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Chapter 1

Introduction

There are numerous examples of abandoned polluted areas caused by old indus-
trial plants. It is not possible to remediate all of those areas. So it is necessary
to get an assessment which polluted area is most dangerous. For example a
nearby river can be at risk of contamination. Such an assessment can be given
by a numerical simulation of the pollutant distribution in the soil. With help
of the numerical results one can see if a pollutant reaches the river or will be
degraded before. The needed mathematical models for reactive transport (see
e.g. [SM96a], [SMI6b], [Bet96]) are well known. So if all model parameters are
known sufficiently accurate reliable predictions are possible.

1.1 Current State of the Research

One method for solving reactive transport problems, which is widely used, is
operator splitting. Here the problem is split into a chemical and a transport
problem. The advantage is that the problem decomposes in two subproblems
and so this approach is easier to implement. Mainly there are two types of split-
ting schemes, the sequential non-iterative approach (SNIA) and the sequential
iterative approach (SIA). For example the software SPECY uses a non-iterative
operator splitting scheme (see [Car01]). But using non-iterative operator splitting
schemes there is the problem that these methods lead to an operator splitting
error (see e.g. [VM92], [BMCBO97], [CMBO04]). To circumvent this problem an it-
erative operator splitting scheme can be used. For example the software HY TEC
uses an iterative operator splitting scheme (see [vdLWLGO3]). But an iterative
operator splitting scheme needs many iteration steps and requires small time step
sizes to converge in chemically difficult cases and so it is not very effective (see
e.g. [SCA00]).

10



1.1. CURRENT STATE OF THE RESEARCH 11

The other method besides operator splitting for solving reactive transport
problems is the global implicit approach (GIA). One method following this ap-
proach, which is known for several years, is the direct substitutional approach
(DSA). For example the code MIN3P (see [MFB02], [May99]) uses this method.
One disadvantage of DSA is that it leads to a nonlinear system which is difficult
to solve numerically. Another disadvantage is that there is no decomposition in
chemical problem and transport problem and so it is more difficult to implement.
A comparison of DSA and STA can be found in [SCA00].

Twenty years ago [YT89] concludes that operator splitting is preferable. But
in the recent time the global implicit approach gets more and more popular
and new global methods were developed. One is to use a differential algebraic
equation (DAE) solver (see [dD08], [dDEKO09]). Here the transport equations, the
mass balance equations and the equations describing the chemical equilibrium
are solved in one very large system of equations. The disadvantage is that this
approach leads to excessive computation times. The other one is the global
method out of [AK09], which uses a resolution function to handle the chemical
problem. Such a resolution function is also applied in the reduction scheme which
will be used in this work.

Solving reactive transport problems, the handling of the equilibrium condi-
tions of equilibrium mineral reactions is a crucial point for the effectiveness of
the code. In the literature different approaches for the handling of equilibrium
minerals can be found. The first one is a swap procedure (see [Bet96], [CMB02]).
If the solution is unphysical (negative mineral concentration or supersaturated
mineral) the “most undersaturated mineral” is removed from the basis or, if there
is no undersaturated mineral, the “most supersaturated mineral” is added to the
basis and then a new solution is computed. This procedure is repeated until
one gets a physical solution. The second possibility is to rewrite the reactive
transport problem as a moving boundary problem with a generalized Rankine—
Hugoniot condition (see [Lic85], [Lic96]). The third possibility is to rewrite the
chemical subproblem as a minimization problem with constraints and to solve
this problem with an optimization method, for example an interior point method
(see [Saa96]).

In this work a new handling of equilibrium minerals suggested in [Kri08,
Chap. 4] is used. The equilibrium condition is rewritten as a complementarity
problem. Then the complementarity condition is replaced by an equivalent equa-
tion and the resulting problem is solved with a semismooth Newton method. The
advantages are that only one Newton iteration is necessary (contrary to swap pro-
cedure), the same equations are valid on the whole domain (contrary to moving
boundary) and no operator splitting between chemistry and transport is needed
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(contrary to minimization formulation).

Reaction networks with many species lead to coupled systems with many
equations and so simulating such a problem requires much CPU time. So it is
desirable to find strategies to reduce the amount of CPU time. In the literature
one can find different reformulation techniques that try to reduce the number
of equations in the coupled nonlinear system. The first one is the elimination of
constant activity species (minerals, water) in [SAC98]. A more enhanced method,
which leads to the decoupling of components in certain situations, can be found
in [MCASO04]. For a comparison with the reduction scheme, which will be used in
this work, see [KKO07, Sec. 5.2, 5.3]. For the example considered there the number
of coupled nonlinear differential equations by use of the reduction scheme is half
the number as by use of the method out of [MCAS04]. In [Fri91], [FR92] a linear
variable transformation is described causing the decoupling of some equations. A
discussion of some problems arising when this method is used as a GIA method
can be found in [KKO05, Sec. 3].

This work is based on the newly developed reduction scheme which is pro-
posed in [KKO05], [KKO07], [Krd08]. There a linear transformation of the equations
and variables is performed such that some linear differential equations decouple
form the nonlinear system. The key point is that the transformation is performed
separately for the variables that correspond to mobile species and that ones cor-
responding to immobile species. In addition a resolution function eliminating
the local equations (equilibrium conditions, ordinary differential equations for
immobile species) is employed. The number of equations in the resulting coupled
nonlinear system is always smaller or equal than by use of the Morel formulation
(see [HKKO09]). In [Hof05] simple problems were solved successfully with this new
reduction scheme.

