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Chapter 1

Introduction

1.1 Modeling of solidification

Solidification phenomena play an important role for a variety of processes.
An important application arises, for example, in the casting of metals and
alloys. The quality of the casting products depends on certain properties of
the material and microstructures forming during the solidification. Therefore
it is important to study the microstructures in order to influence and improve
the quality of the products. Solidification is a phase transition process which
can be modeled by Stefan type approaches with surface tension and kinetic
effects. The interface between liquid and solid phases is described in such
models as a surface of zero thickness, therefore the models are called sharp
interface models. The models involve equations for thermodynamic variables
(temperature and composition) in each phase and impose certain conditions
on the moving interface. Sharp interface models are well studied and docu-
mented in the literature. The numerical solution procedures for these models
involve an explicit tracking of the interface which leads to complicated nu-
merical algorithms due to the complex geometries of the interface.

In recent years, the so-called phase field models were introduced as an
alternative approach for the modeling of phase transition processes. The
essential difference between phase field and sharp interface models is the
introduction of an order parameter in the former which henceforth will be
referred to as the phase field.

In the phase field approaches, one considers a diffuse transition layer
between solid and liquid phases instead of a sharp interface. The phase
field, usually denoted by ¢ = ¢(z,t), is a function of space and time and
its value determines the phase at the point x € Q = Qp U Qg at time ¢
(cf. Figure 1.1). The function is supposed to take constant values in pure
solid and pure liquid phases. The intermediate values correspond to the
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position of the diffuse interface (cf. Figure 1.2). Phase field models contain

Figure 1.1: Interface Figure 1.2: Profile of ¢

a small parameter ¢ representing the thickness of the transition layer. By
making this parameter sufficiently small one may approximate classical sharp
interface models. Relations between phase field and sharp interface models
have been considered by many authors. The convergence of the phase field
model to the sharp interface model in the limit of the interface thickness
parameter to zero has been established for various models.

There are several advantages of the phase field approach in the modeling
of growth phenomena. One major advantage is that it provides a simple
and elegant description of various realistic situations. Besides this, the phase
field formulation is convenient for many numerical solution procedures since
there is no necessity for any explicit tracking of the moving interface and the
solution is quite simple to obtain.

Considering the solidification process one may have a situation which
involves only a pure material and its melt. In this case the process can be
modeled by a system of partial differential equations involving temperature
T and phase field ¢. These models are often referred to as models for pure
material.

On the other hand, if a material consisting of several substances (an alloy)
is under consideration, then in addition to temperature 7" and phase field ¢,
the concentrations of the alloy components need to be taken into account.
As a consequence of this one additionally has diffusion equations for the
concentration of the alloy components ¢;, i = 1,2,...,n—1 with n being the
number of components of the alloy. These models are termed as models for
alloys. We will consider a phase field model for binary alloys.

For pure material as well as for alloy problems one has a coupled nonlinear
system of parabolic partial differential equations whose solution can only be
found numerically except for very simple cases. One of the challenges of
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numerical methods for phase field models lies on the parameter ¢ which is
very small for recovering physically realistic cases. Therefore, the grid size in
numerical simulations (using for example, finite element methods) should at
least be of order ¢, a requirement which eventually leads to a large number
of degrees of freedom and hence demands a big amount of computational
work. Due to this reason it is advantageous to use a grid which is fine in
the vicinity of the interface and coarse away from the interface. Accuracy
of the numerical methods in dependence of the parameter ¢ is also of major
interest.

1.2 Works on phase field models

In this section, we make a brief review of what has been done in the past
years regarding phase field models. The review is in no way complete since
there has been an enormous amount of work done in the field, especially in
the last few years. A phase field model for solidification in pure material was
introduced by Caginalp [7] as a new approach to phase transition problems.
The author performed a mathematical analysis of the model, established
relations between various models and studied their asymptotic limits to sharp
interface models in his later works [8, 9] as well. The convergence of phase
field models to sharp interface models was investigated by Caginalp and
Chen [14].

A numerical analysis of an anisotropic phase field model has been pre-
sented by Caginalp and Lin [11], and Lin [36]. Caginalp and Socolovsky [15]
have presented numerical studies of various problems modeled by the phase
field approach such as crystal growth and motion by mean curvature. Kobay-
ashi [34] proposed a different type of phase field model and presented numer-
ical simulations of dendritic crystal growth by introducing an anisotropy of
the surface tension. Fabbri and Voller [25] have made qualitative compar-
isons between the models of Caginalp and Kobayashi and their sharp interface
limits using numerical simulations in one dimension.

In recent years quite a number of works regarding numerical methods,
computational efficiency, model parameters, simulation of dendritic growth
by introducing anisotropy into phase field models, quality of solutions and
stability issues of various models have been done. We mention here works
of Braun, McFadden and Coriell [5], and Karma and Rappel [30]. Wang
and Sekerka [44] have investigated dendrite tip shapes and tip velocities in
pure melt. Adaptive computations of dendritic microstructures using phase
field models have been done by Provatas, Goldenfeld and Dantzig [39]. Feng
and Prohl [27] have derived finite element error estimates for a model for
pure material and investigated the dependence of error constants on the
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interface thickness parameter ¢ in their work. They have proved that the
error constants depend in low polynomial order on ¢! under reasonable
requirements on space and time mesh sizes.

Recently, Caginalp and Xie [12] have introduced phase field models for
phase transitions in binary alloys. The mathematical model, asymptotic
analysis, convergence to the sharp interface models were also covered in
their work [13]. Wheeler, Boettinger and McFadden [46] have proposed an
1sothermal model of phase transitions in binary alloys and presented numer-
ical simulations in one and two dimensions. Warren and Boettinger [45]
have computed two dimensional dendritic structures by using an anisotropic
isothermal phase field model. More recently, a similar isothermal phase field
model has been considered by Kessler et al. [31]. An analysis of the model
and numerical results with an adaptive mesh strategy have also been pre-
sented in this work. Error estimates for a finite element method for the
above model were done by Kessler and Scheid [32], and the issue of existence
of solutions has been raised by Rappaz and Scheid [40].

1.3 Overview of this work

In this work, we consider a phase field model for binary alloys consisting
of the equations for phase field ¢, temperature 7' and concentration c of a
component of the alloy. Our aim is to present a detailed study of a numerical
scheme both from theoretical and computational point of view. We derive
error estimates for a fully discrete finite element method for the model. The
dependence of the errors on the parameter ¢ is here of particular importance.

We also investigate the dependence of the error on ¢ numerically and
present results supporting the theoretical predictions. Finally, we consider
some aspects of simulation of dendritic growth in two and three dimensions
by introducing anisotropy into the model.

The work is organized into five chapters. We begin by studying the phys-
ical background of a model for binary alloys and the derivation of the model
equations by using a free energy functional. We also discuss anisotropy of
the surface tension and derive a phase field model that we later use for the
simulation of dendritic structures. Chapter 3, which is divided into several
sections and subsections, deals with error estimates. Each section of this
chapter contains results of their own significance which collectively lead to
the main error estimates presented in Section 3.5. In Section 3.1 we introduce
some function spaces and norms. The section also contains some embedding
and interpolation theorems which we use. In Section 3.2 we derive some en-
ergy estimates for the solution of the problem in different norms. Section 3.3
of this chapter is devoted to the spectrum estimate for the problem. A fully
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discrete scheme for the model is introduced and analyzed in Section 3.4. We
also derive some stability estimates for the discrete solution and a discrete
version of the spectrum estimate in this section. With the above prepara-
tions, the actual error estimates are derived in Section 3.5.

Chapter 4 contains numerical experiments that analyze the dependence
of the error on the parameter €. We also deal with the least square problems
arising from the identification of parameters in error functionals. Test results
in two and three dimensions are presented here and the connection to the
theoretical results of the previous chapter is discussed.

In Chapter 5 we simulate dendritic structures by using the anisotropic
phase field model for alloys introduced in Chapter 2. The numerical scheme
and some computational aspects are addressed in this chapter. Finally, we
present results of the simulations of dendritic growth in two and three di-
mensions.

Appendix A.1 contains a formal asymptotic expansions of the phase field
system. Inner (near to the interface between solid and liquid) and outer (far
from the interface) expansions are considered here and some conditions on
the coefficient functions of the inner expansions are derived. The appendix
serves as a basis for the spectrum estimates considered in Section 3.3.






Chapter 2

A phase field model

This chapter is concerned with the derivation of a phase field model for
binary alloys. Before presenting the main model we discuss some physical
background of the underlying process and formulate a related sharp interface
model.

2.1 Phase transitions in alloys

Let us consider phase transformations occurring in a binary alloy that exists
in solid and liquid phases. The equilibrium melting temperature describing
the phase transition depends on the composition of the alloy in this case. The
relation between the temperature and the concentration of a component of
the alloy is described by a (¢, T') phase diagram. A simple example of a phase
diagram is shown in Figure 2.1. The solid and liquid phases are separated
by two curves, the liquidus and solidus lines, merging at the melting points
(0,Tg) and (1,T4) of the pure materials A and B. At temperature Tg which
lies between Ty and Ts we have different concentration values at the solidus
and liquidus line. The concentration has a jump from cg to ¢y at the phase
boundary. At the temperatures greater than 7Tg or less than 74, we have
stable liquid and solid phases, respectively. The diagram corresponds to the
situation that the solute is rejected into the liquid as the material freezes.

The classical approach for modeling phase transformations are sharp in-
terface models. A typical example is the modified Stefan model with surface
tension and kinetics where a material is in liquid and solid phases in some
region which we represent by Q € IRY. The two phases are separated by an
interface I'(¢). Denote by T'(z,t) the temperature and by c(z,t) the concen-
tration of the component A of the alloy. The two phase alloy model [13] is

9
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liquidus

| Ta

c=0 cgqg C, c=1

B A

Figure 2.1: A (¢,T) phase diagram

then formulated as
CyT, = V-(KVT) in Q\I'(¢) (2.1a)
[T]Y = 0 on T'(?) (2.1b)
v = [KVT-n]" on I(t) (2.1c)
cc = DFAc in Q\I'(¢) (2.1d)
—v[c]t = [DVe-n]" on I'(t) (2.1e)
1
T-Tg = —ﬁ(n—l—av)—ki(m,;q%—msc) on I'(t) (2.1f)
S|E

mLcy = Mmgc_, (2.1g)

where Cy is the specific heat per unit volume, K the thermal conductivity,
¢ the latent heat per unit volume, v the normal velocity of the interface and
n is the unit normal vector to the interface. The jump between solid (—)
and liquid (+) phases is denoted by [-]*. The subscript ¢ is used for the
derivatives with respect to time. Moreover, D* are the diffusivities of the
solute in the liquid and solid phases and Ty is the melting temperature of
the pure B material. The entropy difference in equilibrium between liquid
and solid phases is denoted by [s]g and the sum of the principal curvatures
at a point on I'(¢) is denoted by k. The surface tension o and the relaxation
scaling « are present in the interface condition (2.1f). The Gibbs-Thompson
effects (the term with k) and kinetic undercoolings (the term with cav) are
reflected by this condition. The limits of ¢ from the liquid and solid sides
are denoted by c, and c_, respectively. Finally, the values my, mg are the
slopes of the liquidus and solidus lines on the (¢, T) phase diagram.
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The sharp interface problem can be formulated as follows: Find (T, ¢, T")
satisfying (2.1) subjected to some initial and boundary conditions.

2.2 A model for binary alloys

A phase field model for binary alloys can be derived by means of a free energy
functional which depends on temperature 7', concentration ¢ and an order
parameter (or phase field) ¢. The order parameter ¢ is a smooth function
taking value 1 in liquid and —1 in solid.

We consider a free energy functional with parameters ¢ and a

F(p,T,c) = / {%2|V<p\2 + %F((p) + P(p, T, c)} dx (2.2)

Q

and with a double well potential

F(p) = (&~ 17

and the bulk free energy density P(p,T,c). The bulk free energy is typically
given by an interpolation between the free energies of the two phases, for
example,

P(QO’ T, C) = C((P)PL(Ta C) + (1 - C((P))PS(T’ C)

with a function ( satisfying ((1) = 1 and ((—1) = 0. The parameter £ is
the length scale associated to the microscopic interaction strength and a is
related with the depth of the double well potential. We use a bulk free energy
chosen as in [13], e.g.

[s]a [s]B
_T<T — Ta)pc — T(T —Tg)p(l—c)
—Ve(l—c¢)+ RT[clnc+ (1 —c¢)ln(l —¢)] = CyTInT.

P(p,T,c) =

The constants T4, Tp are equilibrium melting points, and [s]4,[s]p are en-
tropy differences between the two phases of the pure materials A and B.
The term V(1 — ¢) arises from the differences in bonding energies and the
terms involving logarithms with the gas constant R correspond to the free
energy of mixing (temperature times entropy of mixing). Specific heat per
unit volume is denoted by Cy .

The double well potential F'(p) reflects the association of lower free en-
ergies in pure phases (at ¢ = £1, pure liquid or solid). The term 3&?|Vyp|?
introduces a surface free energy to the model and provides smooth transitions
between phases. We will reconsider this term for an application of the phase
field model in the next section.
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In context of statistical mechanics the correct function ¢ which occurs in
equilibrium is that minimizing the free energy. In a dynamic approximation,
the equation for the phase field ¢ is derived by relaxation

O0F
TP = —% (2.3)

where ‘;—f: is the Fréchet derivative of F with respect to ¢ defined by

(f;—f:’ ¢> — lim - (F(o + 5, T, ) — F(p, T, )).

With the definition of macroscopic parameters

e = &al’?, o= — (2.4)

we can write the phase field equation in the following form:

V2
as’pr =& Ap +¢(1 = ¢*) + Z— ([s]a(T = Ta)e + [s]5(T = Tp)(1 - ¢))
where ¢ corresponds to the interface thickness and o to the surface tension.

Furthermore, we use the notations

fle) == Fllp)=¢’—¢ (2.5a)
q(T,c) = —g ([s]a(T — Ta)c + [s]s(T — Tg)(1 —c))  (2.5b)

to write the phase field equation as follows:

1
aspy —eAp + gf(QO) +q(T,c)=0.

An equation for the temperature is derived from the density of the internal

energy u. The relation

oP

(with Cy = 1) gives us
u=T+Ve(l—c)+ L(c)p

where
L(c) = %TAC + % B(1—c)
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is half of the latent heat. With the simplifications V' = 0 (that is true for ideal
mixtures) and T4[s]a = Tg[s]p which makes the latent heat independent of
the concentration, we get by

u =V - (KVT)

the equation
Ti+ Loy =V - (KVT)

with K being the heat conductivity.
The equation for the concentration ¢ can be derived by

c=V- (Dc(l — )V (%%—f))

with f)c(l — ¢) being a term reflecting the scenario that mobility vanishes in
two pure materials and attains its peak at equal concentrations of the two
materials of the alloy. Setting

13

D = DR
M) = %Mc(l — o)
we get
ce=V-(DVec)+ V- (DM(c)Vy).

The solute diffusivity D may depend on the phase field ¢ and can be taken
as

D(p) = 5(d ~ ds)(1+ ) + ds (2.6

with d, ds being the solute diffusivities of liquid and solid material. Usually
dg is much smaller than dj,.
Now, we have a phase field system for (¢, T, c)

acp; — eAp + éf(go) +q(T,)c) = 0 (2.7a)
T,- V. (KVT)+ Lo, = 0 (2.7b)
¢t —V-(DVe)—V-(DM(c)Vy) = 0 (2.7¢)

in (0, 7] x Q considered with the boundary conditions

Vo-n = 0 (2.8a)
KVT-n = 0 (2.8b)
(DVec+ DM(c)Vy)-n = 0 (2.8¢)
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on 0f), and initial conditions
©(0,z) = @o(z), T(0,z) = To(z), ¢(0,z) = co(z) in Q. (2.9)

The interface can be approximately specified as I'(¢t) = {z : ¢(z,t) = 0}.
We mention here that a phase field model for the case of a pure material
can be derived similar way as for the case with binary alloys. Namely, by
setting ¢ = 0 (or ¢ = 1) in the free energy functional for binary alloys and
repeating the same procedure of derivation.
An example of the model for pure material is

acpi— b+ 110 - Ls(T-Tu) = 0 (210
T,— V- (KVT)+ Lo, = 0 (2.11)

considered in Q x (0, 7] with the boundary conditions
Vo-n=0, KVT-n=0 on 0

and initial functions ¢(z,0) = ¢o(z), T(z,0) = To(z).
The free energy functional F corresponding to the above model is given
by
£ 2, 1,9 2 lsle
T)= = —(p*—1)"——(T—-T
Fo.) = [ {§1068 + (et -0 - 2@ - T

where all the parameters are the same as in the binary alloy case.

2.3 Dendritic structures and anisotropy of the
surface tension

An interesting application of the phase field models is dendritic growth. Den-
dritic microstructures during solidification arise due to the instability of the
solid-liquid interface.

Consider the growth of an equiaxed crystal in a melt. The melt should
be undercooled to provide solidification of the crystal. During the growth of
the solid in the undercooled melt latent heat is released at the solid liquid
interface and flows to the liquid by thermal diffusion. Therefore, the tem-
perature gradient at the interface is negative and this leads to the instability
of the interface. The tip of a small perturbation appeared at the interface is
surrounded by colder liquid making the temperature gradient steeper. This
allows faster transport of the released latent heat away from the tip. There-
fore, the tip grows faster than the rest of the interface. Secondary or tertiary
arms may develop in the same fashion.
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In the case of alloys the growth is governed by both solute and thermal
diffusion. The solute rejected from the solidifying material causes solute pile-
up ahead of the interface. The rejected solute is carried away by diffusion and
the tip of the perturbation tends to grow more rapidly than the other parts
of the interface. The temperature and concentration profiles of an equiaxed
dendrite is shown in Figure 2.2. The patterns formed are usually symmetric

—
—

Figure 2.2: Concentration and temperature fields for equiaxed dendrites

due to the crystal structure of the solid material. The growth follows along
some preferred directions determined by the crystal orientations of the ma-
terial. In phase field models the crystal structure can be described by an
orientation dependent density of the surface free energy. The interface insta-
bility is controlled by the surface tension and the surface tension is related
with the parameter £ in the free energy. Therefore, by making ¢ orientation
dependent we can include anisotropic surface tension in the model.

In the following, we discuss one possibility of introducing anisotropy for
the model described in Section 2.2. The term 1£%(Vy|? in the free energy
functional (cf. (2.2)) is modified to

1
562772(V<P)IV¢\2

with an anisotropy function n. The phase field equation is derived as usual
by relaxation as in (2.3) and the scaling of the parameter 7 will be the same
as in (2.4). As a result of the modification we obtain an anisotropic phase
field equation and the equations for temperature and the concentration in
the system remain unchanged. We only consider the term

(4 momsra) )
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We have

]
(55 [ 37 voIvelisv)

11
= lim - §{n2(w+sV¢)|V<p+sV¢|2—n2(V<p)|V<PI2}d$
Q

s—0 8

= (n(Ve) |V’ D'n(V), Vi) + (° (V) Ve, Vi)

dp 8p 0p\ '
VQO: a7 ) .
Ox’ Oy’ 0z

where

and

D'n(Vy) = ( o o o )T
0(0yp/0z)’ 0(0yp/0y)’ 0(dp/0z)
The notations in two dimensions are analogous to the above and the phase
field equation is now written as
agpy — eV - (P (Vo) Ve +1(Vp) | Vo> D'n(V))
1
-l—gf(go) +q(T,c) = 0. (2.12)

The equation combined with (2.7b)—(2.7c) alongwith appropriate boundary
and initial conditions can be used for simulating dendritic structures. The
boundary conditions for ¢ can be chosen as

(P (Vo)Ve +n(Ve)|Ve?D'n(Ve)) - n = 0.

