner acting only on the interfaces then still
leads to a condition number independent of the discretization parameter, and
number /size of the subdomains. As mentioned in Sec. 2.9, the FETI method
does not meet this desirable property.



Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

8]

Alt, HW.: Lineare Funktionalanalysis, 3. Aufl., Berlin, Heidelberg, New
York, Springer 1999

Ben Belgacem, F; Maday, Y: Coupling spectral and finite elements for second
order elliptic three-dimensional equations, SIAM J. Numer. Anal., Vol. 36,
No. 4, pp. 1234-1263, 1999

Bhardwaj, M.; Day, D.; Farhat, C.; Lesoinne, M.; Pierson, K.; Rixen, D.:
Application of the FETI method to ASCI problems - scalability results on

1000 processors and discussion of highly heterogeneous problems, Int. J. Nu-
mer. Methods Engin., Vol. 47, pp. 513-535 (2000)

Bjgrstad, P.E.; Widlund, O.B.: Iterative methods for the solution of elliptic
problems on regions partitioned into substructures, SIAM J. Numer. Anal.,
Vol. 23, No. 6, pp. 1097-1120 (1986)

Blazy, S.; Borchers, W.; Dralle, U.: Parallelization Methods for a Character-
wstic’s Pressure Correction Scheme, Flow simulation with high-performance
computers, II, 305-321, Notes Numer. Fluid Mech., 52, Vieweg, Braun-
schweig, 1996

Blazy, S.; Borchers, W.; Krautle, S.; Rautmann, R.; Rof, N.; Wielage,
K.: Stromungsberechnung: Fine Herausforderung fur Mathematik und In-
formatik, ForschungsForum Paderborn, pp. 100-104, 3/2000

Borchers, W.; Forestier, M.Y.; Krautle, S.; Pasquetti, R.; Peyret, R.; Raut-
mann, R.; Rof3, N.; Sabbah, C.: A Parallel Hybrid Highly Accurate Elliptic
Solver for Viscous Flow Problems, Numerical Flow Simulation I, Notes on
Num. Fluid Mech. Vol. 66, Hirschel (ed.), pp. 3-24, Springer Verlag 1998

Borchers, W.; Krautle, S.; Pasquetti, R.; Rautmann, R.; Rof3, N.; Wielage,
K., Xu, C.J.: Towards a Parallel Hybrid Highly Accurate Navier-Stokes
Solver, Numerical Flow Simulation II, Notes on Num. Fluid Mech. Vol. 75,
CNRS-DFG Collab. Research Progr., Results 1998-2000, Hirschel (ed.), pp.
3-18 Springer Verlag 2001

206



BIBLIOGRAPHY 207

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

Bramble, J.H.; Pasciac, J.E.; Schatz, A.H.: The construction of precondi-
tioners for elliptic problems by substructuring I, Math. Comp. 47 (1986), pp.
103-134

Bramble, J.H.; Pasciac, J.E.; Schatz, A.H.: The construction of precondi-
tioners for elliptic problems by substructuring II, Math. Comp. 49 (1987),
pp- 1-16

Brenner, S.C.: The condition number of the Schur complement in domain
decomposition, Numer. Math. (1999) 83, pp. 187-203

Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A.: Spectral Methods
in Fluid Dynamics, Springer Verlag, New York 1988

Childs, P.N.; Morton, K.W.: Characteristic Galerkin methods for scalar con-
servation laws in one dimension, SIAM J. Numer. Anal., Vol. 27, No. 3, pp.
553-594 (1990)

Douglas, J.; Russel, T.: Numerical methods for convection-dominated diffu-
ston problems based on combining the method of characteristics with finite
element or finite difference procedures, STAM J. Numer. Anal., Vol. 19, No. 5,
pp. 871-885

Dryja, M.: A capacitance matriz method for Dirichlet problem on polygon
region, Numer. Math., 39, pp. 51-64 (1982)

Ehrenstein, U.: Méthodes spectrales de résolution des équations de Stokes
et de Navier-Stokes. Application a des écoulements de convection double-
diffusive, Doctoral thesis, Nice, 1986

Ehrenstein, U.; Peyret, R.: A Chebyshev collocation method for the Navier-
Stokes equations with application to double diffusive convection, Int. Journal
for Numerical Methods in Fluids 9 (1989), pp. 427-452.