Regarding existence results for reactive transport problems, a proof of a global
solution in the case of homogeneous kinetic reactions according to law of mass
action can be found in [Kra08, Chap. 3]. Also in [Krd08, Chap. 3] there is a
existence proof for heterogeneous kinetic reactions under certain restrictions on
the exchange reactions.

1.2 Objective of this Work

The goal of this work is to modify the reduction scheme which is presented
in [KK05], [KKO07], [Krd08] and implemented in [Hof05] in such a way that it
is possible to apply the reduction scheme also to realistic problems. Hence
it is necessary that the modified reduction scheme can handle the numerical
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difficulties arising from concentration values varying over many orders of mag-
nitude and from large reaction constants. To show that the modified reduc-
tion scheme can really be applied to realistic problems the MoMaS benchmark
(see [BBCT], [CKKO09]), a numerically very challenging reactive transport bench-
mark, should be computed successfully. Furthermore the existence of a global
solution for the kinetic mineral problem should be proven.

1.3 Overview of the Work

The used reactive transport model is described in Chapter 2. The model includes
kinetic reactions according to law of mass action, equilibrium reactions according
to law of mass action and mineral reactions in equilibrium. For Monod reactions it
is referred to [KK05, Sec. 5] and kinetic mineral reactions are subject of Chapter 5.

The reduction scheme presented in Chapter 3 is an extension to that one
in [KKO05], [KK07], [Hof05], [Krd08]. In Section 3.1 the equations of the reduc-
tion scheme are derived by taking linear combinations of the original equations
and performing a linear variable transformation. Doing so some linear partial dif-
ferential equations decouple from the nonlinear system. In Section 3.2 the number
of equations in the coupled nonlinear system is diminished even more with help of
a resolution function. Some equations, that (after space discretization) depend
only on the values of one nodal point, are solved for certain variables and are
plugged into the other ones. The existence of such a resolution function is proven
in two ways. In Section 3.3 the used discretization techniques are explained. As
no explicit formula of the resolution function is known it is necessary to use a
Newton iteration for the evaluation of the resolution function (Sec. 3.3.2). The
evaluation of the resolution function is called local problem while solving the
remaining coupled nonlinear system is called global problem.

In Section 3.4 the special numerical treatment due to the numerical difficul-
ties of realistic problems is described. It is necessary to use the logarithms of the
concentrations and a special solver for the linear system in the local problems be-
cause of concentration values varying over many orders of magnitude (Sec. 3.4.1).
As the logarithms are used it is essential that the concentration values are pos-
itive. To ensure this it is necessary to modify the starting value of the global
Newton iteration (Sec. 3.4.2) and to cut off the global Newton steps (Sec. 3.4.3).
For convection dominated problems a stabilization is needed (Sec. 3.4.4). Also an
anisotropic diffusion tensor can lead to negative concentration values. To avoid
this an adapted grid is used (Sec. 3.4.5).

In Section 3.5 it is analyzed why this method has good convergence properties.
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It is shown that the derivative of the resolution function, which appears in the
global Jacobian matrix, is bounded (Sec. 3.5.1). For a representative example it
is shown that for At = 0 the condition number of the global Jacobian matrix is
bounded by a fixed number (Sec. 3.5.2) and that for the other limit case, a very
large time step size, the problem decomposes in well conditioned subproblems
(Sec. 3.5.3).

In Chapter 3.6 variants of the used formulation are mentioned. The three
variants in the Sections 3.6.1-3.6.3 have less equations in the global problem
but it turns out that all these variants are not applicable to realistic problems.
In 3.6.1 the original formulation out of [KKO07], [Kra08] is considered. Here the
derivatives of the resolution function are not bounded and so this method is not
convergent for realistic problems. In Section 3.6.2 some variables are eliminated
to get a smaller coupled system. This variant has a ill-conditioned Jacobian
for large time step sizes. So it converges only for very small time step sizes.
In Section 3.6.3 some other variables are eliminated. It can be shown that the
resulting method is equivalent to that one in Section 3.6.2. Instead of using a
resolution function it is possible to eliminate the local equations on the linear
level (Sec. 3.6.4). But it turns out that using a resolution function is much more
efficient.

In Section 3.7 the implementation developed in the framework of this the-
sis is described. In Section 3.8 the connections between the reduction scheme
and the widely used Morel formulation are shown: The variables used in the
Morel formulation are linear combinations of the variables used in the reduction
scheme. In absence of kinetic reactions the local problem of the reduction scheme
is equivalent to the chemical subproblem of the Morel formulation and the equa-
tions in the transport problem of the Morel formulation are linear combinations
of the equations of the global problem of the reduction scheme. So a chemical
solver (Morel formulation) can be used to solve the local problem. In this sense
a modular implementation of the reduction scheme is possible. In Section 3.9 a
generalization of the reduction scheme is presented. The generalization is con-
structed in such a way that the reduction scheme out of the Sections 3.1-3.4 and
the Morel formulation are special cases of the generalized formulation.