For the specific form of the function 7 = n(Vy) there are different possibili-
ties. Four fold anisotropy can be specified as chosen in [30]:
n(@) = 1— 38+ 464(ns + nj +n})
= 1— 304 + 464(cos* @ + sin* §(1 — 2sin? p cos? p))
where 6, ¢ are the spherical angles of the unit interface normal 7@ = (ng, n,, n,)"
of the solid-liquid interface and 4, is the strength of the anisotropy. We have

(0¢p/0z)* + (0p/0y)* + (9¢/02)*
Vol

n(Ve) =1 — 38, + 484

\Y%
with the unit normal of the interface represented by V—(p With homoge-

neous Neumann boundary condition the weak form of the anisotropic equa-
tion is written as

ae(p0, ) +e(7 (Vo) Vipt8(V), Vi) + - ((9), ¥)+ (4(T, ), ¥) = 0 (2.13)
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where s = (s1, $2,53) " with

dp (0p/0z)?|Vp|>—[(0p/0x)" +(p/0y)* + (8¢ /02)"]
or Vel

s1=166,n(V)
(2.14)

and analogous expressions for s, and s3.

In two dimensions the form of 7 (for four fold anisotropy) can be chosen
as
n = 1—304+ 404 (ni—l—n;)

= 1— 364+ 464(sin* 6 + cos* 9) (2.15)
where 6 is now the angle between the normal @ = (ng,n,) of the interface

and a certain fixed direction (e.g. the z-axis).
Analogously, we have

(0p/0x)* + (0 /0y)*
Vel

n=1- 304+ 404 (2.16)

and the same weak anisotropic equation. We may also use n = n(6(Vy)) =
1+ 6m cos(m(6(Vp) — 6p)) with a reference direction 6y (0 for the z-axis),
this is equivalent to (2.15) for m = 4. This form was employed in [34] for the
simulation of dendritic crystals. We use the form for the simulation of six fold
dendritic structures. Results of the simulations are discussed in Chapter 5.






Chapter 3

Error estimates for the solution
of a fully discrete scheme

The present chapter is devoted to the derivation of some new error estimates
for the fully discrete finite element method for a phase field model represent-
ing binary alloys. In order to obtain the desired estimates we first propose an
alternative formulation for the model, incorporating some simplifications:

1
acpy —eAp + gf () —q(T,p) = 0 (3.1a)
T,—V-(KVT)+ Lo, = 0 (3.1b)
ug— V- (DVu)+ My, = 0 (3.1c)

in Q7 := (0, 7] x Q with the initial and boundary conditions

Vo-n=KVT-n=DVyu-n=0  on 9N (3.2a)
<P(0, LC) = Yo, T(07 :E) = TO, M(Ov 13) = o in ). (32b)

The connection between this formulation and (2.7)—(2.9) is the assump-
tion that M(c) = M is constant and a linearized chemical potential u =
¢+ M. Then (2.7c) gives us the equation (3.1c).

In the system (3.1)—(3.2), @ C IRV (N = 2,3) represents a bounded
domain with a smooth boundary 92 and 7 > 0 is a fixed constant. The
function f(y) is the derivative of the double well potential

F(p) = i(wz - 1),

that is, f(p) = ¢* — ¢.
Moreover, M is positive and K (z,t), D(z,t) € RY*Y are positive defi-
nite. We assume that the function ¢ has the form ¢(T, 1) = ¢7T + g1 with

19
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positive qg, ¢; and the assumption can be justified by the use of some suitable
linearizations. Our primary goal is to consider a fully discrete finite element
method for the model (3.1)—(3.2). It is known that the phase field models
approximate sharp interface problems when ¢ becomes small. This implies
that in numerical methods one has to use small mesh and time step sizes
which should be related to the interface thickness parameter . It is clear
that the space mesh size should be at least as small as € so that the grid
captures the thin interface.

In the past years, many authors have developed and analyzed numerical
approximations of phase field models. For example, Caginalp and Lin [11]
and Lin [36] have proposed finite difference schemes for a phase field model
and obtained error estimates for the scheme. Chen and Hoffmann [17] pro-
posed a fully discrete finite element method and obtained optimal order error
estimates. All the above error estimates have been derived considering a fized
e. The obtained error bounds contain the factor exp (%). This is not useful
when ¢ is small.

Recently, Feng and Prohl [27] have derived error estimates for a phase
field model with the error constants depending on low polynomial orders of
e71. They derived error estimates for a fully discrete finite element method
under reasonable constraints on the time and space mesh sizes. A spectrum
estimate by Chen [16] plays an important role in the techniques used in [27].
We mention that all the above works deal with phase field models for pure
material.

The numerical analysis for various phase field models (representing so-
lidification in binary alloys) have also been considered by several authors
recently. For instance, Rappaz and Scheid [40] proved the existence of weak
solutions of an isothermal (7" constant) phase field model for binary alloys.
For the same model Kessler and Scheid [32] proposed a finite element method
and achieved optimal error estimates by introducing a generalized vectorial
elliptic projector. The error bounds in the work contain exp (512) factor.

To our knowledge, error estimates in dependence of the parameter £ have
not yet been presented for phase field models representing binary alloys. It
is the aim of this work to propose and analyze a fully discrete finite element
method for the model (3.1)—(3.2) and derive new error estimates for the
method. It is shown that the error constants depend on £~! in low polynomial
order similar to that of [27].

Before presenting the main error estimates, we need to take some prepara-
tory steps. In the following sections we derive energy estimates for the so-
lution of the problem, introduce a fully discrete scheme and derive stability
estimates for the discrete solution. With the derivation of the discrete ver-
sion of the spectrum estimate of Chen [16] we conclude the preparatory steps
and proceed with the main propositions where the error bounds for the fully
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discrete scheme are given.

3.1 Preliminaries

In this section we collect some useful definitions, elementary inequalities and
properties of the spaces we use. We start the section with the definitions of
function spaces and norms.

3.1.1 Function spaces

Let O be an open bounded domain in IRY. The Lebesgue space L,(Q) (p >
1) consists of functions u defined on {2 whose p-th powers are integrable
functions; i.e., u € L,y(Q) if u is measurable and

1/p
nmumn=([]mwm) (3.3)

is finite. For p = oo, the norm is defined as

ey = 55 sup .
The inner product on Ly(€2) is denoted as usual by (-, -), i.e.,
(u,v) = / wodz, for u,v € Ly(Q).
Q

For integer k, the Hélder space C*(Q) consists of functions with continuous
partial derivatives up to order k. A function u satisfying

[u(z) —u(y)| < Clz —y|”

with 0 <y < 1issaid to be Hélder continuous with exponent . For noninte-
ger k the Hélder space C*(2) consists of functions whose partial derivatives
up to order [k] = sup{m € Z |m < k} are Holder continuous with exponent
k — [k].

When all the weak partial derivatives of u of order < m (m positive
integer) are in Ly((2), we say that u belongs to the Sobolev space W;"(f2),
ie.,

W () = {u € Ly(Q) : Du € Ly(2) Va with |a| < m}.

Here a = (oy,...,an), (la| = a1 +- - -+ an, a; > 0, integer) is a multi-index,
and
9 v

~ g1 g an
0z] 0z}

D%u(x) u(x).
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The norms are defined, for 1 < p < oo, by

1/p 1/p

g = | [ 3 107upds) = 10"l | (34

lo|<m |a|<m

and for p = oo by

lullwee) = max | D°ulls. e

We often use Hilbert spaces H™(Q2) = Wi*(QQ).
The space H}(Q) consists of functions v € H*(2) such that v = 0 on 9.
By H !(Q) we denote the dual space of H(Q), it is defined as the space

of all continuous linear functionals on Hj (). The norm on the dual space
H~1(Q) is defined by

u, v
lullsr @ = sup |(u,v)]
0ZveHL(RQ) V|| 22 (02)

Let us now define some spaces of time dependent functions. Denote by
J the time interval (0, 7). The space L,(J x 2) consists of all measurable
functions with

T 1/p
fullyosey = ([ 1), i) 0 <p<o0)
being finite (1 < p < 00). For the case p = co the norm is defined by

]| Lorx) = ess sup_[Ju(t)|Lo(@)-
0<t<T

The Sobolev space W} (J; W,(€)) consists of functions whose time deriva-
tives up to order k belong to W;(2) and ¢ — [lu(t,-)llwz) is in Ly(J). If
p = 2 we write H*(J; W,(Q)), analogously W} (J; H4(Q2)) for ¢ = 2. The
functions with time derivatives of order up to k in L,(J) and space deriva-
tives up to order £ in L,(2) belong to W (J x Q).

In the following we give an example of a norm on Sobolev space of non-
integer order. For a real number s € (0,1), 1 < p < oo and a nonnegative
integer k define

D%u P
el e gy = Nl + Z | = N+sp(£)| dz d¢
@) @ |x ¢l

la|=k

Other definitions of non-integer order spaces can be found for example in [38].
We use non-integer order Sobolev spaces W2 (Q) and W*#(J x Q) where the
superscript « indicates the regularity with respect to time and ( indicates
the regularity with respect to space.
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3.1.2 Elementary inequalities

We mention some elementary inequalities in this subsection. We have

1 1
Young’s inequality. For 1 < p,q < oo with — 4+ — =1,
b q

ab < ea? + C(€)b? (a,b >0 and € > 0) (3.5)

where C(€) = (ep)~9/Pq~. For p = ¢ = 2, we have
1
ab < ea® + —b2.
4e

1 1

Holder’s inequality. Let 1 < p,gq < oo and — + — = 1. Then, if u €
p q

L,(Q),v € L,(22), we have

/Q woldz < I[ullzmlolloym- (3.6)

1 1
In general, for 1 < py,...,pm < oo with —+---+ — =1, and ux € L,, ()
b1 DPm

m
Q k=1

Minkowski’s inequality. Let 1 < p < oo and u,v € L,(€2). Then

fork=1,...,m,

lu + vl < |[ullz,@) + llv]lz,@- (3.7)

3.1.3 Embeddings and interpolation

Let © € IRY be a bounded Lipschitz domain and J be a bounded interval.
The results collected in this section can be found in [3, 4, 23, 43]. We have
the following embedding theorems.

Theorem 3.1 Suppose « > >0 andr,s € [1,+00). Let u € W(Q). If
N N
o 2p-,
r s
then W2(Q) is continuously embedded in WP(Q), i.e. u € WE(Q) and there
ezists a constant C' independent of u such that

lullyp g < Cllullwao)- (3.8)

If the inequality is true with “<” instead of “<” then the embedding is com-
pact and the embedding also holds for r,s € [1,4+00].



24 3. Error estimates for the solution of a fully discrete scheme

Theorem 3.2 Let ay,9,81,0: >0, 1 <r <s < +o0 and

1 N 1 1
<—+—> (———) +max{é,@} <1
o1 (o) T S a; Qo
Then the space Wer22(J x Q) is continuously embedded in WPP2(J x Q).

The theorems are a consequence of more general embedding theorems for
Besov spaces [4].

We also have the following interpolation properties of Sobolev spaces.

Theorem 3.3 Let Q € RN be a bounded C*-smooth domain. Then for
indicesr,r1,7r9 € (1,+00), k1, k2 > 0, X € (0,1) satisfying k = Mk +(1—N)ko,
L= r)‘l + 1r2’\ and any function u € W (Q) N Wk (Q) the following holds:

u € WE(Q) and

lellwec@) < Cllullys, (3.9)

with a constant C' independent of u.

Theorem 3.4 Let Q € IRY be a bounded Ct-smooth domain and J be a
bounded interval. Then for r,ri,79,8, 81,82 € (1,400), k,k1,ks, 41,05 > 0,
A€ (0,1) satisfying k = Ak + (1 — Aka, £= My + (1= Ny, L =2 + 122

r

=24 122 and any function u € WM (J; WA(Q)) N WE(J; W2(Q)) the

S1 8§2

followmg holds: w € WF(J; WE(Y)) and

lullwscrweay < Cllullye (3.10)

1wl I ’”(JW‘g(n))

for constant C' independent of u.

The above two theorems can be concluded from a result in [3]. We have the
following corollary of the theorem.

Corollary 3.1 Let J € IR be a bounded interval and Q € IRY be a bounded
C*-smooth domain. Then for r € (1,00), k > 0 and A € (0,1) every u €
WHEE(J x Q) is also an element of Wk (J; WA-Y¢(Q)) and

||u||W,\k(J Wa-¢(Q < CHU”Wk L(T%9) (3.11)

for constant C' independent of u.
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3.1.4 Regularity of a parabolic problem

Consider a linear parabolic initial boundary value problem on a domain ) €
IR" with boundary I' and a time interval J = [0, T].

Ou—V-(AVu) = g inJxQ (3.12a)
AVu-n+au = b onJxT (3.12b)
u(0,:) = wo in Q. (3.12¢)

For the above problem the following regularity result is valid.

Theorem 3.5 Suppose Q € IRY is a domain with a C%-smooth boundary T,
r>1,r# 3, Ais a bounded elliptic tensor with coefficients from C°(J x

Q)mcgﬂ(‘]x T) N Ly, (J; W, (Q)) with B > 1_% and s1,82 > T, %4‘% < 1.

1 1 1 1

Suppose g € L,(J x Q), a € C’g’ﬁ(,] xT),be W " "(JxT) and uy €
2

Wr2_;(Q). Let for the case v > 3 the compatibility condition

(AVug - n + aug — b)|4—o = 0
be satisfied. Then the solution u of (3.12) is in space W*(Jx Q) and satisfies

the a priori estimate

otz < (allzrtsn + Il 3+ Talooz ) (313)

with a constant C' independent of g,b and uyg.

The theorem follows from a special case of a result in [43] (see also [23]).

3.1.5 Discrete Gronwall lemma
For the error estimates we need the following lemma:

Lemma 3.1 Assume that, w,, n > 0 satisfies

n—1

wy, < oy + Zﬁkwk for n > 0, (3.14)
k=0

where a,, is nondecreasing and By, > 0. Then

n—1
wy, < oy, exp (Z Bk) . (3.15)
k=0
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Proof. The proof is done by induction. For m = 1, we have
wy; < a1+ Bowo < a1 + Boap < ar (14 Fo) < ayexp(Bo).

Assume that (3.15) holds for m — 1 (m < n). Set

m—1
U = Qp + E 5kwk
k=0

Then, we have u, — Um 1 = Bm_1Wnm 1. Moreover, using (3.14) and the
property of the sequence a,, we obtain

Un = Um-1 +ﬁm—1wm—1

m—2
Um—1 + ﬁm—l (am—l + Z /Bkwk)

k=0
S Um—1 + ﬁmflumfl S (1 + ﬁmfl)umfl
S eXp(Bmfl)umfl-

IN

Since vy = a,, and w, < u,, we get the assertion. O

3.2 Energy estimates for the phase field model

For the later use, we need energy estimates for the solution (¢, T, 1) of (3.1)—
(3.2) in terms of negative powers of ¢ for given initial values (g, 1o, o) €
[H?(Q)]*. For simplicity of the notations, we use further || - ||z, for || - ||,
and || . ||Hm fOI' || . ||Hm(Q)

We define the following energy functional:

f(cp,T,u)z/

Q

1 1 do Q1
— |V + —F T? 2) dz. (3.16
(2a| ol + ae? (p) + 2Lae * 2Mas" z. (3.16)
We make the following assumption regarding the initial values (g, To, to):
Assumptions
There exist nonnegative constants o;, ¢ = 1,2,...,6 independent of ¢ such
that

o] < 1inQ (3.17a)
F(po, To, o) < Ce™> (3.17b)
1
leApo — gf(SOO) + q0To + q1itol| o) < Ce (3.17¢c)
IVTollme < Ce o+, £=0,1 (3.17d)
||V/,L0||H2(Q) < 08_05‘“, (= 0, 1 (3176)
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The initial functions ¢y, To, o can be chosen such that (3.17) is satisfied for
01 =032 =1/2,03 = 05 = 0and 04 = 05 = 1/2. We give some remarks on the
selection of the constants o;. The function ¢, can be chosen, for example, as
tanh(p/+/2) with p = r /e, where r is the signed distance of a point from the
interface. It is the first order term in the asymptotic expansion of the solution
¢ in the neighbourhood of the interface (cf. Appendix A.1). Since F(yp) is
nonzero only on the transition region of volume O(e) and Vi, = O(e ') in
the same region, we can choose o; = 1/2 in (3.17b). Due to Apy = O(e?)
in the transition region, we can also have o, = 1/2. We take Tj as smooth
approximation of a continuous function whose gradient has a jump over the
interface. In this case we have o3 = 0 and o4 = 1/2 in (3.17d). A similar
selection is made for pg, so that o5 = 0 and o = 1/2 in (3.17¢). We further
use the above fixed values of o;-s.

We also assume that there exists a family of smooth data functions
{(¢0,To, tt0) }o<e<1 and constants g9 € (0,1] and Cy > 0 such that for all
e € (0,&9] the ¢ component of the solution of the phase field model (3.1)—
(3.2) with the initial data (@g, Ty, po) satisfies

1@l Lo 0,730) < Co- (3.18)

The diffusion tensors K, D are symmetric, elliptic and bounded: K;; =
K, Djj = Dj;fori,j =1 ..., N, there exist positive constants 0 < K, < K;
and 0 < Dy < D; such that

Kolé]? <K;;&& < Kq|¢)? (3.19)
Dyl€]? <Dy&i&; < Dyl€?

where the sum convention is used. We assume that the coefficients of K, D
satisfy
Kij, Dij € WL(0, T; WL (). (3.20)
The following result gives estimates for the solution (p, T, ) of (3.1)—(3.2)
in various norms.