Farhat, C: A method of finite element tearing and interconnecting and its
parallel solution algorithm, Int. J. Num. Methods Engin., Vol. 32, pp. 1205-
1227 (1991)

Farhat, C; Roux, F.-X.: An unconventional domain decomposition method
for an efficient parallel solution of large-scale finite element systems, SIAM
J. Sci. Stat. Comput., Vol. 13, No. 1, pp. 379-396 (1992)

Farhat, C.; Chen, P.-S.; Roux, F.-X.: The dual Schur complement method
with well-posed local Neumann problems: Regularization with perturbed La-
grangian formulation, STAM J. Sci. Comput., Vol. 14, No. 3, pp. 752-759
(1993)



208

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

31]

32]

[33]

BIBLIOGRAPHY

Farhat, C; Roux, F.-X.: The dual Schur complement method with well-posed
local Neumann problems, Contemporary Mathematics, Vol. 157, pp. 193-201
(1994)

Farhat, C; Crivelli, L; Roux, F.-X.: A transient methodology for large-scale
parallel implicit computations in structural mechanics, Int. J. Numer. Meth-
ods Engin., Vol. 37, pp. 1945-1975 (1994)

Favini, A.: Sulla interpolazione di certi spazi di Sobolev con peso, Rend.
Semin. Mat. Univ. Padova 50 (1973), pp. 223-249

Forestier, M.Y.; Pasquetti, R.; Peyret, R.; Sabbah, C.: Spatial Development
of Wakes using a Spectral Multi-Domain Method, to be published

Forestier, M.Y.; Pasquetti, R.; Peyret, R.: Calculations of 3d wakes in strat-
ified fluids, ECCOMAS 2000, to be published

Gilbarg, D.; Trudinger, N.S.: Elliptic Partial Differential Equations of Sec-
ond Order, Springer-Verlag Berlin Heidelberg New York 1977

Goudjo, C.: Problémes auz limites dans les espaces de Sobolev avec poids,
Boll. Unione Mat. Ital. 8 (1973), pp. 468-493

Klawonn, A; Widlund, O.B.: FETI and Neumann-Neumann iterative sub-
structuring methods: Connections and new results, Comm. Pure Appl.
Math., Vol. 54, pp. 57-90 (2001)

Krautle, S.: A Higher Order Characteristic’s Method for the Transport Equa-
tion, Third Seminar on Euler and Navier-Stokes Equations (Proceedings),
Institute of Thermomechanics AS CR, Prague, 1998

Krautle, S.; Wielage, K.: The CGBI method for viscous channel flows and
its preconditioning, Nonlinear Analysis: Theory, Methods & Applications,
47 (6) (2001) pp. 4193-4203

Krautle, S.; Wielage, K.: Numerical results for the CGBI method to wvis-
cous channel flow, Navier Stokes Equations: Theory and Numerical Methods
(proceedings), R. Salvi (ed.), pp. 247-255 (2001)

Lax, P.D.: On the Stability of Difference Approximations to Solutions of
Hyperbolic Equations With Variable Coefficients, Comm. Pure Appl. Math.,
Vol.XIV, pp. 497-520 (1961)

Lax, P.D.; Nirenberg, L.: On Stability for Difference Schemes; a Sharp Form
of Garding’s Inequality, Comm. Pure Appl. Math., Vol. XIX, No. 4, pp. 473-
492 (1966)



BIBLIOGRAPHY 209

[34] Lions, J.L.; Magenes, E.: Non-homogeneous boundary value problems and
applications I, Springer Verlag, Berlin-Heidelberg-New York, 1982

[35] Mansfield, L.: On the conjugate gradient solution of the Schur complement
system obtained from domain decomposition, STAM J. Numer. Anal. Vol. 27,
No. 6, pp. 1612-1620 (1990)

[36] Marchuk, G.I.: Methods of Numerical Mathematics, Springer Verlag, New
York Heidelberg Berlin, 1975

[37] Morgan, K.; Periaux, J.; Thomasset, F. (Eds.): Analysis of Laminar Flow
Over a Backward Facing Step, Notes on numerical fluid mechanics, Vol. 9,
Vieweg, Braunschweig, Wiesbaden 1984