The MoMaS—benchmark [BBC'] is a numerically very challenging reactive
transport benchmark. Using the implementation of the reduction scheme com-
putations of this benchmark were carried out. In Section 4.1 a short problem for-
mulation is given. In Section 4.2 the reduction scheme is applied to the MoMaS—
benchmark. The results of the computations can be found in Section 4.3. In
Section 4.4 this results are compared with that ones of other benchmark partic-
ipants. In Section 4.5 the implementation of the generalized formulation of the
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reduction scheme (see Sec. 3.9) is used to compare the reduction scheme with the
global ODE approach and with iterative splitting (SIA). The different methods
used by the benchmark participants are briefly presented in Section 4.6. Despite
of the different methods used to solve the transport the results are very similar.
So in Section 4.7 a suggestion for a second version of the benchmark is given, in
which more differences are expected.

Chapter 5 handles the kinetic mineral problem. For this problem there are
three different mathematical formulations. Concerning weak solutions these for-
mulations are equivalent (Sec. 5.1). In Section 5.2 the three different formulations
are compared regarding algorithmic aspects. In Section 5.3 the reduction scheme
is applied to the kinetic mineral problem and with the resulting method travelling
waves are computed. Last the existence of a global solution of the kinetic mineral
problem is proven (Sec. 5.4).



Chapter 2

Mathematical Model

2.1 Mass Transport

The following physical quantities are required for the modelling:

. T .
e concentration vector ¢ = (¢y,...,c¢r)" : amount of substance of all mobile
species per volume water

e water content 0: volume water per total volume
e Darcy flow g: volume water per time and cross-sectional area

. _ _ _ T
e concentration vector € = (¢;41,...,¢;,7) ¢ amount of substance of all
immobile species per volume water

The number of the mobile species is denoted with I and the number of the
immobile species with I.

In this work the concentrations of the immobile species are given in amount
of substance per volume water like in [YT89]. Another possibility for the unit
of the immobile concentrations would be amount of substance per mass earth.
The advantage of the choice taken here is that it is possible to add mobile and
immobile concentrations without the need of multiplying one of them with a
conversion factor.

Mass balance for the i-th mobile species leads to

with the diffusive mass flow j, and the source/sink term f;. The mass flow j, is
caused by two different physical phenomena. The first one is mechanic dispersion

ji,l = —0Decn Ve

16



2.2. CHEMICAL REACTIONS 17

with the symmetric positive definite mechanic dispersion matrix D¢, Which
depends on g/f. The second one is the molecular diffusion according to Fick’s
law

Jio = —0da;iVei,

where dg; 57, is the diffusion coefficient of the i-th species.
In the following the Scheidegger diffusion/dispersion tensor D; (see [Sch61])
is used to describe these two phenomena

Ji=— < (eddiff,i + Belg)I + (B — 5t)q|(§|q )Vcl- (2.1)

N

= Dz

with the notation I for the identity matrix and the two parameters (3; and [,
the longitudinal and the transversal dispersion coefficients, with 5, > ;.
Altogether for every mobile species the partial differential equation

is obtained. For every immobile species mass balance leads to the ordinary dif-
ferential equation

o(0c;) = fi i=I+1,...,1+1. (2.3)

2.2 Chemical Reactions

The chemical reactions are given by the stoichiometric matrix S. Each column
of S corresponds to one chemical reaction. The number of chemical reactions
is named J. The entries s;;, called stoichiometric coefficients, specify if and on
which scale a species takes part in a chemical reaction. A negative sign of the
stoichiometric coefficient denotes that the species is an educt and a positive sign
stands for a product.

The reaction rate vector » = (ry,...,r J)T specifies how fast the chemical re-
actions proceed, i.e., how many moles per volume and time are reacting. These
reaction rates appear in the source/sink term f;. As all chemical reactions con-
sidered here can only take place in aqueous solution there is a factor # in front of
r;. So the source/sink term is the following sum of the reaction rates

J
fi: E 081‘]'7”]'.
=1
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2.2.1 Kinetic Reactions According to Law of Mass Action

Concerning kinetic reactions according to the law of mass action the rate term
is given by the difference of the forward and the backward reaction rate (see
e.g. [Bet96])

I+1 I+1
=\ ) —Sij ) +545
rring(€, @) = kpy [ ™ = ks [ & (2.4)
i=1 =1
545<0 545>0

Here ky; denotes the forward coefficient and k; ; the backward coefficient of the
chemical reaction. For the sake of clarity the bars over the ¢; regarding immobile
species are left out. The number of reactions of this type is denoted with Jy;,.

Another kind of kinetic reactions are biodegradation reactions, that can be
described with help of the Monod model. A presentation of the model and how
to apply the reduction mechanism (see Chap. 3) to this kind of reactions can be
found in [KKO05, Sec. 5].

2.2.2 Equilibrium Reactions According to Law of Mass
Action

Reactions that are fast in comparison to the flow and dispersion/diffusion pro-
cesses can be assumed to adopt an stationary state at all times, i.e., on every
point an equilibrium condition holds. If the j-th equilibrium reaction can be
described by the law of mass action the j-th equilibrium condition reads

I+1

¢(c,€) == —In(K;) + Z si;In(c;) =0 (2.5)

with the equilibrium constant Kj;.

In case of equilibrium reactions the reaction rate ., ; is not known. So 7. ;
gets an additional unknown and the equilibrium condition (2.5) is added to the
system of equations (2.2), (2.3) as an additional equation.