Lemma 3.2 Assume that (3.17) holds for (vg, Ty, o) and (3.18) is valid. If
0 < t, < T, then the solution to (3.1)—(3.2) satisfies the following:

. € 1 qo q1
IV ol|? —||F =T — 2
m%ﬁﬁ{ﬂ OlIZ, + IF(@Iz. + 52 ITIE, + Sazllal?, § +

2]
o K, D
[ (cellorti, + 2EUTTEIR, + BN, ) as < .

ty
(ii) Koess sup ||[VT||7, +/ | T:(s)|3,ds < Ce™,
0

[0,2¢]



28 3. Error estimates for the solution of a fully discrete scheme

2]
() Doess sup [Vl + [ l(o)lzds < 07,
,te 0

ty

. « _

() Gess sup o, + [ IVieu(s)ds < e,
[0,2] 0

7]

) [ I8e(),ds < Ce
0

(vi) ess sup || Ap||7, < Ce?,

[0,¢]

te
(vi) / lou(s)|%-rds < Ce™,
0

ty
(viii) ess sup | T1|%, + KO/ IVT(s)I2, ds < Ce™,
0

[0,¢]

ty
() ess sup [}, + Do [ [9u(s) s < C=,
0

0,t¢]
N 2
o*T
(x) ess sup < Ce?,
[0,2¢] i,j=1 8$’8$] L,
N 2
82
(xi) ess sup a < Ce™5,
[Oatl] ’L,]:]. 8:1:28:1;] L2

te
(i) [ ITlfyads < e,
0 .,
(xi) / e (8)|%-ads < Ce .
0
Furthermore, if
Iim Vo)l < O, lim [VE(s)]l, < O,
and sl_if& IV ui(s)||z, < Ce™* (3.21)

fO’l" some 61) 62) §3 2 07 then

te
(xiv) (a) Oz/o ||<,0tt($)||%2 ds + ess E)ut% ||V<Pt||%2 < O max{s26:}
sbe

2]
(b) /0 | Ape(s)||7,ds < Ce™ max {5,261}



3.2. Energy estimates for the phase field model 29
Moreover,

te
(xv) (a) Kqess sup ||VT,5||L2 /0 ||Ttt(s)||%2 ds < Ce~ max{5,2§1,2§2},

[0,¢]

m [y

’L]_

ds < C&.—max{S,Z{l,Zfz}
330 8:1:] L, ’

te
(xvi) (a) Doess sup ||Vpuell3, +/0 lpae(s)||2, ds < Cemax(3260.26}

0,%¢

te N
b) / >
0 =1

Proof. (i) Multiplying (3.1a) by ¢; and integrating over the domain §? yields

2 2
0° 1t ds < Ce—max{5:2¢1,2¢}

(9113,'(933]'

Lo

1
ae(pr, 1) +e(Vo, Vy) + E(FI(SO)a ©1) — qo(T, 1) — q1 (1, ¢) = 0.

From equation (3.1b) and the boundedness of K, we obtain

~00(T, ) = %(KVT,VTH%"(M)

CZOKO o d

= IVTIL, + 57— T,
2L dt

Since an analogous estimate also holds for —q; (i, ¢), we have

d do
0455}_(%7“, ) + aelled|3, +

Now integrating the above identity over [0,t,] and using (3.17b) we obtain
(i).
(ii) We multiply (3.1b) by T; and integrate over 2. Then using Young’s
inequality (3.5) for the term —L(¢y, T;) and the identity
1d 1

(Ku,u) = —%(Ku u) — (Ktu,u) (3.22)

with v = VT results in

d

5 (KVT,VT) < Plleillz, + ClIVTIIZ,.

ITZ, +
After integrating over [0, ;] and using (i) and (3.17d) we get the assertion.
(iii) The proof of this part is analogous to that of (ii), that is, we multiply
(3.1c) by p, integrate and use (i) and (3.17e) to get the desired inequality.
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(iv) We differentiate (3.1a) with respect to ¢ and obtain

1
acpy — eAp + gfI(SO)‘Pt —qoTy — qipe = 0. (3.23)

Now by multiplying the above equation by ¢; and integrating, we get

1, .,
ae(pu, 1) +(Vor, Vr) + g(f (©)et, 1) = qo(Ts, 1) + q1(fee, @)

The above identity and the inequalities

1

1
g(f'(SO)SOt,SOt) > —g||<,0t||%2

1 qie
q(Ti, 1) < g||§0t||%2+%”ﬂ”%2
1 G’
@l ed < lledlz, + =iz,

gives us

ac d

3 qie qe
L ol + <l Vel < SNl + BT, +

The assertion now follows after integrating the above over [0, ¢,] and taking

into account (i)—(iii) and (3.17c).
(v) We use the test function —Ay for (3.1a) to get

1
ae(Vpy, Vo) +e(Ap, Ap) + g(f (©), —Ap) = qo(T, —Ap) + 1 (1, —A¢p).
Then the inequalities
1 1, ) 1 ,
g(f(w), —Ap) = g(f (©), [Ve|?) > —;IIVSOIIM (3.24)

and

o, —A¢) = q(Vu, Vo)
1 e
gllvwlliz + fllvulliz

IN

alongwith the analogous inequality for go(VT, V), yield

ae d 3 qe e
% 4 |l +<lagl, < 21Vl + BT, + S,
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Now the assertion follows from integrating the above inequality over [0, ¢,
and taking into account (i) and (3.17b).
(vi) We multiply (3.1a) by —A¢p, integrate it over {2 and obtain

1
e(Ap, Ap) = —g(f'(w)Vso, Vo) + ae(py, Ap) + o(VT, Vo) + ¢ (Vu, Vo).

Now, (3.24) and the repeated use of Young’s inequality on the right hand
side gives us

elAplz, < CleIVellL, +elledlz, + el VT, + el Vallz,)-
Integration and inequalities (i)—(iv) lead to the desired estimate.

(vii) From (3.23) we get

1 1 ! ’
loallas < SVl + — sup 10 (P)eu¥)]
o ag

90 il
+_ T L +— /"t Lo-
ozpert  ||¥|lm %” tll L, as“ tllz

Using the uniform boundedness of f'(¢) and (i)—(iv) after squaring and the
time integration we get the assertion.
(viii) Differentiation of (3.1b) with respect to ¢ gives

Now multiplying the above inequality by 7; and integrating, we get

1d

5 71Tz, + Kol VTulZ, < Lliulla (IV Tz, + 1Telz.)+

Ko
LIVEIE, +CIVTIE,

Ky
< S IVTZ, + CUTZ, + IV TIZ, + lleullz-»)-

Now the desired inequality is derived from the above by integrating it over
[0,%,] and using (i), (ii), (vii), (3.17c) and (3.17d).
(ix) Similarly to (viii), we have

The proof is analogous to the proof of (viii).
(x) From equation (3.1b) we have

N N
0*T 0K;; 0T
K;j——— =T+ Ly, — Y .
_,Z J 81132833] t+ e Z 833]' 633,
i,j=1 1,j=1
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With the test function v and the assumptions (3.20) on Kj;; we obtain

N
0T K,
(Z Kﬁ> < =2lloll3, + CAUITIE, + leell, + IVTIR,).

i.j=1

2

We use v = 52,0, and (3.19) in above to get
N 2
Ky 0T
< C(ITlz 2 +IVTI2,).
2 ‘0:81'8331' Ly (ITellz, + lleellz, + IV TIZ,)

Now summing over j from 1 to N, and in view of the assertions (ii), (iv) and
(viii) we obtain (x).

(xi) The proof for this part is very similar to that of (x).

(xii) Equation (3.25) gives us

| Tullz-r < |V - (KVT)||g-1 + |V - (KVT)|| g-1 + Ll @el| -1
< C(IVTillz, + VT3, + llewllz-1)-

Squaring the above inequality, integrating the resulting inequality over [0, ¢,]
and then using (i), (vii), (viii) gives the assertion.

(xiii) The assertion is derived similarly as above but this time by using
equation (3.26).

(xiv) We multiply (3.23) by ¢4 and get

ed 1
§%||V<Pt||%2 < g|(fl(<P)<Pta ou)| + qo(Tt, o) + q1(pee, Pur)-

In view of the following inequalities

005||<Pt1:||%2 +

1, ., o€ 9 C 9
g|(f (©)ew, ou)] < F”%t““ + EH%HM
ag 2 3‘13 2

900 (T3, pu) < F”tht“Lz + E”TtHL2

Qe 3q>
(e, pr) < F||<Ptt||%2+ﬁ||ﬂt||iz

and the assertions in (i)—(iii) and (3.21) we get the part (a) of (xiv). For part
(b) we multiply equation (3.23) by —A¢p; and use Young’s inequality to get

ellApilz, < Clellpulll, + e leelll, +eNITL, + e lnellZ,)-

Now, the use of (a) and the same set of inequalities as in the proof of the
first part results in the desired inequality.
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(xv) (a) Multiplying equation (3.25) by T}, integrating over 2 and using
(3.22) with u = VT we get

d
ITullz, + — (KVT, VT,) < Clleullz, +IIVTIL, + VT,

dt
N 2
o*T
+CZ 5207 |, (3.27)
2,j=1 2

after applying Young’s inequality on the right hand side. The assertion fol-
lows from the use of (i), (viii), (x), (xiv) and the assumption on li151+||VTt(s) Iz,
s—

in (3.21) after the time integration. For (b), we write equation (3.25) in the
following form:

N

0T, Y. (0K;; 0T, 0Ki;, 0T 82T
Kiji——' =Ty + Loy — 4 4, i | .
1 J 8.’1318.’13] wt pe Z ( Ba:, 833]' + Ba:, 833]' ]’taxiaxj>

5,j= i,j=1

Using the test function v and the assumptions (3.20) on Kj;; we obtain

N
0*T, Ko
(Z KW> < Il + CITlz, + leullz, + IVTL,

i,j=1
N 2
o°T
Tl :
HIVTIE) +0 . |50 |,

2
We take v =

and use (3.19). Summing over 1 to N as in the proof of
T;0%;

(x), integrating over [0, ¢,], using the estimates (i), (viii), (x), (xiv) and part
(a) gives us the desired estimate.
(xvi) Both parts of assertion (xvi) can be proved analogously to (xv).

We also have the following lemma.

Lemma 3.3 Let the assumptions of Lemma 3.2 hold and let N € {2,3}. Let
the coefficients of K, D be in C°(J x Q)N C’%’ﬂ(J x T) N Ly, (J; W,,(Q)) with
g>1-— %, 5 <r <10, and s1,s2 > r satisfy % + % < 1. Then the following
estimates are valid:

(i) ess sup || T(s)]|3z (@)ds < O max{5.261}
J o0

ii) ess sup ||u(s)||?r1 (nds < Ce™max{®2é}
. W)

with C independent of €.
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Proof. We consider the linear parabolic problem

T,—V-(KVT) = —Lyp, inJxQ (3.28a)
KVT-n = 0 onJ x 09 (3.28b)
T(0,) = T, inQ. (3.28¢)

with a given function ¢, satisfying ¢; € H*(J; Lo(Q)) N Lao(J; H2(2)). This
condition for ¢; is assured by Lemma 3.2. By applying Theorem 3.4 we
obtain ¢; € H(J; H23-N(Q)).

By Theorem 3.1, the space H*(J; H**=)(Q)) is continuously embedded
in the space L,(JxQ) for » < 10, if A = 2. The condition on r results from the
requirements for the embeddings H*(J) < L,(J) and H2-N(Q) — L,(Q).
For the first embedding we have the condition A — 3 > —1, and by chosing
A= % — % in the condition for the second embedding

N N

21-N) -5 > -

with N = 3 we get < 10 . Therefore we have ¢; € L,(JxQ) for r < 10. The
diffusion coefficient K satisfies the required regularity conditions, therefore
we can apply Theorem 3.5 to the problem (3.28) and it implies

HT”W12 Ix9Q) <C (HSOt”L (IxQ) + || 0|| 2—;(Q)>

where we assumed that the initial function Tj is sufficiently smooth and

_2
belongs to Ty € W, (Q) for a fixed 5 < r < 10. Now using the embedding
and interpolations as mentioned above, we obtain

Iy < © (Tlodmarnonan) + Wil
< (lewanmlledman + 1Bl 2 ) 629

We choose a suitable initial function T such that ||T0|| 20 < Ce™2. We

can indeed get a better power of ¢ in the above for r near to 5 (see (3.17)
and the remarks there). Using now the energy estimates of Lemma 3.2, we
obtain from (3.29)

||T||W,}’2(Jx9) < Ce3max{32a} (3.30)

Furthermore, by Corollary 3.1 we obtain W12 — WA(J; W2V (Q)). Now,
by Theorem 3.1 we have the embeddings W(J) < Lo (J) and WM (Q) —
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WL () which are valid for » > 5. The requirement r > 5 results from the
conditions of the above two embeddings, A — % > 0 and 2(1 —\) — &£ > 1.
Then we have W}H2(J x Q) — Loo(J; WL(Q)) and this together with the
estimate (3.30) concludes the proof of (i). The assertion (ii) is proved anal-
ogously by considering the parabolic problem for u with diffusion coefficient
D and sufficiently smooth initial function up.

3.3 Spectrum estimates

Now we turn our attention to the spectrum estimate which plays a crucial
role in the derivation of error estimates. Consider the equation

acp; —eAp +e 1 f(p) — T — qup = 0. (3.31)

For g9 = ¢1 = 0 we get the Allen-Cahn equation. Let ¢, be the first com-
ponent of the solution of (3.1)—(3.2). In order to study the stability of the
solution at a specific time ¢, we make the following substitution in (3.31)

@ = @e + be Mp(z) + O(8?)

and pass 0 to 0. We obtain the following eigenvalue problem over {2 and
reC:
—eAY + e f (@ (-, 1) = aely (3.32)

With the notation
L=—eA+e (e t))

for the Allen-Cahn operator we can write the eigenvalue problem as
LY = daey. (3.33)

Here, I is the identity operator. The problem is considered with boundary
condition V- n = 0 on 9€2. We multiply equation (3.33) by 9, the complex
conjugate of ¢, and integrate over 2 and obtain

[ EI0P + 7 o 0)%) do = dae [
Q Q

The above equation implies that

o IVRIE, + e (F ol ), )
I

Therefore, we deduce from the above equation that A is real.

(3.34)
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The aim is to find a lower bound for A which should be independent of ¢.
Chen [16] has obtained a lower bound for A under certain assumptions. One
of the assumptions is that the function f satisfies f € C*(IR) and

{ f(£1) =0, f'(£1) >0
[% f(s)ds = [\ f(s)ds > 0, Yu € (~1,1).

Notice that the conditions are satisfied by the function f(¢) = ¢® — ¢ which
is the choice for our problem.

Let I is an N — 1 dimensional compact manifold embedded in €2 corre-
sponding to the set of zeros of ¢.(z) = ¢.(-,t). We need local coordinates
defined with respect to T.

Denote by r = r(x) the signed distance of x to T, positive in the liquid
and negative in the solid domain. Let s = s(z) be the projection of z on
I' along the normal of T' (cf. Figure 3.1). For a smooth T'; there exists a

r(x)

(3.35)

Figure 3.1: Interpretation of the local coordinates (r, s)

constant dy > 0 such that
['(2dy) = {z € RN : |r(z)| < 2do} C Q
and a mapping 7 : ['(2dy) — (—2dy, 2dy) x T defined by
T = (r(z), s(z))

is a diffeomorphism.
We assume that in I'(dy), the function ¢.(z) has an expansion

8(z) = 6o (@) + epe(s(2))6 (@) +e2q.(2), Yo € D(dy)  (3.36)

with smooth functions p.(z), ¢-(x) satisfying

sup (|pf<x)| n %m(xn) <c (3.37)

e€(0,1],z€T (do) e+ |r(x)
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for a positive constant C. The function 6, is the lowest order term in the
asymptotic expansion in the neighbourhood of I'. It satisfies (cf. (A1.21),
Appendix A.1)

—00” + f(eo) =0in IR, 00(0) = 0, 00(:‘:00) = 41. (338)

For our selection f(¢) = ¢® — ¢ we can compute 6, explicitly, i.e.

8y(p) = tanh (%)

where p = r/e. Function 6;(p) which belongs to the first order term in the
asymptotic expansion satisfies 6; € C}(IR) N Ly (IR) and

/ 6,(60)* " (66)dp = 0
R

(cf. (A1.31) and (A1.32) in Appendix A.1). For the details on the asymptotic
expansions we refer to A.1 which contains formal asymtoptic expansions of
the underlying phase field system.

We also assume that an away from interface condition

s (#(2)) 2 0 3.39
66(0,1},229\1“(510)]6 (¢e(z)) > ( )

is satisfied. Without any loss of generality, we take dy = 1.

In the following we collect some results for the Allen-Cahn operator L.
We use the following notations: Let 7! be the inverse of the mapping 7 =
(r(z), s(z)) and let

be its Jacobian. Let z = r /e be the stretched variable and let I, = (—1/e,1/e).
In the domain I'(1), functions of variable  and variable (r, s) are identified.
We reserve 1 to represent a generic functions of (r,s) and ¥ to represent a
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generic function of (z, s). We shall use the following notations:

(0, ®) = /\I@dz, 1|2 = (v, 7)
I
(0, ), = /w,](az,s)dz, 122 = (¥, ¥,
I
(W, 8) = / (0.8, + f'(6o(2))U®) da
I
LU, ®) = /(\IIZ<I>2+f'(QSE(sz,s))\II(D)J(sz,s)dz
I
(¥,0)s = I¢¢J(T,3)d7”, 913 = (¥, 4)s
P(0.6) = [ (ebdn+ (005, 5)98) )
We have
||¢||%2(1“(1)) :/FW?,
and for
W(z,s) = Vaplens), B(zs) = Vad(e ), (3.40)
we have

LU, @) =cL’(y,9), [[¥s =l

Assume that the relation (3.40) between ¢ and ¥ is always valid. As usual
we write ¥ L, @ if (U, ®), =0and ¥ L & if (¥, &) =0.

We define the operator Ly by

2

Lo=—= "(6)1
0 22T f'(6o)
in I, with Neumann boundary conditions d% =0 on J1..

Next, we recall two useful lemmas from [16]. We omit the proofs here
and refer to the Section 2 of [16] for the details. We have,

Lemma 3.4 ([16, Lemma 2.1])
(1) The principal eigenvalue XY and the corresponding normalized eigenfunc-
tion W9 of Ly satisfy

3m

N = inf LYW, ) = LYW @) = O(e =)

¥)=1
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where m = /min{f'(1), f'(-1)}.

(2) There ezists positive constants €1 and vy such that for all ¢ € (0,¢e4],

A\ = inf  LYT,¥)
T ¥][=1
satisfies
)\g Z V1.

(3) For B =160"||"t we have

3m

197 — B8] = Oe™ ).

Consider now the bilinear form L*(¥,®), s € I' and eigenvalues of the
corresponding elliptic operator

. d (.4 ,
Ly=—J 1% <JE> + f(¢pe(ez,8))I

on I, with homogeneous Neumann boundary conditions. By employing the
lower bounds for A\? and A3, Chen [16] has proved the following lemma for
the principal eigenvalue of the operator L;.

Lemma 3.5 ([16, Lemma 2.2(1)])
The principal eigenvalue A (s) and its normalized positive eigenfunction ¥y(z, s)
of the operator L satisfy

A(s) = inf LU, W) = LW, ¥,) = O(e?), (3.41)

12ls=1
lIll('za 3) - BQOI(z) = \II{{(Z’ 8)

where UE satisfies

Slelllg(ll‘l’flls +11(Z7):ls) = O(e).