[38] Morton, K.W.; Siili, E.: Evolution-Galerkin methods and their supraconver-
gence, Numer. Math. 71, pp. 331-355 (1995)

[39] Morton, K.W.; Priestley, A.; Sili, E.: Stability of the Lagrange-Galerkin
Method with non-exact Integration, M2AN Vol. 22, no. 4, pp. 625-653 (1988)

[40] Park, K.C.; Justino, M.R.; Felippa, JR. & C.A.: An algebraically partitioned
FETI method for parallel structural analysis: Algorithm description, Int. J.
Numer. Methods Engin., Vol. 40, pp. 2717-2737 (1997)

[41] Pasquetti, R.; Sabbah, C.: A Divergence-free Multi-Domain Spectral Solver
of the Navier-Stokes Equations in Geometries of High Aspect Ratio, J. Com-
put. Phys. 139, No.2, pp. 359-379 (1998)

[42] Pasquetti, R.; Xu, C.: On the efficiency of semi-implicit and semi-
Lagrangian spectral methods for the calculation of incompressible flows, Int.
J. for Num. Methods in Fluids, to be published

[43] Pasquetti, R: private communication

[44] Pironneau, O.: On the Transport-Diffusion Algorithm and Its Applications
to the Navier-Stokes Equations, Numer. Math. 38, pp. 309-332 (1982)

[45] Quarteroni, A.; Valli, A.: Domain Decomposition Methods for Partial Dif-
ferential Equations, Clarendon Press, Oxford 1999

[46] Schaefer, M.; Turek, S.: Benchmark computations of laminar flow around a
cylinder. (With support of F. Durst, E. Krause and R. Rannacher.), Hirschel,
E.H. (ed.), Flow simulation with high-performance computers II. DFG pri-
ority research programme results 1993-1995. Vieweg, Wiesbaden. Notes Nu-
mer. Fluid Mech. 52, 547-566 (1996)



210

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

BIBLIOGRAPHY

Schwarz, H.R.: Numerische Mathematik, B. G. Teubner, Stuttgart 1993, 3.
Aufl.

Siuli, E.: Convergence and Nonlinear Stability of the Lagrange-Galerkin
Method for the Navier-Stokes FEquations, Numer. Math. 53, pp. 459-483
(1988)

Suli, E.: Stability and Convergence of the Lagrange-Galerkin Method with
non-exact Integration, The mathematics of finite elements and applications,
VI (Uxbridge, 1987), pp. 435-442, Academic Press, London, 1988

Suli, A.; Ware, A.: A spectral method of characteristics for hyperbolic prob-
lems, STAM J. Numer. Anal., Vol. 28, No. 2, pp. 423-445 (1991)

Temam, R.: Sur Uapproximation de la solution des équations de Navier-
Stokes par la méthode des pas fractionaires (II), Arch. Rational Mech. Anal.
32, pp. 377-383 (1969)

Temam, R.: Nawvier-Stokes Equations, Rev. ed., North-Holland Publishing
Company, Amsterdam - New York - Oxford 1979

Tezaur, R.: Analysis of Lagrange multiplier based domain decomposition.
Doctoral dissertation, University of Colorado at Denver, Denver, 1998,
http://www-math.cudenver.edu/graduate/thesis/rtezaur.ps.gz

Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators,
North-Holland Publishing Company Amsterdam New York Oxford 1978

Velte, W.: Direkte Methoden der Variationsrechnung, Teubner, Stuttgart
1976

Walter, W.: Differential- und Integral-Ungleichungen, Springer-Verlag,
Berlin, Gottingen, Heidelberg, New York, 1964

Wloka, J.: Partielle Differentialgleichungen, Teubner, Stuttgart 1982



Zusammenfassung
in deutscher Sprache

Das Thema dieser Dissertation ist Beschreibung und Erforschung der Conju-
gate Gradient Boundary Iteration (CGBI) Methode. CGBI ist eine Gebietszer-
legungsmethode zur Parallelisierung elliptischer symmetrischer partieller Differ-
entialgleichungen und wurde vorgeschlagen von Borchers [5].