2.2.3 Equilibrium Minerals

In the mineral case the sum analogous to that one in (2.5) does not depend on the
mineral concentration. Furthermore we assume that no other immobile species
take part in the mineral reaction. So if the j-th equilibrium reaction is a mineral
reaction we define

Pi(e) = —In(K;) + Z si;In(c;) (2.6)
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where it is assumed that the stoichiometric coefficient of the mineral is positive.
In this case the equilibrium condition consisting of equations and inequalities
reads

(5(0) = 0 A eming = 0) V (¥5(€) > 0 A ins = 0)

where €, ; denotes the concentration of that mineral taking part in the j-th
equilibrium reaction. The first case, where the mineral is present, is called sat-
urated and the second one, where no mineral is existing without saturation, is
called undersaturated. It is possible to rewrite this condition as a complemen-
tarity condition (see [PHKKO06] or [Kra08])

%‘ (C) Emin,j =0A %’(C) > 0A Emin,j > 0.

This complementarity condition can be replaced by the equivalent algebraic equa-
tion (see e.g. [Kan04])

¢j (C7 Emm) '= min {¢j<c)u Emin,j} =0. (27)

This equation can be added to the system (2.2), (2.3) like in the case of equilib-
rium according to law of mass action.

2.3 Reactive Transport Model

The columns of the stoichiometric matrix S are sorted in the following way. First
we take the columns associated with equilibrium reactions, then the columns
associated with kinetic reactions. The submatrices with the index 1 contain the
stoichiometric coefficients of the mobile species and the ones with index 2 the
coefficients of the immobile species. So we get the block structure

Sl) (Sl e Sl kzn)
S =(Se Skin) = = o ’ . 2.8
( I g ) (SQ SQ,eq S2,k:m ( )
The number of all equilibrium reactions is denoted J, .

In the present of kinetic and equilibrium reactions the source/sink terms f;

are
Jkin JEQ
fi= E O pkin,ijTkinj(C; C) + E 05eq,ijTeq,; -

Plugging this in (2.2), (2.3) and adding the equilibrium conditions (2.5), (2.7)



20 CHAPTER 2. MATHEMATICAL MODEL

leads to

Jkin JEQ

0y(0c;) + Lic; = stmzrkm cc~|— 95@2% 1=1,...,1
37 kin,j q:ijTeq,j

Jk:zn Jeq
0(06) =Y O8kinijThing (€, €) + Y Oseqijreq; i=I+1,.. . I+I
Jj=1 Jj=1
qu(C,é):O j:].,...,Jeq
with the linear transport operator Lyu := —V - (D;Vu — qu). This system of

equations is widely used for modelling reactive transport (compare e.g. [SACI8,
eq. (19),(1)]). In matrix notation this system reads

6t(60) + LC = 951 km’l’km< _) + 951 eq’req
at(ec) - 982 klnrk'm( ) + 652 eqreq (29)
#(c,¢)=0.



Chapter 3

The Reduction Scheme

The reduction scheme presented in this chapter is an extension to the reduction
scheme described in [KK05], [KK07], [Hof05] and [Kr&08]. To apply the reduction
scheme the assumption that the diffusion coefficient dg;f¢; is the same for all
species is needed. This assumption is justified because the molecular diffusion is
small compared to the mechanic dispersion.

3.1 Transformation of the System of Equations

We sort the equilibrium reactions in the following order. First we take the re-
actions in that only mobile species take part, then the equilibrium sorption re-
actions, i.e., heterogeneous without mineral species, and last the equilibrium
mineral reactions:

oS sor 0
Sl,eq - (Sl,mob Sl,sorp Sl,min) ) SZ,eq = (0 26 P T ) (31)
Jmin

I,

min

of each type is denoted with Jy.0p, Jsorp and Jyin, respectively. Also the immobile

denotes the identity matrix of the size J,,;,. The number of the reactions
species are sorted. Here we take the nonminerals first and then the minerals:
- ((_anm)
c=1\ _
Cmin

The number of nonminerals' is named I,,,,;, and the number of minerals I,,;,,.
We assume that we can write S 55, in the form

Sl,sorp = (Sl,sorp,li Sl,minAld) (32)

'In this work nonminerals always denotes all immobile species that are not a mineral

21
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with a coefficient matrix A;4 such that the columns of (S Lmob  Stsorpli S 1,mm)
are linear independent?. The number of columns of the matrix S 1,s0rp,ti 15 denoted
Jsorpii- Hence the coefficient matrix Ay has the size Join X (Jsorp — Jsorpiii)-
When the linear independence condition is not fulfilled because some columns
of (SLmob Sl,sorp,h-) are linear dependent it is possible to apply preprocessing
steps described in [KKO07, Chap. 4] to make also in this situation the use of the
reduction scheme possible. Furthermore we assume that the columns of S sorp
are linear independent.