The estimate for A;(s) in the above lemma leads to the following:

Theorem 3.6 ([16, Theorem 2.3]) Assume that (3.36)—(3.39) hold. Then
there exists a positive constant Cy such that for every e € (0,1] and every
Y € H'(Q),

/s|w;|2 + e (ge)y? > —Coas/ Y2 (3.42)
Q Q
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Proof. Since f'(¢.) > 0 in Q\I'(1), we have
[Ever e p@aas = [ (EVoP e @)
Q Q\T'(1)

+ / (VY + e F(9e)0?)da
(1)

v

/ (VY + e f (9 )0?)de

(1)

- / / (V2 + & ($2)02) I (r, 5)dr ds
rJn

- /st,w)ds.
T

By the relation (3.40) and Lemma 3.5 we have

/TLS(¢,¢)ds = s‘l/rLs(\Il,\I!>ds
> et [ v > e min (o) [ 1912
= (o) [ s =< mipnto) [ 0
> —C’oae/ﬂwzda:

which implies the assertion of the theorem. O

3.4 Fully discrete finite element method

In the present section we shall deal with stability estimates and a discrete
version of the spectrum estimate. The major aim is to derive an error esti-
mate for a fully discrete scheme where the dependence of the error on ¢! is
of polynomial order.

Let 75, be a quasi-uniform triangulation of €2 and let A be the mesh size
of Tn. Let J := (0,7] be a time interval. We denote by V;, C H'(Q) the
finite element subspace of continuous piecewise linear functions associated

with the triangulation 7,. More precisely, we have

Vi, = {’Uh € C(Q) : vh'lC € Pl(IC),VIC € 77;}

The elliptic projections P : H*(Q) — V4, (1 = I, K, D) are defined as
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follows: For all t € J,

(Vi — Plo],Vup) =0 VYo, € Vi, (p—Ple,1)=0, (3.43a)
(KV|[T — PET),Vu,) =0 Yo, €V, (T —PFT,1)=0, (3.43b)
(DV[u— PPu),Vuy) =0 Yo, € Vi, (u— PPu,1)=0. (3.43¢c)

In the following we summarize some of the well-known approximation
properties of elliptic projections. For details the reader is referred to the
classical texts by Brenner and Scott [6], Ciarlet [18] and the paper of Feng
and Prohl [26]. The diffusion coefficients K and D are symmetric, elliptic,
bounded and satisfy condition (3.20). Then the following properties are valid:

| — Paspll, + h||V(¢ - P;W)HLz < CR?||Y|lg2, Yo € HX(Q), (3.44)
[ — Pitpllr. < CR'Z |Inh|"7 [[9]|m (N =2,3), Vo€ HX(Q), (3.45)
(% — Pip)ellLarizac@) < CRP il psmzey, Vo € HY(J; HX(RQ)). (3.46)

For simplicity of the notation, we use P, for P.

We introduce now a fully discrete finite element method for the system
(3.1). Let J, = {tm} M4, be the partition of J with time step k, i.e. t;—t;_1 =
kfori=1,..., M,. The scheme can be formulated as follows:

Find (™, Tm, u™) € [Val3, m = 1,2,..., My such that for all (up, vs, wp) €
[Vh]ga

ae(di®™, up) + e(VO™, Vuy) + i( (@™), up)
—qo(T™, up) — q1 (1™, up) 0  (3.47a)
(dtTm, ’Uh) (KmVTm V’Uh) + L(dt@m Uh) =0 (347b)
(dep™, wp) + (D™V ™, Vwy) + M(d:®™, wp,) 0 (3.47c¢)

where (®™,T™, ™) are approximations of (¢(tm, ), T(tm, ), t(tm,-)), and

Uum — Um—l

By K™,D™ we denote approximations to K(t,,-) and D(tn,-). For the
derivation of error estimates for the above scheme we need some stability
estimates and a discrete version of the spectrum estimate. The following two
sections deal with stability and spectrum estimates.

dtUm -

3.4.1 Stability estimates

For the solution {(®™, T™, ™)} M., of the system (3.47) we have the follow-
ing lemma.
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Lemma 3.6 Under the assumption k < 2cpac® with 0 < ¢y < 1/4, the
solution {(®™, T™, y™) Mt of (3.47) satisfies the following estimates:

g mi2 1 m qO m1|2 q]- m||2
(a) _maxl{iﬂvfb ||L2+g||F(<I’ )||L1+ﬁ||T ||L2+m||ﬂ ||L2}+

e {0 adacld @, + G IGTmE, + N jom L,

qok my2 , @k myz | 90Ko my2 , 4
D) g, nr T
+ 2L ||dt ||L2 + 2M||dt,u ||L2 + L ||v ||L2 +

u’"lli}

<C (3.48)
and
ag m quo m (11D0 m
©), max, { Elaam, + LRNVTmIE, + LRz, |
M (ack q
m m m 1 m
+k2{—||d2<1> 12, +elldiam 2, + Lz, + L a2,
m=2
Kok Dok
+ 8k g gy 4 2D g ||L2}s06-2. (3.49)

Proof. From the definition of f we have
1 — m
f(@™) = 5(|<1>m|2 —1)([@™ + @™ ]| + kd ™).
Multiplying the above indentity by %dtém and integrating it over {2 we obtain

Lr@maem = o (jenp -1 @n e

o™ (I)m—l
e

k
1
—(|8™ — 1,kd,®™d,®™

+o (1971 — 1, kd,2™d,2™)

1 k
= —(|®™)? — 1,d,(|2™] — 1)) + —(|®™ — 1, |d;®™]?).
5o "7 = 1, (|2 = 1)) + (12" — 1,|d,@™[)
Using the identity

(d.U™, U ):ﬁdt”U ||%2+§||dtU ||%2 (3.50)
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in the first term on the right hand side, we obtain

Lr@maem) = o (Gallen? - g, + fladen? - IR, ) +
E (@, 4" P) ~ o4,
> e -1, +
@RI, - X g, (351

In order to verify (a), we choose up, = d;®™ in (3.47a), vy, = gL 'T™ in
(3.47b) and wy, = ¢ M 1™ in (3.47c) and add the resulting equations. This
leads to

1
as(di@™, d, ™) + £(VE™, Vd,@™) + < (£(8"), ™) + %(dtTm, ™

ki deu™, u™) + %(DmVum, vu™) =0.

q0 ; 7 -m m m
+ =(K™VT™ VT™) +
L( ’ ) M(

Now using (3.50) and the estimate in (3.51) for 1(f(®™), d;®™) we obtain

€ m 1 m m
FdllVe Iz, + Lulle ? =17, + —dt||T 17, + —dt”M I,

(Jok|

+acel|d @™z, + [l Ve II%2+4—6lldt|‘I> Pz, + 57 deT™ Iz,

@k m 70 Ko m q1 m m
+ ool + LRI, + 2, < ofldem |, (352

Assume that k satisfies

aE — 2% > (1—co)ae (3.53)
for some 0 < ¢y < 1, that is, & < 2cpac?. This guarantees that all coeffi-
cients on the left hand side are positive. Now, after multiplying (3.52) by &,
summing over m from 1 to M, and using (3.17b) we get the assertion (a).
We need an intermediate estimate before we prove assertion (b). By
taking the test function d;7™ for equation (3.47b) and using the identity

1 k
(K™VT™, diVT™) = 5 dy(K™VT™, VT™) + 2 (K™d,VT™, d,VT™)

1
— §(dthVTm‘1, vTI™ ) (3.54)
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we get
1 k
|d:T™||3, + 5dt(KmVTm, VT™) + 5(KmdtVTm, d;VT™)

1 m L2 m m—
< I3, + |, + CIvT™ 2,

where we used d;K™ = (K™ — K™ 1)/k = K,(£™,-), the assumption on K
and Young’s inequality.

Summing up the previous inequality over m after multiplying by k& we
obtain

M,
m||2 m||2 m (|2
Ko, max, VT, + & 3 (IGT"I, + Kokl49T™ .}

M, M,
<KL [|d@™7, + B IVI™T, + (KOVT, VT?) < Ce™' (3.55)

m=1 m=1

where we used the assertion (a) and (3.17d) in the last step. By applying
the same procedure for equation (3.47c) we obtain a similar estimate

M,
Do, max Vi |7, +k Z_: {lldeu™ |7, + Doklld:Vp™||7,} < Ce™* (3.56)

m=1

Equation (3.47a) for m = 1, up = d;®* gives us

1
ae(d®, d, VP +¢(VP', d,®,)+ . (f(®Y),d®")—qo(T", d;®") — g1 (11", d®) =0.

According to (3.17c), we have
(VB A VBN (F(8), di)o(T°, B s (1, de®') > ~C 3| d .
Hence, by subtracting this from the equation before we obtain
aclld®' 3, + K|Va®' 2, + 2 (7/(€)4d, 4,8
—qo(T = T° di®') — 1 (p* — p°, dy®@') < Ca_%||dt<1>1||L2.
With the inequalities

k k

-(£(9)di®",d,2") > - ~[|d® |,

<o

— 6
ag —

qo(T" = T° di®y) < || de®[|Z, + Ce (IT* 17, + IT°IIZ,),

Ce™2||dy®Y||z, < —||d;®|2, + Ce?
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(and a similar inequality for the remaining term involving u) we get

ae  k -
(5 - %) 1aeiiz, + ehivaet e, <ce i+ 17,

+ 6z, + 10T, + I60lL,)-
Using condition (3.53) (with 0 < ¢y < 1/4), (3.17), we obtain

(1- 4c0)%||dtq>1||§2 < e (3.57)

Now we come to the assertion (b).
(b) Applying the difference operator d; to (3.47a) and using the test
function d;®™ we get

1
as(die™, ™) + £(d; V", VA B™) + —(d,f(®™), di2™)
—qo(dT™, dy®™) — q1(dyp™, d;®™) = 0.
We add equation (3.47b) with v, = goL~'d;T™ and equation (3.47c) with

wp, = @M 'dyu™ to the above equation. Then we use the identity (3.54)
and the inequality

Hagemyaem) = (LTSI am)

(f'(€)d: @™, d:2™)

1
—lidem3,

™| = o

v

to get

%5 m ock m m 9o m
S alld®™ 3, + SR, + elldi |, + P4,

k
+ 2 d(KTT™, V™) + D (KT dVT™) + 2 du” I

2L
q1 m m m Q1k m m m 1 m
+mdt(D V™,V )+W(D V™, diVu™) < g“alt‘b [

ﬁ m m—1 m—1 i m m—1 m—1
+ 57 (A E™VT™ L VT 4 2 (d DMV V. (3.58)

Summation over m after multiplying by k and use of (a), (3.55), (3.56) and
(3.57) gives the assertion (b).
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3.4.2 Discrete spectrum estimates

To establish bounds for the global error, we also need a discrete version of
the spectrum estimate of Theorem 3.6. Let

Ci = \QH;%}C(*O ‘f (§)|

and let Cy be the smallest positive e-independent constant such that

ess sup ||¢ — Prollr, < Czh%“nm%ess sup ||| g2
J J

3
2

< CCoh™7 |Inh|"7 &2,
where C is a constant with ||¢||gz < Ce™2 (cf. Lemma 3.2).

Lemma 3.7 Suppose (3.18), Lemma 3.2 and Theorem 3.6 are valid, and
€0, Co are the constants there. Let €, := min {50, \/C’l/a}. Then for € €
(0, 1] the following estimate holds:

elVYIIL, + e (f (Prp)¥, ¥)

0ZpeH! ae[¥llz,

> —2C,, (3.59)

provided that h satisfies
KT |Inh|*T < (CC1Cs)  Coae?.
Proof. We have

ess sup |Prpllr, < ess sgp{llwlle + 1l = Prollro }

3
2

Co+CCsh™ = |Inh|*Z &

<
< Cy+ C;tChag® < 20, (3.60)

Using the Mean Value Theorem and the definition of C; and C3 and the
assumption on h, we obtain

ess sgp | f'(Pre) = f (@)l 2o

IN

sup |f"(£)less sup || Py — || L.,
|€]<2Co J

CCLCoh" 7 |Inh|* &~
000662.

3
2

<
<

We use the inequality a > b — |a — b| to get

F'(Pap) > f'(0) = |f'(Pa) — f'(@)| = f'() — Coae?. (3.61)
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The above inequality in view of (3.42) implies that
el VYL, + 7' (f'(Prp), ¥)

inf
0ZyEH! ae||yllZ,
e[|V, + e (f ,
N 2 Rl O S
0ZyEH! ael[Yllz,
and this completes the proof. 0O

3.5 Error estimates

Now we are in a position to state the main result which contains error es-
timates for the discrete solutions. Before that, we need a weak formulation
of the phase field system. Multiplying the equations (3.1) by test functions
(u,v,w), we get the following equations for the weak solution (¢, T, u):

aclpeu) +<(Vo, V) + (o) w) = aolT,u) +arlu,w) (3:62)
(T}, v) + (KVT,Vv) + L(g,v) = 0 (3.62D)
(e, w) + (DVp, Vo) + M(pg,w) = 0 (3.62¢)
for all (u,v,w) € [H*(Q)]*. We formulate now the following theorem.
Theorem 3.7 Assume that {(®™,T™, u™)} M, is the solution of (3.47) for

m=0
the time partition Jy, and a mesh T,. Assume that (3.17) holds. Let the
following mesh constraints
(1) k< min{?coaaz,Ce‘%} with 0 < ¢o < 1/4
(2) A7 |Ink|*T < (CCLCy) ‘Coae?
2(10+N)

(3) k%S +h*A(e) < Ce an
be valid with

A(&') = h¥67% + Efmax{6,2.£1} (363)
and for N = 2,3. Then the solution of (3.47) satisfies the error estimates

i m IR A())be
() max, [lo(tn) = @"llz, < C (ke + WA 2 H),

M, 1/2
(i) (kZ||T(tm>—Tmn%2) < 0 (ke + R[AE)})

M, 1/2
(iii) (k 3 llltm) — um||i2) <C (k5_3 + h2[A(s)]%)
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k Z V(T(t;) —T7)
396t -

<C (k%s—?* 4 R2ETI[A()]E + ha—%)

(iv) max

0<m< M, Lo

<C@*-H%fM@ﬁ+m%)

(v) max
0<m< M,

(vi) (kz IV (o(tm) — &™) ||L2) ks‘5 + h2[A(e)]2e2 +he—%)
(vii) (kZHV — T, <C k6_3+h2[A( Nk hs_%)

)
ml@iﬂv m)

. m o3
(%) | max, flo(tn) ~ 8"z < O (h*F e

5

4 B2[A@)]F + hed)

+ RS (ks—% + hZ[A(a)]%s—%) )

Proof. We divide the proof of the theorem into three parts. In Part 1 we use
the weak and discrete equations to derive a basic inequality making use of the
definition of the elliptic projections and the energy estimates (in Lemma 3.2).
Part 2 is devoted to an estimate of the terms arising from the nonlinearity.
The stability estimates (in Lemma 3.6) and the discrete spectrum estimate
(in Lemma 3.7) are used in this part. The final part includes induction steps
which yield an important inequality. With the help of this inequality, the
properties of the elliptic projections and the energy estimates we prove the
assertions of the theorem.
Part 1. We begin by defining the global errors as follows:

E} = ¢(tn) — @™, Ep :=T(t,)-T", Ep :=p(tm)—p™ (3.64)

Denote
OF = p(tm) — Prp(tm), T7 = Prp(tm) — @™,
Om .= T(ty) — P T(t,), Ym:=PK™T@, )y —Tm  (3.65)
Om = p(tm) — P pltm),  YMi= P u(ty) — pm

so that

=0T+ 1T, ER=0r+TR ET=07+Tm

We can estimate the part of the error with O] for v = ¢, T, u by the prop-
erties of the elliptic projections and the energy estimates. To estimate the
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remaining part with Y7 we first derive some basic equations. Using the weak
equations (3.62), the definition of the elliptic projections (3.43) at time t,,
and the discrete equations (3.47), we obtain

Qe (X wn) + (VIR Vun) + = (F (Pagtm)) — F(@™), un) =
—as(dtG Uh) + qo(®$ + TT X uh) + (]1(@,77 + TZL, uh)

(R, wn) =~ (F(ptm) = F (Pagtm) un), (3.66)

(de X7, vn) + (K (tm) VYT, Von) = = (dOF, vp) — L(dOF + d T, vn)
+ ([K™ = K(tw)|VT (tm), Vun)

and analogously

(& T, wn) + (D(tn) VY, Vwn) = — (O}, wp) — M(d:OF + & T, w)

+ ([Dm - D(tm)]vru'(tm)a vwh)
+ (R +MR™, wy,) (3.68)

where R" is defined by

Ry

= dtu(tm) - ut(tm)a for u =, T, p.

In order to deal with the terms involving d; T, we need a preparatory step
for the equations (3.67) and (3.68). We do the following step for equation
(3.67) since for (3.68) it is done analogously. First, replacing the super index
in (3.67) by j and summing over j from 1 to m gives

i(dtrjf’ vp) + i VTT, V) = i (d:07, R dt@J + dtTJ ), vh)
+ Z {(K? = K(t;)]VT(t;), Von) + (K (tm) = K(8;)]V Y, Vo) }
+ Zm: (Ry + LR, vn). (3.69)

In the above, the term 3 (K (t,)V Y%, Vo) in the left was added in both
j=1
sides of the equation which resulted from the summing step.
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Define G7 by

T=k» Y}, Gy=0 (3.70)
j=1
We have the identity
EY dU7 =Um - U°. (3.71)
7j=1

Now, multiplying the equation (3.69) by k, and using the above identity for

k> (dy Y%, vp), we obtain the following equation:
Jj=1

(T7,vn) + (K(tm)VGT, Von) = —L(TZ, vn) — (LOF + OF, vn)

m

+k Z {([K7 = K(t;)IVT(t;), Von) + (K (tm) — K (t;)]V T, Von) }

+ (kY [Rh+ LRL],v) + (E + LE, vp). (3.72)

=1
For T we have an analogous equation

(ﬂrzz’ wh) + (D(tm)VGzla th) = _M(T:Za wh) - (M@:?"{_@Ln’ wh)

m

+EY {17 — Dlt;)|Valty), Vo) + (Dltm) — D)V T, V)

+ (kS [R) + MRI), wh) + (B + MEQ, wy) (3.73)

j=1

where G} is defined in the same manner as in (3.70).

Now, we choose up = Y7 in (3.66), v, = L 'TF in (3.72), and
wp, = ¢ M"Y in (3.73) and add the resulting equations. Then the mixed
terms on the right hand side involving (Y7}, T7) and (Y7, T}) cancel. This
provides the possibility to obtain terms with the desired scaling (in terms of
powers of ¢) on the right hand side in the estimates to follow.
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After multiplying the result of the adding by k, summing over m from 1
to £ (¢ < M,) and using the formula (3.50) for (d; Y7}, T7) we obtain

14
E{ S @RI, + kIR, + RirpE, + L, + e vrrs, )

m=1

{qf 7, VP + (D (tn) VG, VT } +

(f (Pap(tm)) — F(2™), TZ)

) m m
= {%(k N IR} + LRI), YR) + %(k > IR+ MR), TL”)} +

j=1 j=1

871 m

%Z{ kZ[K’ VT(t -),VTE?H(k_ [K(tm)—K(tj)]vrg,vm)}
l m m

+%Z{(kZ[D’ D(t)]Vu(t;), VY + Z D(t;)]VYs vrm)}

L

£
B ae(REXE) + 50— & S (Flpltm)) — F(Paplta), T7) (374)

m=1 m=1

where s; is defined by

£
s1=k> {q(OF, 10+ q (07, Y1) — (07, L7) — 0s(d,OF, Y7
m=1
— L (OF,TF) — a1 (07, 1) — M (O], T}
+qL (B} + LE),Y7) + oM Y(E) + MEJ, T7)}.