Die Losung der globalen partiellen Differentialgleichung kann sehr leicht
parallel gefunden werden, sobald ihre zugehorigen Randbedingungen auf den
kinstlichen Randern zwischen den Subgebieten bekannt sind. CGBI ermittelt
diese Randbedingungen vom Neumannschen Typ (’natiirliche Randbedingun-
gen’) mittels einer CG (conjugate gradient)-Iteration. Die Iteration selbst sowie
die in Kapitel 3 konstruierten Vorkonditionierer arbeiten nur auf den Randern
der Subgebiete; daher der Name 'boundary iteration’. In jedem CG-Schritt muss
in jedem Subgebiet jeweils ein lokales Problem, das von den tibrigen lokalen Prob-
lemen unabhangig ist, gelost werden.

CGBI ermoglicht die Kopplung verschiedener lokaler Loser, die auf den ver-
schiedenen Teilen des Rechengebietes arbeiten, auch unter Verwendung nicht-
konformer Gitter. So konnen auf kompliziert geformten Teilen des Rechengebietes
Finite Elemente (FE) Léser zum Einsatz kommen, wohingegen auf rechteckigen
Subgebieten hocheffiziente Tschebyschev-Spektralloser verwendet werden.

Als Anwendung von CGBI wird in Kapitel 5 ein paralleler Navier-
Stokes-Loser konstruiert.  Dieser zerlegt jeden Zeitschritt mit Hilfe der
Druck-Korrekturmethode von Temam & Chorin in elliptische und ein hyperbo-
lisches Problem. Die elliptischen Probleme (Poisson-Gleichung fiir den Druck,
Helmholtz-Resolventengleichung fiir die Geschwindigkeitskomponenten) wer-
den mittels CGBI, das hyperbolische durch ein Charakteristiken-Verfahren gelost.

In Kapitel 2 wird der theoretische Hintergrund der CGBI-Methode dargestellt.
Dabei wurde besonderen Wert auf die konsequente Verwendung der schwachen
Formulierungen von Randwertproblemen gelegt, denn nur in dieser Formulierung
sind die auftretenden Probleme tatsachlich 16sbar. Ferner macht die Verwen-
dung der schwachen Formulierungen deutlich, in welchen Funktionenraumen nach
Losungen gesucht werden muss, und sie zeigt auf, auf welche Weise effiziente
Vorkonditionierer zu konstruieren sind (Kap. 2.2). Es stellt sich heraus, dass
Diskretisierungen der Wurzel des negativen Laplace-Operators als Vorkonditio-
nierer geeignet sind.

Kapitel 3 beschaftigt sich mit der Konstruktion solcher Vorkonditionierer.
Ausgangspunkt ist immer der exakte vorzukonditionierende Operator, zu dessen
Inversen mit Hilfe von Eigenvektorbasen ein spektral dquivalenter Vorkonditio-
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nierungsoperator gesucht wird. Anschlieflend wird dieser diskretisiert. Falls die
kiinstlichen Rander, die bei der Gebietszerlegung auftreten, ein dquidistantes Git-
ternetz aufweisen, so ist diese Diskretisierung des Vorkonditionierers sehr leicht.
Es kann gezeigt werden, dass die resultierende Konditionszahl bei Gebietszer-
legungen ohne ’innere Kreuzungspunkte’ unabhéngig von der Anzahl der Subge-
biete und vom Diskretisierungsparameter ist. Bei Verwendung einer vereinfachten
Geometrie konnen explizite Schranken fiir die Konditionszahl angegeben werden.

Der Tschebyschev-Spektralloser verwendet allerdings kein dquidistantes, son-
dern ein GaufB-Lobatto-Gitter. Mittels der Interpolationstheorie gewichteter
Sobolev-Raume wird der Gauf-Lobatto-Fall auf den &aquidistanten Fall
zuriickgefiihrt (Kap. 3.1.3). Der Nachweis, dass der resultierende Gaufi-Lobatto-
Vorkonditionierer Konditionszahlen unabhangig vom Diskretisierungsparameter
erzeugt, gelingt allerdings nur fir den Fall von Dirichlet-Randdaten. Nichts-
destotrotz wurde durchweg, sofern das Seitenverhaltnis der Subgebiete nicht zu
schlecht ist, eine Fehlerreduktion von etwa einer vollen Zehnerpotenz pro CGBI-
Schritt beobachtet. Der Aufwand der Vorkonditionierung ist, verglichen mit dem
der lokalen Loser, vernachlassigbar gering.