Then the matrices S and Sy, containing all entries of S connected to mobile
and immobile species, respectively, are of the form:

Slz(sl,eq Sl,kin):(sl,mob Sl,sor‘p,li Sl,minAld Sl,min Sl,kin)

0 Sosorp 0 Sopin (3-3)
Sy = (SQ,eq Sz,kz‘n) = (O 26 P I, 26k >

It is not allowed that an equilibrium mineral participates in a kinetic reaction.
So the stoichiometric coefficients in Sk, connected to minerals are zero. Hence

SZ,kin

0
With (3.3) we can rewrite the system (2.9) as

it is possible to write S ki, as (

di(0c) + Le = 08, (rm:{é 5)> (3.4)
8,(02) = 0S5 (Tk:(j: 5)> (3.5)
¢(c,c)=0. (3.6)

Now we define the matrices ST and S35 that contain a maximal system of
linear independent columns of S; and S, respectively. Because of the linear
independence assumption (see (3.2)) it is always possible to choose S7 and S5
such that the matrices have the form

ST = (Sl,mob Sl,sorp,li Sl,min T,km) (37)
* 52,807"17 0 ;kzn
S, = ( 0 I, 0 (3.8)

where S7,;,, consists of some of the columns of S i, and S5, consists of some
of the columns of S ji,. For clarity we do not put a tilde on S ;km The number

?In [Kré08, Chap. 4] it is assumed that the columns of (S1mob  St1,s0rp S1,min) are linear
independent.
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* : * * :
of columns of S7,;, is denoted Jy,,, and the number of columns of S ,;, is
*
denoted J3 ;..

There are always matrices A; and A, such that

With the block structure from (3.3) for Sy, S5 and the block structure from (3.7),
(3.8) for ST, S5, respectively, we get for A; and A, the block structure

I; . 0 0 0 A mob

0 IJSOT i 0 0 Al sorp
Al - Pt '
0 0 A 15, Aimin
0 0 0 0  Aiin (3.10)

0 IJSO,«p 0 A2,sorp
A2 - 0 0 Ijmm O

0 0 0 As in

Then we construct the matrices ST and S3. These matrices consist of a
maximal system of linear independent vectors that are orthogonal to all columns
of 8% and S3, respectively. So 87 has I — Jy0 — Jsorpii — Jmin — J{ iy, cOlumMNS
and Sy has I — Jeorp — Jmin — S5 pin
of the same size as S7, S5, respectively, that fulfil the condition that the columns
of B;, S; form a basis of the whole space. Furthermore Bs should be of the

(3 IJO 3) (3.11)

like it is S3. The simplest choice fulfilling these conditions is By = ST, By = S5.
In [KKO05], [KKO07], [Kré08] the reduction scheme is only formulated for this
choice. Analogously to ST, S5 matrices BT, By are constructed from By, Bj.

columns. We choose matrices By, By being

form

There hold the orthogonality relations
si'sr=0, B'B=o0. (3.12)
With the condition that the columns of B;, Si form a basis of the whole
space it is possible to represent S, BZ-L as
S;=B;N;+ S M,, B =BU;+S;V,.
with the quadratic coefficient matrices IN;, V; and the rectangular coefficient

matrices M;, U,;. Multiplication from left with S7 T and BiLT, respectively, leads
to

s:78: = §:TB,N;, BBl =B'stv,.
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Since the columns of S and Bj are linear independent according to the con-

struction of the matrices, the matrices on the left hand side are invertible. It

follows that also the quadratic matrices S¢" B; and BfTS + | respectively, on the

right hand side as well as the transposed of these matrices are invertible.
Multiplying from left block (3.4) with

71 _
(S+'BY) S+ and (BTS;) BT
and block (3.5) with
71 _
(Sz'By) Si and (BYS;) 'B]
and plugging in (3.9) leads to
(S:7BY) 8T (a6e) + Le) = 0(siTBY) '8t 574, ( T )
(BlTS"{)_le(at(@c) + Le) = H(B{ST)_lB?STAl ( Teq ) )
Trin(C, C)

—1 -1
(S3'Bf) S+ a(0e)=06(Sy By) S;Ts;AQ( Teq _)
rkin(ca C)

o\ —1 _ w1 * Te
(BYS3) B30,(0e) = 6(B3S;) BiS3A, (,«km(Z, a)

¢(c,e)=0.

Since the matrices, the equations are multiplied with, are constant in time and
space the matrix multiplication commutates with the differential operators. Using
this and the orthogonality relations (3.12) we get

0, (9(sz31¢)_151ch) +L(SETBY) stTe=o0
0,(0(BTS})'BTc) + L(BTS;) 'Blc=0A, < Teq _>>

0, (9(S;TB;)_1S;T5) _0
0,(6(BYS;)'Ble) = 0A, < Teq _))

¢(c,e) =0.

This implies the following definition of the new variables:
T -1 T o —1
n:= (S By) Si ¢ &:=(B{S) Bic

T . (3.13)
n:=(Sy By) Sy ¢ &:=(B1S;) Bic
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The vector § has Jyob + Jsorpti + Jmin + Ji and the vector m has I — J,,,0p —

kin
I sorpii = Jmin—J7 kin €0tTiES. SO (6) is an representation of the vector ¢ regarding
’ n

and 7] has

kin

to another basis of the R’. Analogously f has Jsorp + Jmin + J;

I —Jsorp—Jmin—J5 p;,, €ntries and the vector (é) is an representation of the vector

¢ regarding to another basis of the R’. The variables ¢ and € are partitioned
analogously to the partitioning of the columns of ST and S5, respectively, in (3.7),

(3.8) in

Smob g
€ _ >S0Tp
€ = ESOT"P ) E = S_min : (314)
émm &kin
kin

As retransformation we get

c=Si¢+ Bin
c= 836+ By1.

That this is the retransformation of (3.13) can easily be seen by plugging the
retransformation in (3.13) together with the orthogonality relations (3.12).