In the following we estimate some terms in the left hand side of (3.74)
from below and the terms on the right hand side from above in a suitable
manner that is required for later steps. We start with the following term on
the left, leaving out the constant factor goL!:

kY (K(tm)VGE,VYT).

m=1
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Using &G = T (see (3.70) for the definition of G7) and a similar identity
as (3.54), the above term equals to

14 14

m m k m m
kn;(K(tm)VGT VdGT) =7 7;1 d(K (tm)VGT, VGT)+
2 £
+5 Y (K (tm)dVGE, diVGE)
m=1

£
k
_EZ dt VGm 1 VGm 1)

and the right hand side can be written as

L

1 k? m e
S (K(tn)VGE, VG + D (K (tm) VI, VIT)
m=1
k £
52 dt G’m 1 VGm 1)

By estimating the first two terms of it from below, we finally obtain

k

(K(tm)VGT, VT )>—||VG 17, + =3 ZIIVT IZ,

m=1

M~

3
1§

k
-5 (diK (t,,) VG VG, (3.75)

MN

3
I,

Analogously, we get the estimate

: D Dok? &
m m 0 0 m
kY _(Dtn) VG, VIR 2 VG, + = Y IV,
m=1 m=1
k ¢l
52 m)VGTL VG, (3.76)
m=1

The last terms on the above two inequalities move to the right hand side and
we estimate them from above by

-1
ckd_{IVGRI, + IVGr3,} (3.77)

m=1

where the constant C' depends on the ||0:K;|1. (7x0) and ||0:Dyj|| 1. (7x9)-
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We now move to the right hand side of equation (3.74). Using the defini-
tion of G} we get

l m 14 m
=k> (kY [RL+LRI]TF) =k kZ[R’ + LRI}, d,GT).
m=1 j=1

m=1 j=1
With the following discrete summation by parts formula

S (@fm g™ = (6 — (6% -

m=1

(f™ " dg™) (3.78)

MN

3
I}

in the above we obtain

kZ[R’ + LRi),G%) —k2z zm:R’ +LRI),G 1)

j=1

J4 J4
= (k) _[RF+LR7}],G%) — k> (RF + LR}, GF™).

m=1 m=1

The term is estimated by using elementary inequalities as
¢ -1
IIVG 1%, + Z 1112, + Ck Y IVGTIL,
m:l m=

¢
+Ck Y (IR (3-1 + |1 R I3-1)- (3.79)
m=1
Analogously, we have an estimate
l m D 2 ¢
j j m 0 m
B> (kD[R + MR YY) < VG, + 3 D0 I,
m=1 j=1 m=1
-1 ¢
+Ck Y IVGRIL, +Ck Y (IRl + 1R IZ-1)- (3.80)
m=1

Let us consider now the next term of (3.74)

£ m
. % Z (% Z[ £V T(E,), diVER)
l m
% > (k[ NIVa(t;), dVGT).

m=1 j=1
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We proceed as for the term s, i.e. use (3.78) and obtain

-1
70 Ko ¢1Do m m
53 < op IVGEIIL, + 1057 IIVGLlE+CR D _{IVGTIL, + IVGRIL }+
m=1

14
CkY {IE™ K (tn)]VT (tn) 7, + D™= D(tw) IV iltm)|Z, } - (3.81)

m=1

For the term

J4 m

sa=k Y (k) [K(tn) — K(t;)]VY], &:VGT),

m=1 j=1

we apply the summation by parts formula (3.78) and use d;GF = YT and
GT =0 to get

sa=(VGh kY [K(ty) — K(t;)|dVGY)

Jj=1

¢ m
— kY (VO kdy Y K () — K(87)1diVGY)

= (VG4 b YK () — K(t)|dVGE).

J=1

Applying the summation by parts once more for

l
£ (K (t) — K (tw)]VGE, d,VGR)

we obtain
)

sa=k Y (VGF ', dK"VGY).

m=1

This term and an analogous term in (3.74) (with D, u) are together estimated
by

/—1
IVGLIE, + Ck Y {IVGRIZ, +IVGTI2,}. (3.82)

m=1

g0 Ko
12L

@1 Dy
12M

IVGZZ, +
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We now turn our attention to the remaining terms on the right hand side of
(3.74). For the terms in the last line we have the estimates

L

14
kY as(RPTD) <k {—HVT’"IILQ + —IIT'”IIL2}
m=1

m=1

L
Z e+ e H|IRP%-1, (3.83)

m=1
‘ ‘ (ae C
<k I(r@er vl < kST {FINIEL + SI07IE, | (8
m= m=1

What remains in the last line is the term which we denoted by s;. Elementary

inequalities result in
- ag g q
m 0 m 1 m
o1l < kY0 {ITRIE, + IR, + S ITRIE, |

£
+Ck Y {eld@2I3, + 11072, + (1 + )R, + 10713,) }

+ C{IIBSIZ, + IBSI3, + 1 E2I3, } (3.85)
where we have taken care of the required scalings for terms || 7|3, for u =
o, T, p. Employing the estimates (3.75)—(3.77) and (3.79)—(3.85) in (3.74),

we obtain

Q@K @D ack m
©Ro vy, + & °||VG‘||L2+kZ{ TR

oE

5 IEIE, +

CIOKO m Q1D0 m
IVYZ]Z, + VYR,

o q1
TR, + —||TZ‘||%2
e

+ (e = SN ITT2IL b+ £ S Brtn)) — (87, 1)

m=1

l
ag m m m
< S+k Y {SITEIE, + CUVERIE, + IVGrIE,) } (3.86)
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where

£
S = CkZ{(l +e+ e IR IE- + IR I + |1 RE 5 +elldOF I,

m=1
+ (14 D002, + (1+e HIOFIE, + (1 += e,
o+ N[E™— K () VT (tm) 3, + | D™ Dt Vst 3, }
g
+ IS, + C{IBSIZ, + 1B IE, + I1ERIE, |- (3.87)
We bound now S with the help of the energy estimates of Lemma 3.2

and the stability estimates of Lemma 3.6. The properties of the elliptic
projections (3.44)—(3.46) are also employed. We start with the term involving

1

tm
RY = dugtn) = putm) = =3 [ (5= tm-t)us)ds
tm—1

and use (vii) of Lemma 3.2 to get

2

£
1
BRI = 2>
m=1 H-1

X[ et [ [T ool ds
— tm_l tm—l

2]
< k2/ llos(8)||3-1 ds < Ck*e®,
0

/:m1 (s —tm_1)pu(s)ds

m—

and similarly from (xii) and (xiii) of the same lemma we deduce that
£ t
ES IR < 8 [Tl ds < CHs,
m=1 0
£ t
IR < 8 [ ol ds < Ok
m=1 0
With (vi) of Lemma 3.2, we obtain

l l
EY 0717, = kD119 — Pug)(tm)ll7, < Ch'ess sup ||¢l3: < Ch'e™,
m=1 m=1

[0,t]
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and (x) and (xi) results in the analogous estimates

k Z 10712, < Chless sup IT|[%: < Chie,
[0t

m=1

k Z |13, < Chess sup I3 < Che™.
[0t

m=1

For the next terms, we assume that the approximation K™ of the heat
conductivity K(t,,) satisfies

IE™ = K (tm) |7,y < CHUIK (tm) 2 ey < Ch - (3.88)
with constant C for all ¢,,, € Ji. Then, with (a) of Lemma 3.3 we obtain

k Z I[K™ — K (tm)]VT (tm)||3, < Chtemax{5:21} (3.89)

The same cond1t1on as (3.88) is assumed for the diffusion coefficient D and

the analogous term (with u, D instead of 7, K) in S is also estimated by
Che~ max{5,2¢1} ]

To estimate the remaining terms of S, we assume that the initial value
approximations (¢, T, u®) satisfy
luo — u(0)|Z, < Ch*|[uollz, for u=¢,T,p.

Elliptic projections of initial functions satisfy for example, the above require-
ment. Using (3.17), we obtain then

IES|2, < Chillpolly: < Chie™®,
B2, < Ch*||Tol|%e < Ch*et,
IED), < Ch*lpollye < Ch%e!

and
el oIz, <e(lEQlZ, + 19g1l7,) < Ceh?|lpollfz < Chie™2.

Finally, using the energy estimates we obtain for the remaining term of S

£
kY 407, LT o mes)as
m=1

2

tm—1 Lo
< 82 / I~ P, ds
tm—1
- / (o = Pughe(o)3, ds
< Ceht / lp1(8) e ds < Ot mex(s26-1},
0
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Collecting all the above estimates we obtain
S < C (ke + hiemmax{2d) (3.90)

By the above we conclude the Part 1 of the proof. What we have achieved
so far is the inequality (3.86) with S estimated by (3.90).

Part 2. In this part we deal with the nonlinear term on the left hand
side of equation (3.86). For this we shall use the discrete spectrum estimate
of Lemma 3.7.

Using the following identity for f(p) = ¢ — ¢,

f(a) = f(b) = (a=b)[f'(a) + (a = b)* = 3(a—b)a], Va,beR
with a — b = Pyp(tm) — @™ =TT we get
(f(Pap(tm)) = F(2™), Y5) = (f'(Pap(tm)) Ty, T5) + (Y5)*, T7)

= 3((T5)* Pap(tm), T3)
> (f'(Pup(tm)) Y5, Y5) + TSI, — CITTIIL,

where the boundedness of P,y in the Ly, norm (cf. (3.60)) has been taken
into account.
Considering this estimate and (3.90) in (3.86) we obtain

qOKO

7 IVGTZ, +

ag
e, + ‘U2,

¢
ack 9 Qo 5 q1 2 ae® 2
ka::l {T”dtrgnh + EHT?HLZ + m||T;T||L2 + 7||VT7£||L2

‘IOKO Q1D0

+

IVYZIZ, +

1
IV IRIE, + ST | +
¢ 1
£ (- a?) [s||vrm||L2 L7 (Pt ))r’;,m]
m=1

£ £
Ck
< kY {SITRIE, + C (IVGEIE, + IVGRIE,) | + = D I3+
m=1 m=1

£
kD oel(f (Pup(tm)) Y, T3 + C (K678 + hte™max6263) - (3.01)

m=1

Now comes an important step in the estimation. We bound the last term of
the left hand side by the discrete spectrum estimate (cf. Lemma 3.7), that
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is,
m 1 m m
(1= ae®) eI VIDIZ, + (' (Pap(tm) T3, TF)
>(1- asz)(—200a5||TZ‘||i2) > —200a6||T'£||%2 (3.92)

The above term having the required suitable factor is combined with the first
term in the sum on the right hand side of inequality (3.91). Moreover, using
the uniform boundedness of f'(Ph¢(t,)) in € we obtain

¢
kzae| F'(Pap(tm) L, T < kY Cacl| Y23,

m=1
Considering the above in (3.91) results in

QOKO Q1D0

—IIT 17 + 7 IVGTIL, + S5 IVGLllL+

ack m Qo |\~ 1 m ag® m
k Z {—||thr 17, + L||TT||%2 + WHTu 17, + 7||VT¢ 17,

QOKO

Q1D0 |

1wz, + L2 gy 4 ||T:;*||4L4}

< C"«k ’ ag Tm 2 qOKO m tho m
< kY L Eiepi, + LR verE, + L verls,
m=1

£
Ck
+ EE SR, + O (e it mentoaed). (3.93)
m=1

We are now almost ready for obtaining a final useful inequality. For that,
it remains to estimate the first term in the last line of (3.93). Summing
E} = kd,EJ + Efp”’l over all the elements of the triangulation 7, we get

IEPE, < O (KB 200 + BT B i) -
KeTs

At first, using an interpolation of Ls between Ly and H?, we obtain

IEG iy < ClEZ i B 1IIHz

4
(

N
y(IAEZ 1IIL2 +IEZ I, )

4
()
2N _sN
()

IN

CNED

IN

ol e



60 3. Error estimates for the solution of a fully discrete scheme

where the last step results from Lemmas 3.2 (energy estimates, (vi)) and 3.6
(the stability estimates, (a)).
Similarly, we also have

12—N

N N
BIGE ) < CRIED i IGABDNE o) + BT, )

12 12-N 3N

—N m - _ 3N
< CkF || d BTl b

Summing the above two inequalities over all K € 7, we obtain

12—

m||3 —3N m—1 122” N m #
IBZ I, < O % {IBR LT + K5 BT | (3.99)

In view of the definition of the error E7', we have

12

m m _3N m—
ez, < c{legls, + % (1o,

12— N

-N oy 1220
S A 1M P

12

m—1 12-N -N m 12-N
T+ R L) )

Summing over m from 1 to £ results in the term to be estimated:

£ 14
Ck 84N N L 12-N
=3Iyl <o S Y {10715 + 107,
m=1 m=1

12—N

12-N
+ (107 11z, + 195 Hlz) ¢ + 175 I,
m m m— =N
+ Bl d XL, (T Nz + 15 lz,) } (3.95)

We start with the terms involving the ©¢,. Using (3.44) and Lemma 3.2, we
get

12—N 12— N

l ¢
EY NO71L, = kY le(tn) — Papltm)lly,"
m=1 m=1

_ 3(12—N)

12-N 12-N
< C(P@lliwmzy) © <Ch™7 & s

and the same estimate holds with m inside the sum replaced by m —1. With
the interpolation we also obtain

l £
EY 10715, < Ck Y lloltm) — Prpltm)l® x
m=1 m=1

H®

¢ N N
< Ck Y |e(tm) = Pap(tm)ll 2 0(tm) = Pap(tm)l| 3
m=1

12—N

< Ch'7 g3
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where again Lemma 3.2 and approximation properties of the elliptic projec-
tions were used.

Therefore, we reach to the fact that all the © related terms on the right
hand side of (3.95) are bounded by

12—N 11

Ch 7 ¢ 2. (3.96)

For the very last term of (3.95), we use ||®™||, < Ce which follows from the
stability estimates (Lemma 3.6) and (3.18) to obtain

8+3N

Ce™ k2zklldtTmllL2(llelle + (175 M) 5

m=1
I
< Ce™ kY klld ™3,
m=1

However, notice that this term can be absorbed to the first term in the sum
on the left hand side of (3.93), if k& satisfies

that is,

k<Ce i (3.97)

Recall that this requirement was one of the assumptions of the theorem.
Therefore with (3.95)—(3.97), we obtain

Qg QO 0
SIS, + oIV GEIE, +

[.L||L2

¢
ack m Qo | \~m 1 m ag® m
kz{—ndtr I2,+ L||TT||12+W||TH 2, + S v TrIE,
m=1

QOK 0 (J1 Dok

_+_

1
IVYZIz, + S IV Iz, + 1Tl (3.98)
9

" ||%2}

£
- QE |\ m g K, m
s0kz{7||n||%2 o verl, +

m=1

J4
+ O [Ke™ 0+ h*A(e)] + Ce™ 57k D T ,5

m=1

where
4— N 11

Ale) =h 2 g3 4 g max{620} (3.99)
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We conclude by the above Part 2 and move to the final part of the proof.
Part 3. We employ an induction argument in this part. Suppose there
exists two positive constants c;(7,2) and co(7, ) independent of €, k and
h such that
2 } N

l
kZ{—ndtT B, + S, + Loz, + S e,
m=1

QAL m 2 Gotio m|2
gus { ST, + BRIVGRIE,

CIOKO (J1D0

+

m m 1 m
IVYPIE, + LRIV LRIE, + DT, |

< [kzg + h*A(e)] exp(c2tg) (3.100)

holds for sufficiently small A and k satisfying the mesh conditions in the
theorem. For the start of the induction (¢ = 0) the inequality (3.100) holds
trivially, since

(6773 —
ISR, < Cellgol?, < Chte™. (3.101)

We recover the (¢ 4 1)-th step of the induction from the above assumption.
The exponent in the last term of (3.98) which is greater than 2 enables
us to recover (3.100) at £ + 1-th step by applying the discrete Gronwall
inequality (see Lemma 3.1). In the following we explain this using some
simple notations. Suppose for a,, b, > 0, we have f;‘ﬁka(l)Jr7 < B(e, k,h), and
forall 0 < £ < My:

ag—i-kZb < B(e, k, h) +c2k2am+cgsﬂk2a1+7 (3.102)

m=1 m=1

holds with v > 0 and constants cs, c3 independent of k, h,e. We want to
have the following inequality for all 0 < £ < M, under certain conditions on
B(k, h,e):

L
1
5 <
5 (2ax, {am} + kmz_:lbm < ¢1B(e, k, h) exp(caty) (3.103)

where ¢; = ¢;(7) depends only on ¢y, c3. The constant ¢;(7) is finite for

T < co. Assume now the inequality (3.103) holds for ¢. Then from (3.102)
with £+ 1, for £ < 1/(2¢2) we get

{+1

a£+1 8 1
5 +kY bn < Ble,k,h) +czk2am+636 Isza+7

m=1 m=1 m=1
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Using (3.103) for the last two terms on the right hand side we obtain

£+1
% + k Z bm S B(E:, k, h) + 2021‘3[013(6, k, h) exp(czte)
m=1

+ csteP[2¢1B(e, k, h) exp(cate)] 7.
We can bound the right hand side from above by c; B(e, k, h) exp(cates1) if
e[B(e, k, h)]*™ < c4B(e, k, h), (3.104)
le.
B(e, k,h) < Ce™P/, (3.105)

and this completes the induction. In the above C' = (c4)*/” depends on T,
but doesn’t depend on k, h and €.
In our situation we have a,, = $[|T7(|7, and

10+ N 4—-N

B=——— Y=

Moreover, B(k, h,¢) = C[k*¢ %+ h*A(e)] and using (3.101) the condition for
ag is also fulfilled, i.e.