Alternative Vorkonditionierer, basierend auf Bandmatrizen, oder, um das
Problem der Abhangigkeit der Konditionszahl vom Seitenverhéltnis der Sub-
gebiete zu losen, basierend auf Faltungskernen, werden in Kap. 3.3 und 3.4
vorgestellt und untersucht.

CGBI wird verschiedensten numerischen Tests unterzogen, die auch die Kopp-
lung verschiedener lokaler Loser (FDM-Spektralloser, FEM—Spektrallser) auf
verschiedenen Gittern einschlielen. Diese Tests belegen, dass CGBI ein robustes
Verfahren zur effizienten Losung elliptischer Probleme darstellt.

CGBI hat grofie Ahnlichkeit zu dem seit den frithen 90ern entwickelten
FETI-Verfahren von Farhat & Roux (Kap. 2.9); beide nutzen natirliche
Randbedingungen an den kiinstlichen Randern. Ein wesentlicher Unterschied
ist, dass unser Verfahren Vorkonditionierer benutzt, die ausschliefilich auf den
Randern agieren und vernachlassigbar wenig Rechenzeit benotigen, wohingegen
die FETI-Vorkonditionierer zusatzliche Probleme auf den Subgebieten 1osen, was
den Rechenaufwand pro Iteration etwa verdoppelt. Ein detaillierter Vergleich der
Effizienz von CGBI und FETT kann jedoch erst dann erfolgen, wenn CGBI auf
den Fall innerer Kreuzungspunkte ausgedehnt ist. Die wesentliche Frage ist, ob
in diesem Fall die Unabhangigkeit der Kondition vom Diskretisierungsparameter
und von Anzahl und Gréfle der Subgebiete erhalten bleibt. Bei FETI jedenfalls
ergibt sich eine logarithmische Abhangigkeit der Konditionszahl von der Grofle
der lokalen Probleme.

Um das beim Navier-Stokes-Loser auftretende hyperbolische Problem zu l6sen,

wurde ein Charakteristiken-Verfahren hoherer Ordnung programmiert und
theoretisch untersucht. Dieses Verfahren basiert auf der Berechnung von
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Charakteristiken startend an den Gitterpunkten. Die dabei notige Auswertung
des Stomungsfeldes geschieht mit polynomieller Interpolation in der Zeit und
stiickweise polynomieller Interpolation im Raum. Diese Methode bendtigt
nicht das Auflosen globaler Gleichungssysteme und ist u.a. deshalb leicht
zu parallelisieren. Es werden Fehlerabschitzungen und Stabilitdtskriterien
hergeleitet. Wahrend die Stabilitat bei Verwendung linearer raumlicher Interpo-
lation trivialerweise immer gegeben ist, ist ihr Nachweis bei Verwendung hoherer
raumlicher Interpolation an Bedingungen gebunden. Auf dquidistanten Gittern
reicht die Beschranktheit der Courant-Zahl. Das gleiche gilt fiir quasi-uniforme
Gitter. Auf GauB-Lobatto-Gittern hingegen kann die Stabilitdt nur unter
starken Einschrankungen an die Zeitschrittweite gezeigt werden. Numerische
Tests hingegen zeigen auch auf diesen Gittern keinerlei Stabilitatsprobleme.

Das letzte Kapitel dokumentiert einige Rechnungen des vollen 2d-Navier-Stokes-
Losers. Als Testprobleme dienen die Kanalstomung iiber eine Stufe (backward
facing step’) sowie die Kanalstrémung hinter einem zylinderférmigen Hindernis
(Ausbildung einer Karmanschen Wirbelstrafie). Neben einer grafischen Darstel-
lung der resultierenden Stromungen werden die Lange des Riickstrombereichs
(im Fall der ersten Rechengeometrie) und die Strouhal-Zahl (im Fall der zweiten
Rechengeometrie) ermittelt und mit Werten aus der Literatur verglichen.
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