As the matrices S; and By are of the form (3.11) the transformed variables
ésorp and é win depend only on €, and not on €,,;,. Furthermore as the second
column block of (3.11) consists of unit vectors the last J,,;, entries in every

column of 52L and BQL are always zero. Hence also ] depends only on €, and
~
not on €,;,. S0 we can write le as (B;)Q ) Using this and the partitionings

(3.7), (3.8), (3.14) we can rewrite the retransformation as

C = Sl,mobémob + Sl,SOTp,ligsorp + Sl,minﬁmin + Si,kinﬁkin + Blllrl

s (Sz,sm«pﬁ_sorp + 55 inin + Bjﬁ) | (3.15)
Eomin
Then the equilibrium reaction rates r., and the equilibrium conditions ¢ are
T'mob Dot
partitioned analogously to Sy in (3.1) in 7ey = | Tsorp | and @ = | @y |5
Tmin Prnin

respectively. Furthermore the vector r,,, is partitioned analogously to S sorp

in (3.2) in Ty = (:sorp’“). Using this, the block structure of A; (3.10), the
sorp,ld
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definition of the transformed variables (3.13) and the partitioning of &, £ (3.14)
we get

T'mo
Emob Emob IJmob 0 0 0 Al,mob r b['
3 3 0 I, . 0 0 A, sorpli
9 sorp L sorp — ‘9 sorp,li ,SOTP
at Emm * €min 0 0 Ald IJmm Al,min T;oré7ld
Ein Erin 0 0 0 0 A roin(C, )
9,(0n) =0
Esorp 0 IJSoT‘p 0 A2,sorp ;’:mob
at 0 Emm =610 0 IJmm 0 rsorp
c Ao s min
Ekm 0 0 0 2,kin rkin<C, E)
¢mob(c) =0
¢sorp(ca Enmin) =0
q’)min(cu Emin) =0
Analogously to St sorp in (3.2) the vector €,,,, is split in
ésorp = <§sorp,li) . (316)
Esorp,ld
Expanding leads to
O(fn) +Ln =0 (3.17)
a75<9€mob) + L&mob = Q(T'ﬂwb + Al,mobrkin(cu E)) (318)
at(egsor]) + Lgsorp = e(rsorp,li + Al,sor‘prkin<ca E)) (319)
at(egmm) + Lsmm = g(rmzn + Aldrsorp,ld + Al,min'rkin(ca E)) (320)
Ot (0€in) + LEkin = 0 A1 pinTrin(c, €) (3.21)
0y (07) =0 (3.22)
at(eésorp,li) = e(rsm“p,li + AQ,sorp,lirk:in(Ca E)) (323)
at<0€sorp,ld) = Q(Tsorp,ld + A2,sorp,ldrkin<c; 6)) (324)
815(05]6171) = 9A2,kin’rk’in(ca E) (326)
d)mob(c) =0 (327)
¢sorp(ca Enmin) =0 (328)
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Here Aj opi denotes the submatrix of Aj ., which contains the first Jopp
rows of Ag sorp and Ag sorp 14 denotes the submatrix of Aj 0, which contains the
last (Jsorp — Jsorpii) TOWS Of Ag sorp-

To compute the equilibrium reaction rates re; = (Tsmob; Tsorps rmm)T is not of
interest. So when an equilibrium reaction rate appears in only one equation this
equation can be left out. This is the case for the rate r,,, in block (3.18). By
subtracting block (3.23) from block (3.19) and block (3.24) multiplied with A,
from block (3.20) it can be achieved that 74, and 74,4 appear only in block
(3.23) and block (3.24), respectively. Likewise by subtracting block (3.25) from
block (3.20) it can be achieved that 7,,;, appears only in block (3.25). Then also
the blocks (3.23)-(3.25) can be left out. Doing so we get

O(On)+Ln=0 (3.30)
04(0€ sorp) + LE sorp = 0(0€ 00p15) + O( AL sorp — Az sorpii)Trin(€,€) (331

e (0& in) + LE i = 0,(0€,,:) + Aldat(eésorp 1d)
+ 0( A1 min — AaAs sorpid)Tkin(C, C)

Oe(0&kin) + LEkin = 9A1,km7“km(ca ¢)

9:(0n) =
O (0€,,) = 9A2 kinTkin(C, €)
Pron(€) =
)
)

d)sorp (C Cnmin

¢mzn (C szn

The blocks (3.30) and (3.34) decouple from the rest of the system. So these
equations can be solved independent from the other ones. (3.30) consists of linear
PDEs for that a numerical solution can be computed with standard methods.
For 0 constant in time (3.34) says that 7 is always equal to its initial value. In
numerical computations the decoupled equations (3.30) and (3.34) are solved at
the beginning of every time step and afterwards the remaining system is solved.
In the following we assume that the solution of the linear PDEs (3.30) and the
ODEs (3.34) are known and focus on solving the remaining system.