I+y -
Pk [“fnrgn;] < Ckh™ e % < B(e, k, h).
The mesh requirement (3.105) can be written as

2(10+N)

k¢ % + h'A(e) < Ce ¥ (3.106)

which is condition (3) in the formulation of the theorem. We have then
(3.100) for all £ < My, provided that k and h satisfies (3.106).
Finally, the estimates of the theorem can be derived using (3.100), (3.44)—
(3.46), Lemma 3.2 and the definition of the error E* for u = ¢, T, .
(i) We have
_d&m||2 < o 2 m||m
oJoax llo(tn)—@"1, <C max |lo(tn)—Prp(tn)li, + C max [T,
< Ch'ess sup ||¢|[32 + Ce™' (K*e° + h*A(e))
J
< C[he? + ke "+ h*Ae)e )

and the assertion follows.
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(ii) For the assertion, use (3.100) and Lemma 3.2 to obtain

M, M, M,
EY AT (tn) = T7, < Ck Y IT(tn) — PaT(tw)ll7, + Ck Y (TR,
m=1 m=1 m=1

< Ch'ss sup ||T||%2 + C [k*c ¢ + h*A(e)]
J
< C[h*e™® 4+ k%% + h*A(e)]

which yields the assertion.
Analogously, we obtain

M,
B lultm) — 1™, < C [h%e™® + k?e™® + h* A(e)]

which gives the assertion (iii).
(iv) The definition of G and the estimate

ka — TY)

2

< k Y ve! ’ \feidik
Lo _Cogr?nag}f\dl H ]Zl T L2+” T”L2

< Ch%ess sup ||T||}2 + C [k*e~° + h*A(e)]
J

max
OSTTLSML

together with Lemma 3.2 yields (iv).
(v) Again, we have
2

F3 V) ~ ), <O max, {Hk;VGﬂ

which immediately implies (v) in view of (3.100).
Furthermore, we also obtain

max
OSmSMl

2
+ ||VGL”||%2}
Lo

3kZ IV (p(tm) — 8™)|I2, <Ce3k2 Iver|2, +Cs3kZ IvYm|2,

m=1 m=1
< Ce®hPess sup ||p|| 32 + C [kPe % + h*A(e)]
J
< C [R? + k% S+ h*A(e)]

which finishes the proof of (vi) of the theorem.
Moreover,

M, M,

M,
B IV(T(tn) —T™)3, <CE Y IVORIE, + CE > VYR,
m=1 m=1 m=1

<C (R + k' [k’ %+ h*A(e)))
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which gives the assertion (vii). The assertion (viii) is proved analogously as
(vii).
The last assertion (ix) of the theorem follows from (3.45) and the inverse
inequality
N
[0nll e < Ch % |[0n]| o, (3.107)

which holds for all v, € V. That is,
_Hm||2 < _ 2 m||2
oax llo(tm) ="z, <C max llo(tn)—Pup(tn)li, +C max [T
< CR* M| Inh* Ness sup [|p||%:
J

-N m||2
+Ch™ max [[T7L,

< CR* M InhPPNeP+Ch7N [Ke " +h'A(e)e 7]
This completes the proof of Theorem 3.7. O

Remark 3.1 Assumption (1) of the theorem is necessary for the stability
estimates (Lemma 3.6) and the estimation of a term which arises from the
nonlinearity of the function f(yp) (see (3.95) and (3.97)). The next assump-
tion (2) was a condition for the discrete spectrum estimates of Lemma 3.7
which we used in the proof (see (3.92)). The final assumption was required for
the estimation of a term which also comes from the nonlinearity (see (3.95)
and (3.106)).

We can also prove the following theorem.

Theorem 3.8 Under the assumptions and mesh conditions of Theorem 3.7
the following error estimates hold:

(i) max |7, <C
0<m< M,

(i) max [[T(tn) — "1, < C (ke™ ¥ + RYAE)]P e +573))

0<m<M,

(i) max (lu(tm) =iz, < O (ke ¥ +WA@]3e ¥+ 4 2])

0<m< M,

() max |T(tn) = ™|z, < Ch'F" [Inh|*T e i+
SmS Vi

Ch = (ke ® + h?[A(e)]?)[e & +k 2]

4N =N s
(v) ymax [u(tm) = w1, < Ch 2 [Inh| 2 e 2+

Ch™ % (ke *+h2[A(e)]7)[e & +k 7]

where A(e) is defined as in (3.63) and C is independent of €.
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Proof. (i) Estimate (ix) of Theorem 3.7 implies that there exist hy > 0 and
ko > 0 such that

m
m _ <

holds for h < hg, k < kg. Then the inequality
12" |2 < llo(tm)llLoe + ll(tm) — ™| Lo
and the boundedness of ¢ in the L., norm confirms the claim.

For the next assertions of the theorem, we need some preparatory steps.
By choosing up = —LYF — MY} in (3.66), vy, = ac YT in (3.67) and wy =
ae YT} in (3.68) and summing up the resulting equations we obtain

ae[(d X7, T7) + (X0, T3) + (K(tn) VYT, VIT) + (D(tm) VI, T
= Le(VYZ,VYT) + Me(VYT, VIT) + ae(RE, Y7) + ag(RY, )
- (07 + Y7, LY + MY)') — (O] + Y77, LY7 + M)
L m m M m m
+ (b)) = F@™), ) + = (F(p(tm) — (™), T7)
+ae([K™ — K(tn)[VT™,VYT) + ag([D™ — D(ty)|Vu™, VI])
— ag(d:O7, TT) — ae(d;05, T77).
Using (3.50) in the above equation we get
ac (GUITFIE, + SITRIE, + Sad T2, + S1ayIE, ) +
ag(Kol[ VYT, + Dol VILIIZ,)
< CYE,‘[(RZL, TZL) + (R’_Tl“na T?) - (dt ?a T?) - (dtGZLa TZL)] + Lg(VTZLa VT?)

+ Me(VYZ,VYT) — Lgo(O7, Y1) — Lqi (O, TT) — Mqo(O7, T)

= Mq (07, Y7) — (Lar + Mqo)(Y7, Yp') — Lao (Y7, T7) — Mau (Y, T7)

+ae([K™ — K(tm)|[VT™, VYT) + ae([D™ — D(t,)|Vu™, VI})

L m m M m m

+ U (@ltm) — F@™),YE) + = (F(oltm)) — F(@™),XD)

The Mean Value Theorem applied to the last two terms and some easy ma-
nipulations on other terms of the right hand side gives

O IR, + A TR + SRR, + TR,

+ae (Kol [VYRI3,+ DollVY™3,) < C{e 5| ER|3,
+e SRR, + IT0I2,) + VTR, + IVIRIZ, + VT2,
+el|[K™ = K (tn)]VT™ |2, + £[|[D™ — D(tm)| V™13,
+ 1OFI2,+ 10712, + elld:OR|I2, + el de@m 12, + el R |Ir-1+ el| R [2-1}.
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Summing over m from 1 to ¢ after multiplying by k gives us

l
2%, + ITLIL, + & D (kI XEIE, + ElldTIZ,)

m=1

4
_3 m -5 m m
< IT2NZ, + ITRIE, + Ck D {21 ERIE, + 2 (IT7I3, + 1 T01Z,)
m=1
+ellVYZIL, + e HIVIRIL, + IVIRIZ,) +e (107117, + IO Z,)
+el[E™ — K (tn)VI™||Z, +€ll[D™ — D(tn)] V™12,
+1dOF N1z, + 1dOF I, + IRF 57— + | R 151 }-

Now using inequality (3.100), (i) of the Theorem 3.7, (3.89) and similar
estimates we used in the proof of Theorem 3.7 on the right hand side (see
(3.87)), we get the following:

12
ICRZ, + ITalE, + &) (kI TR, + Klldy )

m=1

<C(e ?+k Y[k S+ h'A()]  (3.108)

where A is defined by (3.63).
Now with the help of (3.108) we can derive the estimates of the theorem.
Assertion (ii) follows from

_ mm||2 < m||2 m||2
ofax (T(tm) — Tz, < C max [Op[, +C max [IT7]F,

< Ot + (e=F + k)R + WA())),

and (3.45). Assertion (iii) is proved analogously.
The estimate (iv) follows from (3.108) and (3.107), that is,

__m||2 < m||2 m||2
oJax || T(tm)=T"|;, < max [|Op[;, + max |17z,
< Ch* M|1Inh* Ness sup ||T|| g2
J
-N m||2
+Ch" max [|IT7]E,
<Ch* M| InhpPNe™s

+ Ch™N(e™s + k7)K% 8 + h*A(e))].

The last estimate (v) for p can be derived analogously as (iv) and this con-
cludes the proof of Theorem 3.8. O






Chapter 4

Numerical experiments for the
discretization error

In this chapter we present and analyze an experimental technique to de-
termine the dependence of the error on the interface thickness . We will
assume a certain form of the error function and determine the parameters of
the function by performing some numerical experiments. The parameters of
the error function are identified by the least squares method. For the nonlin-
ear least square problem arising from the estimation of the parameters of the
error function, we employ a Newton method with line search. The observed
power of ¢! is relatively small and justify the theoretical prediction that the
dependence of the error on € ! is of low polynomial order.

4.1 Approximate error and experiments

We reserve the notation E(h) to represent the error between the finite element
solution U, computed on a grid with a mesh size A and the exact solution U
in a certain norm || - ||. Notice that if the numerical method is of p-th order,
then we have for small h

E(h) ~ Ch?,
with a constant C' independent of h.

In case of the exact solution being unknown one can approximate it by a
reference solution U which is computed on a sufficiently fine grid. The error
on the h-grid can be approximated by U, — U. Let E(h) be the approximate
error on the grid with mesh size h,

E(h) = ||Ux - T

In order to study the dependence of the error constants on &, we shall
consider the error of a finite element solution in the Lo-norm at a fixed time

69
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t € [0, T]. We assume that the approximate error for the phase field variable
¢ has the following form:

Ey(h€) 1= [|12°(,B) — (Bl 1age) = Ch%e (1)

with constants C,p and ¢ independent of h and . For an ¢, the reference
solution is denoted by ®° and the solution on a grid with mesh size h by ®;.
Error functions Ep and E, which correspond to the variables T and ¢ are
defined analogously.

Our primary goal is to determine the parameters C,p and ¢ of the error
functions by some numerical experiments. For this purpose, we solve the
phase field problem for different values of the pair (¢, h) and compute the
approximate errors. The time steps in the tests are chosen by the relation
k = Ch? with C being a fixed constant. In the next section we formulate the
task of the parameter determination as a least squares problem.

4.2 Nonlinear least squares problem

We solve the phase field problem for values of the pair (h;,¢;) for i =
1,...,mq, 5 =1,...,m; and then compute the approximate errors

Eij = E(h'iﬁgj) = ”(I)Ej("{) - CI)ZJ,(’E)”Lz(Q)

Our aim is to find C,p and ¢ such that E(h;,¢;) is as close as possible to
Chje;? in a sense that the sum of squares of differences for all 7, j is minimal.
For simplicity of the presentation, we denote m = mymy and use the following
notations:

x = (wl,xz,x;;)T:(lnC’,p,q)T

We also use index £ = (i — 1)m; + j which goes from 1 to m.
Being equipped with the above terminology we consider the following
least square problem:

1
min F(z) = min -||g(z) — b|? (4.2)
zeR? zeR3 2

where
b = (bi,...,by)" with by = bi_1)m,+; = Eij,
g(z) = (gl(a:),...,gm(as))T with gg(x):e”“’lhfzsj_”’

for £ =1,...,m (or equivalently i = 1,...,mq, j = 1,...,m;) and || - || is the
Euclidean norm.
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Define the components of the residual vector

r(z) = (ri(z),...,m;m(2)) "
by
re(z) = ge(w) — by
for{=1,...,m
We can write the objective function F(z) in (4.2) also in the following
form:

m m2 mi

1 1
F(:c)z2 527’3 ZZT’ m1+]

11]1

Notice that the functions gy(x) are continuously differentiable and the
elements of the Jacobian matrix J(z) € IR™** are given by

for{=1,...,mand s=1,2 3.
The ﬁrst derlvatlve of F(z), VF(z) € IR? is computed by

VF(z)= ng(x)Vrg(:c) =J(z) "r(z)

and the second derivative V2F(x) € IR**? is given by

m

V() = Y (Vi) Vre(@)” + 1e(2) Vro(a)

= J(2)"3(z) + S(a),
with

m (92T‘g 3
T) = ’I“g(:l?)v2’)“g($) and V2’f'g( ) = ( )
; 0,0z, =1

We approximate F' by a quadratic function, i.e. assume the following
representation is valid:

F(z) ~ F(@)+VF@) (z—27)+ %(m —7)"V?F(z)(z — T)

_ %r(@)w(@) +1(2)"3(@)(x - 7) +

S =) ()73 +8@) (@ - )

around Z. Then the 7 + 1-th step of the Newton method combined with the
line search is as follows:
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e Compute the descent direction d® from
(I TI (D) + 8(z®))d® = —J(2D)Tr(z®)
o Set
26+ — 20 4 (@) g
for some A(® which makes z(*1) an acceptable next iterate.

If the Hessian matrix
H(:If(i)) — J(x(i))TJ(x(i)) + S(a:('i))

in the first step of the algorithms is not positive definite, we modify it by
H(z®) + vI with a sufficiently large positive v and solve

(H(z®) + 01)d® = —J () Tr(z®)

to get a descent direction d®.
The line search in the last step starts with A®) = 1 and checks the condi-
tion
F(x(i) + ,\(i)d(i)) < F(a:(i)) + a)\(i)vp(x(i))d(i)
for some o € (0,1). If the condition is not satisfied then we halve A®) and
repeat the procedure till we find a suitable step length.
For our problem (4.2), we have

Ju Jiz Jis
I(z) = J.21 J-22 {23
J;m JT-nZ Jr‘n3
with
Jop = e"h{?e; ™
Joo2 = e”lh?s;“ In h;
Jos = —ewlh?sj_”’lnej
and
1 In h; —Ing;

Viry(z) = e™hi2e; ™ In h; (Inh;)? —Inh;lng;
—ln&‘j —lnhilnaj (1118]')2

for{=1,...,m.
If * = (x%, 23, 23) " is a solution of problem (4.2) then we have

(C,p,q) = ("1, 23, 23).
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4.3 Linear least squares problem

We consider the following least squares problem

min [|g(z) — bl (4.3)
zeR
with go(z) = In(e**h{?e;™) and b, = InEy; for £ = 1,...,m, where we

again used the notation z = (1, x2,23) = (InC, p, q). The residuals ry(z) =
by — ge(x) are defined by

’I“(ifl)mlfj (X) = In E_‘” — ln(e"”l h?26‘j_$3)
= In Eij — (.’L'l + X9 In h, — I3 In E,'j), (44)
1 =1,...,m; and 5 = 1,...,my. We observe that the residuals are now

linear functions of z;, zs and x3. By taking logarithms of the error function
and the data we obtained a linear least squares problem which is simple to
solve. Problem (4.3) can be written as

min ||Az — b||?
x€R?

with a matrix A € IR™*® and a vector b € IR™. The £ -th row of the matrix
A is given by
Ag. = (1 lnhi —lnsj)

and b, = In Ej;;. This problem is equivalent to the finding of the solution of
the linear system Az = b. The matrix A has full rank, thus the solution
z* = (7, x3, x3) of the normal equations

ATAx = ATb (4.5)

is unique. If x* is the solution of (4.5), it solves (4.3) as well and we get
the desired parameters by (C,p,q) = (€1, x%,23). The linear least squares
problem doesn’t necessarily have the same solution as the nonlinear least
squares problem of Section 4.2. We will compare both results.

4.4 Data and numerical scheme

In this section we shall briefly discuss the data used for the experiments. We
consider the phase field system (2.7) from Section 2.3 on square domains in
IR?. In the computations, we used slightly modified functions

flo) = %(@3—@, (4.6)
1=aTeg) = ~SOET T Ty -a)(@ ~ 17 (@47)
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The above dependence on ¢ of the function ¢ keeps the values of the phase
field ¢ in the range [—1, 1]. For pure solid or pure liquid the function vanishes.
The function D = D(y) is defined by (2.6) with dg = 0.8 and d, = 1. The
constant M in the function M(c) = Mc(1 — ¢) is chosen as

1
M = —ln@,
2 mg

where mg, my are the slopes of the solidus and liquidus lines in a phase
diagram. We use mg = 2my. The heat conductivity K is chosen as constant
1 in both phases. The initial data are

@o(z) = tanh <||X||276—7"0> , To(x) = (Ta—Tg)er + T — Ty (4.8)

with Ty being the undercooling temperature. For the concentration, we have
either

_Jes el <o _cL—¢s [x][—mo) | crtes
Co(x)_{c,;, else or ¢o(z)= 5 tanh o + 5 (4.9)

as initial function. We selected Ty = 0,75 = 0.5,cs = 0.2 and ¢, = 0.4.
The undercooling Ty, varies between 0.22 and 0.3. The selection of initial
functions corresponds to the situation that a solid seed of radius r is placed
in the liquid. Since the liquid surrounding the seed is undercooled below the
equilibrium temperature, the solid seed grows as the time advances.

In the following, we make a short description of the numerical scheme
used for the solution of the phase field system. The finite element space of
continuous piecewise linear functions associated with a triangulation of €2 is
denoted as usual by V}. The scheme we used for the solution is as follows:

Find (™, T™,C™) € [V4]}, m = 1,2,...,nsuch that for every (up, vy, wp)
€ [Vi]3, we have

1
ae(dy®™, up) + (V™ Vuy,) + ( (@™ 1), up,

)
+( (Tm 1 Cm 1 q)m 1) h)

(d,T™, vp) + (KVT™, V) +L(dt<I>m vp)

(d,C™, wy) + (D(®™)VC™, Vwy) + (D(@™)M(C™ HYVE™ wy,)

0
0 (4.10)
0

Here (°,7°,C°) € [V4]? is the starting value, d,U™ = Y"=U"" and k is the
time step. The scheme allows us to solve the system sequentially, the part of
the system corresponding to the phase field equation is solved first.
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4.4.1 Results in two dimensions

In this section, we present some numerical results. We make tests using
several values of the parameter ¢ and h and compute the approximate errors
for all possible pairs of values. Then we solve the least squares problem
described in Sections 4.2 and 4.3 and determine the parameters of the error
functions Ey, ¥ = ¢, T,c. The computations for the first test are done on
uniform grids with mesh size

1 .
hi =— for N; =2%" {=0,1,2 (4.11)
N;
and

e; = 0.01 4+ 0.005§, forj=0,1,...,6. (4.12)

The values of the parameters h and ¢ are chosen in such a way that the grid is
capable to capture the thin interface of length O(e) between solid and liquid.
The solution for mesh size h = 27! was used as reference solution for each
value of e. We choose Ty = 0.22 for the first test. The errors for phase field,
temperature and concentration variables are considered independently. The
results from test (T1) is summarized in Table 4.1 (linear least squares) and
Table 4.2 (nonlinear least squares). They demonstrate that the dependence
of the error constants on ¢! is of low polynomial order. We conclude from
the results that in computations for small values of ¢ it is possible to use
reasonable time step and mesh sizes such that the amount of work required
remains affordable. This can be done without much loss on the quality of
the numerical solution. In the next test (T2) we have chosen a higher initial

C P q C p q
B, 1.7081 1.5251  0.5468  E, 2.1593 15133  0.4719
Er | 09090  1.9446 07531 Ey 1.4361 1.7728  0.4190
. | 0.0886  1.4071  0.5017 . | 0.0926  1.4101  0.4940
C D q C P q
B, 21687 14933 04391 E, 2.0164  1.4756  0.4291
Er 1.3063  1.6627  0.2830 Er 1.0375 1.5878  0.2269
.| 0.0960  1.4111  0.4852 .| 0.0984 14112 04778

Table 4.1: (T1): Linear least squares method. Parameters of the error func-
tions at ¢, = 6.4E—05 (top left), t; = 0.000128 (top right), t3 = 0.000192
(bottom left) and ¢4 = 0.000256.
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C p q C p q
E, | 11346 14572 0.5616 E, | 14809  1.4185  0.4424
Er 1.5486 1.9494 0.6235 Er 2.1539 1.7212 0.2445
E, 0.0499 1.3037  0.5108 B 0.0528 1.3067  0.5002

C P q C P q
E, 1.4516 1.3803  0.4034 E, 1.3031 1.3678  0.3972
Er 1.7097 1.5973 0.1241 Er 1.1417 1.5112 0.0978
E, 0.0551 1.3067  0.4882 E. 0.0568 1.3060  0.4785

Table 4.2: (T1): Nonlinear least squares method. Parameters of the error
functions at ¢t; = 6.4E—05 (top left), t5 = 0.000128 (top right), t3 = 0.000192
(bottom left) and ¢4 = 0.000256.

undercooling Ty = 0.25. The results are summarized in Tables 4.3 and 4.4.
We can observe here an increase of the negative powers of ¢ in the error
function Er. This can be explained by the initial constant 7,. Because of
this the error E7 at small ¢ is relatively large compared to the errors at later
times.

| C p q | C p q
E, | 08516 14014  0.5066 E, | 0.8520  1.4025  0.5090
Er | 00008 14047  1.3696 Ep | 0.0011 14049  1.3329
E. | 00859  1.3977 04948 E. | 0.0861  1.3977  0.4942

Table 4.3: (T2): Ty = 0.25 and linear least squares. Parameters of the error
functions at ¢t; = 9.6E—06 (left), t = 1.28E—05.

| C p q | C p q
E, 0.4820  1.2933  0.5084 E, 0.4818  1.2948  0.5116
Er 0.0005 1.2933  1.3246 Er 0.0008  1.2941 1.2819
E, 0.0489 1.2878  0.4926  E. 0.0491 1.2879  0.4920

Table 4.4: (T2): Ty = 0.25 and nonlinear least squares. Parameters of the
error functions at ¢; = 9.6E—06 (left), t» = 1.28E—05.
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4.5 Tests for an anisotropic model

One of the interesting applications of phase field models is the simulation of
dendritic growth. Therefore, it is interesting to see the dependence of the
error on ¢ for anisotropic phase field models. We can apply the presented
techniques for the determination of the parameters of the error function in
this case as well.

In the tests we use the anisotropic phase field system introduced in Sec-
tion 2.3, i.e. the model equations are (2.12), (2.7b) and (2.7c) with data (4.8)
and (4.9). The part of the scheme which is different from the isotropic case
(4.10) is

ag(d; @™, un) +e(n*(VE™ 1) VE™, Vup) + (s(VE™ ), Vuy)

+§(f(q>m_1),uh) + (q(Tm_l, Cm_l, CI)m_l), Uh) =0

where the components of s = (s, )" is defined analogously to (2.14) in
two dimensions. Through the numerical experiments we intend to see the
dependence of the error on the parameter £ for the anisotropic case. The
parameters as well as initial functions are the same as for the isotropic case.
The small solid seed placed in the liquid grows with time and dendrite arms
build along the coordinate axes due to the introduced four fold anisotropy.

4.5.1 Results for the anisotropic model

In the tests, the strength of anisotropy is chosen as 6, = 0.05. This value is
relatively big and leads to a fast growth of dendrite arms along the coordinate
axes. The computations for the first two tests are done on uniform grids with

mesh size 1
h; = ¥ for N;=2"" i=0,1,2

K3
and ¢; = 0.01 4 0.0055, for j = 0,1,...,8. From the test results we can
conclude that the introduction of anisotropy into the model doesn’t imply
a considerable change of the dependence of the error on €. The results re-
main similar to the case without anisotropy. The results for test (T3) for
the anisotropic model are summarized in Table 4.5 and Table 4.6. In (T3),
the value Ty = 0.3 is used. The errors at time ¢; = 3.2E—05 are displayed
in Figure 4.1. In Figure 4.2 we have compared the results of the linear and
nonlinear least squares methods. The comparison is made for the error func-
tion for the phase field at time t;. For the convienence of the comparison,
we displayed the functions for fixed values of h. Each row corresponds to
a certain value of fixed h. The plots in the left column shows the quality
of the data fitting. The curves with the legend “measured” correspond to
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| C p q | C p q
E, | 22016 13880 03976 E, | 2.6539  1.3957  0.3550
Er | 00094 12063 09164 Er | 00334 13382  0.7415
E, | 10332 14211 0.1017 B, | 07850  1.4139  0.1282

Table 4.5: (T3): Linear least squares. Parameters of the error functions for
the anisotropic model, Ty = 0.3, t; = 3.2E—05 (left) and ¢, = 6.4E—05.

| C p q | C p q
E, | 13351 12786 03791 E, | 1.6365 12897  0.3368
Er | 0.0061  1.1494 08298 Er | 0.0227 12232  0.6859
E, | 1.0248 14059 0.0822 E, | 0.7695  1.3965  0.1090

Table 4.6: (T3): Nonlinear least squares. Parameters of the error functions
for the anisotropic model, Ty = 0.3, t; = 3.2E—05 (left) and ¢, = 6.4E—05.

Ewal t E att, Ec att

001 2

Figure 4.1: (T3): Error behaviours at t;

(¢, E(hs,¢)) for by = 1/128, hy = 1/256, h3 = 1/512. The curves with “fitted
(linear)” correspond to (g, Chfe~?) where (C, p, q) = (2.2016, 1.3880, 0.3976)
(cf. Table 4.5) is determined by the linear least squares method. For the
“fitted (nonlinear)” the values (C,p,q) = (1.3351,1.2786,0.3791) are from
Table 4.6. The second column shows the deviations of two fitted data from
the “measured” data. For the next test (T4) we have chosen a lower under-
cooling temperature Ty = 0.25 than the one used for the test (T3). We also
have here different final times for the measurement of the errors. The results
of this test are shown in Table 4.7 and Table 4.8 for linear and nonlinear
least squares methods.
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Figure 4.2: (T3): Comparison of the two methods for E, at t;.

4.5.2 Some tests in three dimensions

In this section we make some experiments for the anisotropic problem in
three dimensions. The computations are done on uniform grids with mesh
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| C

4. Numerical experiments for the discretization error

| C p q

E, | 7.2978

E, | 86454 14155  0.2621

Er 0.1904 1.3619 0.5548  Erp 0.5112 1.3847 0.3583
E, 1.3981 1.4013 0.1386 E, 1.2908 1.4105 0.1437

Table 4.7: (T4): Linear least squares. Parameters of the error functions for
the anisotropic model, t; = 1.28E—04 (left) and ¢, = 2.56E—04.

| C p q | C p q

E, | 43121 12099 02991 B, | 50503 13073  0.2554
Er | 01209 1.2487 05180 Er | 0.3108  1.2763  0.3406
E, | 07500 1.2773  0.1325  E, | 0.6966  1.2902  0.1411

Table 4.8: (T4): Nonlinear least squares. Parameters of the error functions
for the anisotropic model, ¢; = 1.28E—04 (left) and ¢, = 2.56E—04.

size h; = N% for Ny = 96, N, = 192, and ¢; = 0.015 + 0.00255 for j =
0,1,...,4. The reference solution is computed on the grid with h = 1/384.
The results of test (T5) are presented in Table 4.9 and 4.10. We have chosen
64 = 0.05 and Ty = 0.25 in the computations. The results in three dimensions
also demonstrate the low polynomial dependence of the error on e~!. The
result obtained by nonlinear and linear least squares methods does not differ
significantly in the tests for both two and three dimensions.

| C p q | C p q

E, 0.2533 1.6854 0.4688 1_77<p 0.2535 1.6874 0.4747
Er 0.0002 1.6438 1.2281  Ep 0.0007 1.6528 1.0900
E, 0.2533 1.6854 0.4688 E, 0.0264 1.6838 0.4500

Table 4.9: (T5): Three dimensions and linear least squares. Parameters of
the error functions, ¢; = 3.2E—05 (left) and t, = 6.4E—05.

| C p q | C p q

£_7}'<p 0.2564 1.6849 0.4654 £_77<p 0.2561 1.6870 0.4718
Er 0.0002 1.6373 1.1971  Erp 0.0007 1.6485 1.0626
E, 0.0263 1.6818 0.4504 E, 0.0267 1.6821 0.4461

Table 4.10: (T5): Three dimensions and nonlinear least squares. Parameters
of the error functions, ¢; = 6.4E—05 (left) and ¢, = 1.28E—04.



Chapter 5

Adaptive simulation of
dendritic crystals

In this chapter we consider numerical simulations of dendritic structures
by the phase field model introduced in Chapter 2. In Section 2.3 we dis-
cussed models for the growth of dendritic structures. Here, we address some
modeling and implementation aspects, the data and the numerical scheme.
We compare numerical results of simulations for different strengths of the
anisotropy and different undercooling temperatures.

5.1 The problem

Consider the anisotropic system for binary alloys consisting of equations
(2.12), (2.7b) and (2.7c). At the beginning of the simulation, we have a
small solid seed placed in an undercooled melt. This situation can be re-
flected by an initial phase field function chosen as in (4.8). The choice of
the tanh function is justified since the function is the principal term in the
asymptotic expansions near the interface (cf. Appendix A.1). Far from the
interface the values are near to +1 and we have a smooth transition from
—1 to +1 over the interface region. The initial solid seed has radius ry. In
Figure 5.1 a simplified (¢, T') phase diagram with linear solidus and liquidus
lines in the neighborhood of (0,Tp) is shown. The diagram corresponds to
the situation that the solute is rejected into the liquid as the solid seed grows.
The liquid has a higher solute concentration than the solid. The liquid should
be undercooled to facilitate the growth. Therefore, the temperature at the
beginning can be set to a value which lies below the equilibrium melting
temperature which corresponds to the initial composition of the alloy as in
(4.8). If the initial undercooling Ty is big, then the solidification at the be-
ginning is rapid. As the liquid heats up due to the release of latent heat

81



82 5. Adaptive simulation of dendritic crystals

at the interface the growth of the crystal slows down. The concentration at
time ¢ = 0 is chosen as constant ¢y, in liquid and cg in solid phases as in (4.9).
The relations between the parameters can be established from the phase di-
agram chosen. We choose homogeneous Neumann boundary conditions for

Figure 5.1: A simplified phase diagram

the equations. We specify now the data functions. The functions f(y) and
q(T, c, ) are chosen as in (4.6) and (4.7). The heat conductivity K takes
the same constant value in both phases, and the solute diffusivity D(y) is
defined with solute diffusivities dr,ds in liquid and solid, respectively. The
diffusivity in the solid is less than that in the liquid (ds < dr). Finally, in
the function M(c) = {In k(1 — c) the slopes mg, my, of the solidus and
liquidus lines are taken from the simplified phase diagram.

5.1.1 Discretization

In the following, we introduce the numerical scheme. Introduce a partition
{tm}t,—o of the time interval (0, 7] by tm —tm_1 =k form=1,...,¢.

Let u™ = u(ty,, ) for u = ¢, T, c. We use the following semi- 1mphclt time
discrete problem:

Find (o™, T™,c™) € [H'(2)]® such that

ae(dip™, u) + (P (V™ V™, V) +e(s(Ve™ 1), Vu)
) ) + @@ ") ) = 0 (5.1a)
(d,T™, v) + (KVT™, Vv)—i—L(dt(p ,Vu) =0 (5.1b)
(dic™, w) + (D(™)Ve™, Vw) + (D(™)M(c™ 1) V™, Vw) =0 (5.1c)
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for all (u,v,w) € [H*(Q)]> and m = 1,...,£. The function s is defined as in
(2.13).

To obtain a fully discrete system, we introduce a space discretization with
a finite dimensional space of H'(Q2). Let 7 be a quasi-uniform triangulation
of the domain ) and V}, the corresponding finite element space. Moreover,
let {1;(x)}7_; be a set of basis functions of V.

We consider the discrete space {t,,}¢,_, x V, and denote by ®7(z), T/ (z)
and C7*(z) the approximations of the solutions in this space. The represen-
tations of the discrete solution by basis functions of V}, are

B (a) = > OPus(a), TR(@) = Y T74(0), Cr@) = Y CFuye) (52)

where T;", ¢i*, ¢ are constants. Introducing (5.2) to the time discrete system
(i.e. the system (5.1) with ¢™,T™, c¢™ replaced by ®7*, T;", C}*) and choosing
basis functions v;, ¢ = 1,...,n as test functions wu,v,w, we obtain linear
systems of equations for {®7*}?_,, {T/*}7_; and {C]"}7_;.

5.1.2 Implementation and adaptive grid

In this section we address some aspects of the implementation. In the nu-
merical simulations we use the C++ finite element library deal.II [20]. We
make computations with bilinear elements using adaptive grids. As we will
see from the numerical results it is sufficient to have a grid which is locally
fine in the interface region and coarse away from the interface. Employing
adaptive grids greatly reduces the computational work. In the following we
make a brief description of the grid adapting procedure.

Denote the grid at time %, by G™ and the solution on the grid by
(®™,T™,C™). Suppose that we have local error indicators ne k', N7,x', Nc, K"
for each cell K’ € G™. We omitted the superscript for the solution for
simplicity of the notation. Define the total cell error ng+ by

Nk = \/7735,1{' + 77%,1(' + 77?1,1('

for each cell K’ € G™, and the total error 7. by

77t20ta1 = Z 77%(" (53)

K'egG™

The tolerance for the total error tol™t! at time tm+1 can be computed from

the energy norms of the solution (®™, 7™, C™). Naturally, we set the toler-
ances for the cell errors by tol™" = tol™"' //A where N is the number of
cells in G™.
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We use the following strategy for the grid adaption. Suppose that we
have a grid, the solution on the grid and an error tolerance. At time ¢,
we compute the solutions (™1, T™+1 C™+1) on G™ and determine the cell
error (ng) and total error (7oa) corresponding to this solution. If 9opar is
below a given tolerance tol™"! we move to the next time step, otherwise we
perform refinement and coarsening on G™. We take a loop over all cells of
G™ and mark the cells with ng > [31’0017"+1 for refinement and the cells with

cell
N < Batolly ! for coarsening. The parameters are for the purpose of con-
trolling the number of cells to be refined or coarsened and satisfy 8, < 1 < (3.
After the refinement and coarsening we repeat the procedure till we obtain
an admissible grid. One could as well work with varying tolerances in each
refinement and coarsening step. We summarize the above in the following
algorithm:

Given: A grid G™, solution (®™,T™,C™) and tolerance tol™**,
1. Compute (®™*1 Tm+1 C™+1) on G™.

2. Estimate cell errors ny g for each K’ € G™ and U = ™+ Tm+l Om+l,
Compute notar by (5.3).

3. If myotar > tol™*! refine and coarsen G™ and go to 2.
else set m:=m+1and goto 1.

We use a gradient recovery error estimator by Kelly et al. [1] in the compu-
tations. It is defined as

h 8uX 2
2 _ v TUA
Mk 24 9K |: 6” :| ds

where ux is a finite element approximation of u and K’ is a cell of the

triangulation and
Qux| _ [Qux ]|  [9ux
on | |Ong K ony

is the discontinuity in the finite element approximation to the gradient across
the edge between neighbouring cells K’ and J. Here, [-| denotes the jump of
the argument over a face.

For the linear systems we use the Conjugate Gradient (CG) method with
the preconditioning by Symmetric Successive Overrelaxation (SSOR). The
relaxation parameter is chosen as w = 1.2 and the residual tolerance for the
CG-iteration is set to 1IE—12. For the computations with ¢ = 0.01 we used
the time step k& = 0.0001. For the other values of £ (0.005 — 0.02) similar
results are obtained. A typical parameter and data set in two dimensions is
shown in Table 5.1.

J
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« 3.0 70 0.1 € 0.01

Ty 0.3 K 1 dy, 1.0

TA 0.0 Cs 0.2 ds 0.8

Tg 0.5 cr, 0.4 o 0.00032

Table 5.1: Material and computational parameters

5.2 Numerical results

In this section we present computations of the dendritic crystals in two and
three space dimensions. Results of the simulations using different strengths
of anisotropy and undercooling temperatures are discussed.

5.2.1 Results in two dimensions

In Figure 5.2 we displayed the evolution of the interface for dendritic struc-
tures with four principal directions of the growth. For big (initial) under-
cooling temperatures, we have a steeper temperature gradient ahead of the
interface. Therefore the latent heat which is released at the interface during
the solidification is transported away easily, this causes fast growth in the
chosen directions. By comparing the sizes of a solidified area at a fixed time
we can observe this behaviour. The next set of pictures (Figure 5.3) shows

Figure 5.2: Positions of the interface for ¢ = 0.01,0, = 0.05 and different
initial undercooling temperatures. Left: Ty = 0.3, right: Ty = 0.28

typical phase field, temperature and concentration profiles for a simulation.
The solid is the hottest part of the system. We can also observe the higher



86 5. Adaptive simulation of dendritic crystals

concentration at the interface in the figure corresponding to the solute pile-
up. Due to the symmetry of the four fold anisotropy the computations are
done in one quarter of the domain. The grid (a quarter or it) at the time
t = 1.5 has 25377 degrees of freedom. The error indicator we use produces
reasonable grids for our problem. We would have needed 262144 degrees of
freedom, if we were to use a uniform grid which is as fine as the interface
region of the adapted grid. The degrees of freedom and the number of nodes
are not the same in the grid since we have hanging nodes in the grid. The
values of the solution at hanging nodes are determined by the interpolations
and they are eliminated from the linear system we solve at each time step.

1 0321
[ 08 [0.3]6

- 08 =0.303

- 04 —0.294

- 02

0273
-0.2 0.262

— 04

0.8
08
-1

=0.284

—0.251

0.24
0.229
0.218

Figure 5.3: Phase field (top left), temperature (top right), concentration
(bottom left) and grids at ¢ = 1.5 for simulations using ¢ = 0.01,d4 = 0.05
and Ty = 0.3

In Figure 5.5 we present the evolution of the interface for dendritic structures
with six arms. We used the strength of the anisotropy d¢ = 0.01, the inter-
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Figure 5.4: Interfacial region zoomed.

face thickness parameter £ = 0.01 and compared the results for two different
initial undercooling temperatures.