The blocks (3.35)-(3.38) do not contain any space derivative. These equations
are called local equations, because after space discretization these equations do
only depend on the values of the variables at one point. In the next section we
will see that (after time discretization of (3.35) with the implicit Euler method)
there is a resolution function solving these blocks for certain variables. Then we
can plug this resolution function in the remaining equations. So the system we
have to solve consists only of the blocks (3.31)-(3.33).
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3.2 Resolution Function

First we introduce the additional variables?

s (&) _ €or — Eornpi
£ - <€mz:> o (gmzn - é:nn - Afd&_&orp,ld) ’ (339)

The motivation for this definition is that the new variables ésorp, &, are reaction

invariant regarding to the equilibrium reactions. This holds because in case of no
kinetic reactions and no transport (3.31) and (3.32) degenerate to (6€,,,,) = 0,
(0€,.:) = 0, respectively. Due to the additional variables there is a need for

additional equations. Therefore the defining equations of &,,,., and &,,;, (3.39)
are added to the system (3.30)-(3.38).

Because of the additional variables there is a freedom of choice in the formula
for the calculation of the concentrations (3.15). Here the following possibility is
~sorp and €, (3.39) are solved for €.orp and
&, and plugged in the retransformation (3.15). So we get the new retransfor-

mation ((3.2) and (3.16) are used to simplify the new retransformation)

sorp

chosen: The defining equations for &

min

c= Sl,mobgmob + SLso’rp,liésoTp + Sl,sorpgsorp + Sl,min (émm + Emm)

- B L (3.40)
Cc = ‘5’27807“P€sorp + _S;,kmskm + BQ ﬁ )
gmin
3.2.1 Existence of the Resolution Function
Then the unknowns are split in so-called local unknowns
§mob
3
5 ocC = _SO’/‘p 341
: £_min ( )
£kin
and global unknowns _
>SoTp
£min
Eglob = £so7"p : (342)
Emin
Ekin

3In [KKO05], [KKO07], [Kri08] no additional variables are used. See Section 3.6.1 for the
proceeding without additional variables.
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Now we want to prove the existence of a resolution function &,,.(§ ;) defined
by the equations (3.35)-(3.38) (after time discretization of (3.35) with the implicit
Euler method) and (e, €) given by (3.40). Note that the resolution function
&10c(& y10p) does not depend on the variables £, and §,,;, because these variables
do not appear in the equations (3.35)-(3.38) and in the retransformation (3.40).
In a first step we show the existence of a resolution function

(Esorpv émin? Ekinv é]mn) = (€mob7 Esorpv émln)

for the blocks (3.36)-(3.38) under the assumption that a positive bound for the
concentrations exists. For that purpose the equilibrium mineral reactions are
split in inactive (index Z) and active (index .A) reactions:

Sl,min = (Sl,min,I Sl,min,A)

A reaction is called inactive when in min{—In(K;) + Ele Smin,ij I0(¢;), Cmin j }
the minimum is attained in the first argument and otherwise called active.
The following proof is adapted from [KKO07, Appendix]. To apply the implicit

'mobr¥sorp)Pmin

(g'mob7€sorp7£min)

function theorem we have to check that the matrix is invertible.

We get

a(qu@b? (?sorpﬂ (f)mzn)
@(gmobv gsorp? €mm>

84)7110 6¢m0 8¢m0
bSl ,mob de bSl ,s0Tp Tbsl,min
8¢SOT‘ 8¢SOT‘ 8¢SO’I‘ 8¢SOT‘
== 8¢?c £ Sl,mob 2 Slaizrp + 8Cnmzi S2 ,80TD 84) e L Sl,mig¢
ﬁsl,mob ézm Sl ,S0TP mm Sl ,min + 86::::
ST o AS ST o AS ST o AS
1,m0b 1,mob 1,mob L,sorp 1,mob 1,min
. Sl sorpA'Sl mob Sl sorpA'Sl SO’I‘p + SQ sorpAnm’inSQ,SOTp Sl sorpA'Sl min
- T
S 1,min, IASl mob S 1,min, IASl ,SOTD szn,IASLmZTL
0 0 (0 I,)
with the diagonal matrices
1/ 0 1/¢ri1 0

We can rewrite the matrix as

a(¢mob7 ?sorp? ?mm) _ (Ml M2)
a(émolﬂ 5507’;07 £mzn> 0 IA
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with

S{mob 0

T7 T A 0 Sl mob Sl sorp Sl min,Z
Ml = Sl,sorp SZ,sorp 0 /_\ ) 6 S 7 ,O 7
S{min,I 0 nmin 2,s0rp

T
Sl,mob
_ T

M2 - Sl,sorp
ST

1,min, T

ASl,min,A .

Due to the linear independence assumption (see after (3.2)) the columns of the
matrices (SLmob S1,mm) and S o are linear independent. Therewith also the
S1mob Stsorp StminT
0 S sorp 0
follows that the matrix M is symmetric positive definite because the matrix

columns of the matrix ( ) are linear independent. It

A 0
(O i ) is a diagonal matrix with only positive entries. So all diagonal

M, M,
1,4

blocks of the upper triangular matrix ( > are invertible and therefore

the whole matrix is invertible.
The next steps to show the existence of the resolution function

(5507"1)7 €min7 skm) = (€m0b7 Esorpﬂ Emin? Ekzn)

for sufficiently small At are exactly the same as in the proof of the existence
of a resolution function (&,,,,, &rin) (§mob,§SOTp,§km,§_'immo), which is done
in [KKO07].