T T T T T T T T

=0
15} =02 — 1 15¢} A
=04 —— -
Ll t=0.8' —— | L ]
05 { o5t —
oFf 1 of 1
05 | 4 -05¢f 1
1F 1 Bt 1
15 - 4 -5t 1
15 -1 05 0 05 1 15 15 -1 -05 0 05 1 15

Figure 5.5: Six fold anisotropy: Positions of the interface for a simulation
with ¢ = 0.01,0¢ = 0.01 and different initial undercooling temperatures.
Left: Ty = 0.3, right: Ty = 0.28

Figure 5.6 shows the cross sections of the phase field and temperature at
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several times. In Figure 5.7 we compare the concentrations along one arm
of the (four fold) crystals for simulations with two different initial under-
coolings. The cutting plane for figures 5.6 and 5.7 is y = 0 on the (z,y, u)
(for u = ¢, T,c) surface. Naturally, the growth is faster for a big initial
undercooling. Then the resulting fast growth permits the tip to reject more
heat into the liquid and hence warming the surrounding liquid. Once the
liquid temperature exceeds the equilibrium melting temperature (no under-
cooling) then the growth stops. This is the case as the interface approaches
the boundary of the computational domain. As the interface advances the
solute is rejected from the solid and excess solute is transported away from
the interface through diffusion. As amount of the rejected solute increase, a
solute pile up builds ahead of the interface and the concentration gradient
becomes steeper there. This is seen in Figure 5.7. The concentration takes
nearly constant values in each phases and has a jump over the interface when
the interface approaches the boundary of the computational domain. The
growth in this case is very slow or no growth since no undercooling is present.

54:0.05, TU=0.3 54=0.05, TU=0-3
1F T - T T T 7 ‘777\
[
J I
0.5- ‘ | | ‘
| | |
& o | \ \
|
“ | ‘ “ — =01
_ ‘ — t=0.2 ||
05 | ‘ “ —— =04
3‘ | [ — t=0.6
| | | — t=0.8
. ,‘,’ J ) ‘ t=1
0 0.5 1 15

Figure 5.6: Cross sections of the phase field and the temperature by the plane
y=0

5.2.2 Results in three dimensions

The parameters for the simulations in three dimensions are basically the same
as for the two dimensional case. In Figure 5.8 a level surface of the phase
field for four fold anisotropy d, = 0.05 and £ = 0.01 is shown. The surface
tension is chosen as ¢ = 1.28E—03 in this simulation. The computations
are done in one octant of the domain due to the symmetry. The contours of
the temperature field and the grid with edges coloured by the concentration
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54=0'05"Tu=0'22 | | 54:0_05: TU=0_3
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0.381
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0.34r

0.321
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Figure 5.7: Cross sections of ¢ by the plane y =0

values are shown in Figure 5.9. The grid there has 547582 degrees of freedom.

Figure 5.8: Level surface of the phase field {z : ¢(¢t,z) =0} (d4 = 0.05,¢ =
0.01) at t = 0.55
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Figure 5.9: Contours of temperature 7'
(top) and grid at ¢ = 0.55 with edges coloured by the values of ¢ (bottom)



A

Appendix

A.1 Formal asymptotic expansions

In this section we consider asymptotic expansions of the solution of a phase
field system in the neighbourhood of the solid-liquid interface. The phase
field system

1 0
acdup —eAp+ —f(p) + —a(T,p) = 0 (ALl

Opp —V - (DVp)+ Moy = 0 (A1.3

is considered in Q € RY with f(¢) = ¢® —¢ and scalar K, D. Let (., T., e
be the solution of the system with appropriate boundary conditions for pa-
rameter . We consider first the inner expansions (close to the interface) as
we are interested in the behaviour of the solution in the interfacial region.
For this purpose, we define local coordinates chosen in the neighbourhood
of the solid liquid interface. Denote by r.(¢,z) the signed distance of z to
the level set T'.(t) = {x € R" : ¢.(t,z) = 0} at time ¢. It is positive in
the liquid, negative in the solid domain. Let s.(¢,z) be the projection of
on I'.(t) along the normal of T'.(¢). The subscript ¢ in the local coordinates
(re, s¢) is omitted for simplicity. The coordinates satisfy

\Vr>=1, Vr-Vs;=0 fori=1,...,N—1

Oir = —v

)
)
)
)

with v denoting the velocity of the interface. At the interface we have Ar = &
with x being the curvature of the interface.

In the neighbourhood of I'.(¢), the solution of the phase field system is
represented in new variables

Ve(t,r,8) = ho(t,r,8) +ehr(t,r,8) +e2a(t, 7, 8) + ..., (Al.4)

91



92 A. Appendix

for ¢ = ¢, T, u. We also define a scaling of » by p = r/e. The definition of r
implies that
¢e(t,0,5) = 0. (A1.5)

We consider now outer expansions (away from the interface). The outer
expansions are done in cartesian coordinates as

U, (t,x) = Uo(t,z) + Wy (t,x) +2Uy(t,2) + .. ., (A1.6)

for ¥ = & U,V with ®,U and V corresponding to the variables ¢, 7" and
w, respectively. The coefficient functions in the expansion are supposed to
be bounded. The functions can be discontinuous at the interface. Plugging
(A1.6) in (A1.1)-(A1.3) and equating the coefficients of powers of ¢ we get
the outer problems of different orders. Expansions of K and D are included
in what follows. We have

ae(@t‘I)() + €at<1>1 + .. ) — 8(A‘I)0 + €A@1 + .. )

1
+ gf(q)o + E,'q)l + 62@2 =+ .. )

)
+;q(UO+sU1+s2U2+...,V{)+sV1+e:2V2+...):0, (AL.7)

O(Us + el + Uy +...)
~ V- (Ko +eK, + Ko+ .. )V (U + €Uy +2Us +...))
= —L(0,®y +0,®1 +%0,P5+...), (A1.8)
(Vo +eVi+e*Vp+..)
— V- ((Dy+ €Dy 4Dy + .. )V(Vog+eVi+ Vo +..))
= —M(8,®¢ +c0,®1 + 20,85+ ...). (A1.9)

The zero-th order outer problem is set by collecting the coefficients of ¢! in

(A1.7), the coefficients of ¢° in equations (A1.8) and (A1.9), i.e.

f(®) =0 (A1.10)
8Uy — V - (KoVUy) + L3®) = 0 (A1.11)

Similarly, we obtain the first order outer problem

f'(®0)®1 = —gQ(UO, Vo) (A1.13)

OVi —V - (DoVVi) + M3,®, = V - (D1 VVp). (A1.15)
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Equation (A1.10) has solutions &3 = +1 and ®; = 0. Then, for r # 0 (in
solid or liquid domain) we have simple heat and diffusion equations for Uy
and Vj in the zero-th order problem which can be solved with appropriate
initial and boundary conditions. Similarly, higher order equations reduce to
equations for ¥ only.

Matching conditions arise from the fact that inner and outer expansions
describe the same function in an intermediate region with distance of order
/€ from the interface. For the matching conditions, cartesian coordinates
in the function representing the outer expansions are expressed by the local
coordinates (p, s) = (r/e, s).

In the region where the inner and outer expansions represent the same
functions we equate the representations (A1.4) and (A1.6). We combine the
expansion of s € T'(¢),

s(t) = so(t) +es1(t) +%sa(t) + . ..

with the outer expansions (A1.6) and expand the terms of the outer expansion
in the Taylor series. Then we pass to the limits p — 0o with p related to ¢
in suitable manner. By equating the coefficients of ¢° and ! in the resulting
equation we obtain the following conditions:

Yo(t, oo, 5) = Wo(t, so(t)+) (A1.16)
’le (t, P, S) ~ \Ill(t, So(t)i) + p@r\IIO(t, S()('t)i) + yl(t)ar‘lfo(t, So(t):t) (A117)

(for large p) where sq(t)+ denote the limits of so(t) from the liquid (+) side
(for p > 0) or solid (—) side (for p < 0).

We turn now to the inner expansions applied to the phase field system
(A1.1)-(A1.3). For the representation of the solutions in the (r,s) coordi-
nates

u(t, ) — a(t, r(z,t), s(z,t))
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we need transformations of the differential operators present in the system.

N-1
Btu = 8{&/ + arﬁatr + Z 8siﬁ8t5i
i=1

= (at - v&n + atS . Vs)ﬂ

N-1
Au=V- (éww +y as,.wsi>

i=1
N-1

= 02a|Vr* + 0,6Ar + Y _(020|Vsi|* + 0,,Wls; + 02V - Vs;)
i=1

N-1
= (af +Ar0, +As-V,+ > |Vsi\2352i> @

=1
N-1
V- (KVu) = (&(K&) + KArd, + KAs-V,+ ) \Vs,-|263i(K831.)) .
=1

For V - (DV) we have the same transformation formula as the last one with
K replaced by D.
With the variable p, the differential operators transform according to

875 ~ at — 6*11)8,3 + 3,;8 . Vs

N-1
A~ e +e M Ard,+ As- Vo + Y |Vs|202
i=1
N-1
V- (KV) ~e20,(Kd,) +& 'KArd, + KAs-V,+ > |Vsi|*d,,(K0,,).
i=1

Transformation of variables in the phase field system results in

aa(?t(ps - aUap‘Ps + a56t3 : Vs(Ps - 571812,(,05 — Arap(ps
N-1

4]
_5A5 ) VSSOE — £ Z ‘vsi|2as2i906 + gilf(goe) + _Q(Tsa /’LE) = 0,
i=1 g
OT. — e 00,T. + Oys - VT — e 20,(K9,T.) — e ' KArd,T. — KAs - V1.
N-1
— Z Vs3]0, (K8,,T.) + LOyp. — La’lvapgog + Ldis - Vsp. =0
=1

where we omitted the tilde for simplicity of the notation. The equation for .
has the same form as the equation for 7,. Now, we apply the inner expansions
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(A1.4) to the system and taken into account the expansions
Ar =Ko+eki+..., v=v9+evi+....

By equating the terms of same powers of ¢ in each side of the equations, we
get sequences of problems for (y;, T;, i;)-

The zero-th order inner problem is set by collecting the coefficients of £~
in the phase field equation, and the coefficients of ¢ 2 in the equations for 7.
and pu,:

1

~5p0 + f(po) = 0 (A1.18)
—0,(Ko0,Ty) = 0 (A1.19)

Equation (A1.18) is supplemented by the condition ¢q(t,0,s) = 0 which
results from (A1.5), and matching conditions of zero-th order (A1.16)

wo(t, £00,s) = Pp|r, = £1

with ®g|r, being the limit of ®; from the liquid and solid sides. Equation
(A1.18) with the given conditions determines ¢ uniquely. Since we have

flo)=¢*— o,

¢o(p) = tanh (%) : (A1.21)

In a similar manner, the equations (A1.19) and (A1.20) are considered with
the matching conditions (A1.16)

Tg(t,iOO,S) = UO‘I} (A122)

and
po(t, £oo, s) = Volr,.- (A1.23)

Since the limit functions are bounded, after integrating the equations (A1.19),
(A1.20), we find that Ty, g are independent of p | i.e.

To = To(t,s), o= po(t,s). (A1.24)

The first order inner problem is set by collecting the coefficients of €° in the
phase field equation and the coefficients of e ! in the other two equations of
the system:

0
—201+ f'(wo)pr = (ave+ ko)Bppo — ;(I(Toa to)  (A1.25)
—8p(K08pT1) = Lvoap(po (A126)
—ap<D()ap/,L1) = M’anp(po (A127)
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where the independence of T}, o on p has been taken into account.

The equation for ¢ is linear and its right hand side depends on the
solution of the problem of zero-th order. The differential operator —(9/% +
f'(¢0)I has a nontrivial kernel which contains d,¢0. This implies that, for
solvability, 0,¢0 should be orthogonal to the right hand side, i.e.

)
[ [t + so)osen® - 2aTu, p)dpea) do =0
R
Since Ty, po are p-independent, we get
5 20
(avg + Ko) [ |Oppoldp = ;Q(TOa Io)
R

which corresponds to the Gibbs-Thomson condition with kinetic undercool-
ing

o(avy + ko) = q(To, o) (A1.28)
provided that
1 +00 )
§=3 |0pp0|dp (A1.29)

2
holds. For ¢y = tanh P we have § = £
V2 3

Considering (A1.28), the equation (A1.25) turns into
—0201 + f'(p0)e1 = (awo + ko) [Bpp0 — 6] .
It follows that o1 = p(t, s)01(p), where p(t,s) = avy + Ko and 0;(p) satisfies
—87 + f'(0)81 = 9o — (A1.30)

and

where the conditions arise from ¢4(¢,0,s) = 0 and the matching condition
(A1.17) (the boundedness of ¥,).
Moreover, by (A1.29) we have

/ (6 — @p) wodp =0,
R
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so that the function 6, exists and is unique. Multiplying both sides of equa-
tion (A1.30) by ¢p and integrating over IR, we obtain

0 = /]R ol (6 — ob) dp = /]R (67— F(00)01)dp
- / (—0L0 — F'(00)0rl) dp
= /9I o+ f(wo)]'dp — /[f ©o0) oty + f'(wo0)b1¢pldp
= /f”(wo)(%) 61dp.
R

It follows that the function 6; satisfies

/]Rf”(wo)(%)zeldp =0. (A1.32)

By integrating the equations (A1.26) and (A1.27), we get

Ko0,Ti1 = —Luvgp+ Ci(t,s) (A1.33)
Doap/,tl = —M’l)()(p() —+ Cz(t, S) (A134)

We differentiate the matching condition (A1.17) with respect to p and obtain

hm 8T1 VU() n\pi

p—+
This implies that
K\VU, - ’I’l|1’*i = FLvy + Cl(t, S). (A135)

The difference between the (4) and (—) parts of this equation gives us the
latent heat condition
[K()VUO : ’I'l]p = —2L’l}0. (A136)

If Ty is known, this condition combined with the continuity of U, that follows
from (A1.22) supplement equation (A1.11) and may determine U, in the
zero-th order outer problem considered with appropriate initial conditions.
Similar condition as (A1.36) can be derived for V;, and supplement equation
(A1.12) alongwith (A1.23) (provided that pg is known). Once Uy, V, are
known, they can be used to determine Ci(t,s), Cs(t,s) from (A1.35) and
the analogous equation DoVVj - n|p, = FMug + Cs(t, s). Then we can also
get ®; from (A1.13) considered with a behaviour at large p derived from
the matching condition (A1.17). Similarly, one can proceed with the other
equations of the second order and also with the terms of higher order.
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Remark. For the spectrum estimates (Section 3.3) a certain regularity
condition is assumed for the second order remainder of the inner expansions.
The assumption can be justified by a more rigorous analysis. For the Cahn-
Hilliard equation which is closely related to the phase field equation, it is
shown in [2] that it is possible to construct a family of approximate solutions
satisfying the assumption and the spectrum estimates.
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Zusammenfassung

Diese Arbeit beschaftigt sich mit einem Phasenfeldmodell fiir bindre Legier-
ungen. Die Phasenfeldmodelle beschreiben Phasentibergange zwischen fliissig
und fest und haben Anwendungen in vielen Bereichen. Das Modell besteht
aus Gleichungen fiir das Phasenfeld ¢ (auch Ordnungsparameter genannt),
die Temperatur 7" und die Konzentration ¢ einer der Komponenten der
Legierung. Die Arbeit enthélt sowohl theoretische als auch rechnerische Un-
tersuchungen eines volldiskreten Finite-Elemente Verfahrens fiir das Modell.
Phasenfeldmodelle enthalten einen kleinen Parameter ¢, der etwa die Dicke
der Grenzfliche zwischen fliissig und fest reprasentiert. Eine Untersuchung
des numerischen Verfahrens im Zusammenhang mit dem Parameter ¢ ist
wichtig, weil der Parameter ¢ sehr klein sein muss um physikalisch realis-
tische Féalle beschreiben zu kénnen. Die Gitter, die in numerischen Ver-
fahren (Finite-Elemente oder Finite-Differenzen) verwendet werden, miissen
fein genug fiir die Darstellung der dinnen Phasengrenze sein. Die Verwen-
dung feiner Gitter ist mit entsprechend hohem Arbeitsaufwand verbunden.
Die Abschitzung des numerischen Fehlers von ¢ ist von grofiem Interesse.

In der Arbeit wird eine Finite-Elemente-Fehlerabschatzung fiir das Phasen-
feldmodell hergeleitet, mittels derer die Abhangigkeit des Fehlers vom Pa-
rameter ¢ explizit angegeben wird. Die Fehlerkonstanten in der Abschatzung
sind Polynome niedriger Ordnung in ¢~!. Die Arbeit ist in fiinf Kapitel
aufgeteilt. Das erste Kapitel enthalt eine Einfithrung in die Modellierung von
Phasentibergangen, einen kurzen Uberblick iiber verwandte Publikationen
und eine Zusammenfassung dieser Arbeit. Das zweite Kapitel widmet sich
der Herleitung eines Phasenfeldmodells fiir bindre Legierungen. Hier wird
auch iiber eine Anwendung von Phasenfeldmodellen diskutiert, die zur Simu-
lation des Dendritenwachstums benutzt wird. Die dazu verwendete Modell-
gleichung wird mit Hilfe von anisotroper Oberflachenspannung hergeleitet.

Das néchstes Kapitel (Kapitel 3) wurde in fiinf Abschnitte aufgeteilt die
zusammen zu einer Finite-Elemente-Fehlerabschitzung fithren. Zuerst wur-
den einige bekannte Definitionen und Eigenschaften von wichtigen Funktio-
nenraumen angegeben. Der erste Abschnitt enthalt auch einige Einbettungs-
und Interpolationssitze und einen Regularititssatz aus der Theorie der lin-
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earen parabolischen Gleichungen. Im nachsten Abschnitt werden einige Ener-
gieabschitzungen in verschiedenen Normen fiir die Losung des Differential-
gleichungssystems durchgefiihrt. Der darauffolgende Abschnitt enthilt eine
Spektralabschatzung fiir den sogenannten Allen-Cahn Operator, der in der
Fehleranalyse eine wichtige Rolle spielt. Es folgt eine Stabilitatsabschatzung
fiir das volldiskrete numerische Verfahren zur Losung des Phasenfeldsystems.
Es wird auch ein diskretes Analogon fiir die Spektralabschiatzung hergeleitet.
Mit Hilfe der obigen Vorbereitungen wird die eigentliche Finite-Elemente-
Fehlerabschéitzung im Abschnitt 3.5 vervollstindigt. Im Kapitel 4 wird der
Fehler des Losungsverfahrens im Zusammenhang mit dem Parameter ¢ nu-
merisch untersucht. Es wird die Methode der kleinsten Fehlerquadrate ver-
wendet zur Identifizierung der Parameter des Fehlerfunktionals. Hier wer-
den Ergebnisse verschiedener Experimente in zwei und drei Raumdimensio-
nen prasentiert. Die numerischen Experimente bestatigen die vorhergesagte
Fehlerabhingigkeit vom Parameter €. Im letzten Kapitel betrachten wir die
Anwendung des Phasenfeldsystems zur Simulation des Dendritenwachstums.
Das verwendete numerische Verfahren und einige Aspekte der Implemen-
tierung werden diskutiert. Die Ergebnisse der numerischen Simulationen mit
verschiedenen Unterkiihlungstemperaturen der Fliissigkeit und verschiede-
nen Starken der Anisotropie werden verglichen. Wir verwenden adaptive
Gitter zur Simulation des Dendritenwachstums. Im Anhang A.1 werden for-
male asymptotische Reihenentwicklungen der Losung des Phasenfeldsystems
in der Nahe der fliissig-fest Grenze betrachtet. Der Anhang dient als Hilfs-
mittel fiir Abschnitt 3.3.
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