Using this resolution function and assuming that the n-equations (3.30) and
(3.34) are solved, (3.30)-(3.38) together with (3.39) can be reduced to

ésorp = £sorp - Esorp,li(ésorp? émi'rﬂ €k:m) (3-43)
Emin = Emin — EfLiTL(ESO?;p? Emliw gkm) (3‘44)

— Aui€sorp1d(Esorps Emins Erin)
81?(95307«;;) + Lssm‘p = Q(Al,sorp - A2,sor‘p,li)"°kin(ésorp7 émirw €km) (3-45)
008 i) + L€ min, = O(ALmin — AtaAs sorp1a)Thin(Esorps Emins Ekin)  (3.46)
Or(0€15m) + L€ i = OA L kinTrin (Esorps Emin: Ekin) (3.47)

The reaction rates 7y, are written as a function of &, €, . &, . This can be
achieved by (3.40) and the resolution function. This nonlinear system will be
used for the numerical computations.
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3.2.2 As Minimum Problem

When there are no variables §,,, it is possible to rewrite the local problem as
minimization problem. In [Krd08, Sec. 2.4.4] this is done for the case that there
are no equilibrium minerals and without using the variables é :

First we define the functional

I+1
Zul ci)ci + Z fi(c;)c
i=I+1
where
pi(c:) == po; — 1+ 1n(e;)
_ (7 ) /]071' —1 + ln(énmzn,l) fOI' =1 + 1, e ,I + jnmzn
Mil\Ci) ‘= — _
,EL()’Z‘ fOl"Z:]+]nmzn+1,,I+I
Thereby the vector <I_LO) € R is a solution of the linear system
Ho
T (K
S, (_0) = —In(K). (3.48)
Ho
We calculate
Mo In(c)
VG(C7 (_:) = ﬁ’O,nmin + ln(énmzn)
Fl‘O,min 0

We see that VG is monotonically increasing for positive concentration values. So
it follows that G as a function of (¢, €) is a convex functional.

With help of the retransformation (3.40) and for given values for the variables
n, Esorp, Emm, €., T We can write G as a function of the variables €, ,, &€ sorp € i
Note that in this subsection we assume that there are no variables €, . Also as

a function of (&,,04: €sorps Emin) G is a convex functional. This can be seen as
follows. Using the fact that FG igc’é) i Seq, which follows immediately
mobi’Ssorp Smin

from (3.40), we compute

Ko In(c)
v(&mob?ésorpvgmin)G = SZZIV(C7E)G = SZ(‘] I*_I’O,nmin + SZ; ln(énmzn) (349)
ﬁO,min 0

d(c,e)
a(gmobvg_sorp 7Emzn)

Using again the fact that
of G

= S, we get for the second derivatives

D% s - G=STAS,

(gmob 7£sDTp 7£min)
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with A = diag(1/c1,...,1/cr,1/¢r40,...,1/¢r01,, . ,0,...,0). We know that the
matrix SZqASeq is positive semidefinite because A is a diagonal matrix with

nonnegative entries. Hence G as a function of (§,,.,,& is a convex

sorp? €mm)
functional.

Now we consider the minimization problem

min G(&,,., Esorp, & in)

_ 3.50
s.t. gmm >0. ( )

The Lagrange functional of this minimization problem reads

E(&mob? Esorp? Emin? V) = G(€m0b7 ésorp? émzn) - Emzn v

Using (3.49) and (3.48) we get for the associated KKT system

O - V(g”m,ob 7€_sorp7§_min) £

Ho 1n<c> 0
= SZ:; l-_l'O,nmin + SZ:] ln(énmin) + 0
ﬁO,min 0 4
In(c) 0
= —In(K)+ S, | n(Cumin) | +| O
0 —v
¢mob(c) 0
= d)sorp(c? Eﬂmm) + 0 )
’d)mzn(C) —v

V; Emln] = O;Emin,j >0,v; 20 i=1..., Jmin

where the entries of 4,,,;,, are defined according to (2.6). Hence the minimization

problem (3.50) is equivalent to solving the equilibrium conditions (3.36)-(3.38).

So the resolution function &,,.(€,,,,) of the previous subsection can also be defined

glob
as the solution of the minimization problem (3.50) when there are no variables
€..n- The difference to [Kri08, Sec. 2.4.4], where the additional variables € are
not used, is that we can write the local problem as one minimization problem

while there two coupled minimization problems are needed.

3.3 Discretization

The linear partial differential equation (3.30) and the system of equations (3.43)-
(3.47) should be solved numerically on the space-time-cylinder 2 x (0,7") with
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T > 0 and Q C R? bounded Lipschitz domain. We need boundary conditions

for the variables m, & and &;,. As boundary conditions Dirichlet- and

sorp? €mln
homogeneous Neumann boundary conditions are considered, so e.g. for n we have

N = 1ND,i onI'p x (0,7)
DVn,-v=20 on 'y x (0,7)

with v the outer normal of the domain. The boundary parts I'p, ['y form a
disjunct partitioning of OS2
0N =TpUTly

where I'p is closed.

Dirichlet boundary conditions are used at the inflow boundary (q-v < 0) while
homogeneous Neumann boundary conditions are used at the rest of the boundary.
At that parts of the boundary where the flow is tangential to the boundary
(g-v = 0) homogeneous Neumann boundary conditions describe an impermeable
barrier. At the outflow boundary (g - v > 0) homogeneous Neumann boundary
conditions imply that the solute can leave the domain driven by advection but
not driven by dispersion or diffusion.

When Dirichlet values for the concentrations ¢ are give