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Chapter 1

Introduction

There are numerous examples of abandoned polluted areas caused by old indus-

trial plants. It is not possible to remediate all of those areas. So it is necessary

to get an assessment which polluted area is most dangerous. For example a

nearby river can be at risk of contamination. Such an assessment can be given

by a numerical simulation of the pollutant distribution in the soil. With help

of the numerical results one can see if a pollutant reaches the river or will be

degraded before. The needed mathematical models for reactive transport (see

e.g. [SM96a], [SM96b], [Bet96]) are well known. So if all model parameters are

known sufficiently accurate reliable predictions are possible.

1.1 Current State of the Research

One method for solving reactive transport problems, which is widely used, is

operator splitting. Here the problem is split into a chemical and a transport

problem. The advantage is that the problem decomposes in two subproblems

and so this approach is easier to implement. Mainly there are two types of split-

ting schemes, the sequential non-iterative approach (SNIA) and the sequential

iterative approach (SIA). For example the software SPECY uses a non-iterative

operator splitting scheme (see [Car01]). But using non-iterative operator splitting

schemes there is the problem that these methods lead to an operator splitting

error (see e.g. [VM92], [BMCB97], [CMB04]). To circumvent this problem an it-

erative operator splitting scheme can be used. For example the software HYTEC

uses an iterative operator splitting scheme (see [vdLWLG03]). But an iterative

operator splitting scheme needs many iteration steps and requires small time step

sizes to converge in chemically difficult cases and so it is not very effective (see

e.g. [SCA00]).

10



1.1. CURRENT STATE OF THE RESEARCH 11

The other method besides operator splitting for solving reactive transport

problems is the global implicit approach (GIA). One method following this ap-

proach, which is known for several years, is the direct substitutional approach

(DSA). For example the code MIN3P (see [MFB02], [May99]) uses this method.

One disadvantage of DSA is that it leads to a nonlinear system which is difficult

to solve numerically. Another disadvantage is that there is no decomposition in

chemical problem and transport problem and so it is more difficult to implement.

A comparison of DSA and SIA can be found in [SCA00].

Twenty years ago [YT89] concludes that operator splitting is preferable. But

in the recent time the global implicit approach gets more and more popular

and new global methods were developed. One is to use a differential algebraic

equation (DAE) solver (see [dD08], [dDEK09]). Here the transport equations, the

mass balance equations and the equations describing the chemical equilibrium

are solved in one very large system of equations. The disadvantage is that this

approach leads to excessive computation times. The other one is the global

method out of [AK09], which uses a resolution function to handle the chemical

problem. Such a resolution function is also applied in the reduction scheme which

will be used in this work.

Solving reactive transport problems, the handling of the equilibrium condi-

tions of equilibrium mineral reactions is a crucial point for the effectiveness of

the code. In the literature different approaches for the handling of equilibrium

minerals can be found. The first one is a swap procedure (see [Bet96], [CMB02]).

If the solution is unphysical (negative mineral concentration or supersaturated

mineral) the “most undersaturated mineral” is removed from the basis or, if there

is no undersaturated mineral, the “most supersaturated mineral” is added to the

basis and then a new solution is computed. This procedure is repeated until

one gets a physical solution. The second possibility is to rewrite the reactive

transport problem as a moving boundary problem with a generalized Rankine–

Hugoniot condition (see [Lic85], [Lic96]). The third possibility is to rewrite the

chemical subproblem as a minimization problem with constraints and to solve

this problem with an optimization method, for example an interior point method

(see [Saa96]).

In this work a new handling of equilibrium minerals suggested in [Krä08,

Chap. 4] is used. The equilibrium condition is rewritten as a complementarity

problem. Then the complementarity condition is replaced by an equivalent equa-

tion and the resulting problem is solved with a semismooth Newton method. The

advantages are that only one Newton iteration is necessary (contrary to swap pro-

cedure), the same equations are valid on the whole domain (contrary to moving

boundary) and no operator splitting between chemistry and transport is needed
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(contrary to minimization formulation).

Reaction networks with many species lead to coupled systems with many

equations and so simulating such a problem requires much CPU time. So it is

desirable to find strategies to reduce the amount of CPU time. In the literature

one can find different reformulation techniques that try to reduce the number

of equations in the coupled nonlinear system. The first one is the elimination of

constant activity species (minerals, water) in [SAC98]. A more enhanced method,

which leads to the decoupling of components in certain situations, can be found

in [MCAS04]. For a comparison with the reduction scheme, which will be used in

this work, see [KK07, Sec. 5.2, 5.3]. For the example considered there the number

of coupled nonlinear differential equations by use of the reduction scheme is half

the number as by use of the method out of [MCAS04]. In [Fri91], [FR92] a linear

variable transformation is described causing the decoupling of some equations. A

discussion of some problems arising when this method is used as a GIA method

can be found in [KK05, Sec. 3].

This work is based on the newly developed reduction scheme which is pro-

posed in [KK05], [KK07], [Krä08]. There a linear transformation of the equations

and variables is performed such that some linear differential equations decouple

form the nonlinear system. The key point is that the transformation is performed

separately for the variables that correspond to mobile species and that ones cor-

responding to immobile species. In addition a resolution function eliminating

the local equations (equilibrium conditions, ordinary differential equations for

immobile species) is employed. The number of equations in the resulting coupled

nonlinear system is always smaller or equal than by use of the Morel formulation

(see [HKK09]). In [Hof05] simple problems were solved successfully with this new

reduction scheme.

Regarding existence results for reactive transport problems, a proof of a global

solution in the case of homogeneous kinetic reactions according to law of mass

action can be found in [Krä08, Chap. 3]. Also in [Krä08, Chap. 3] there is a

existence proof for heterogeneous kinetic reactions under certain restrictions on

the exchange reactions.

1.2 Objective of this Work

The goal of this work is to modify the reduction scheme which is presented

in [KK05], [KK07], [Krä08] and implemented in [Hof05] in such a way that it

is possible to apply the reduction scheme also to realistic problems. Hence

it is necessary that the modified reduction scheme can handle the numerical
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difficulties arising from concentration values varying over many orders of mag-

nitude and from large reaction constants. To show that the modified reduc-

tion scheme can really be applied to realistic problems the MoMaS benchmark

(see [BBC+], [CKK09]), a numerically very challenging reactive transport bench-

mark, should be computed successfully. Furthermore the existence of a global

solution for the kinetic mineral problem should be proven.

1.3 Overview of the Work

The used reactive transport model is described in Chapter 2. The model includes

kinetic reactions according to law of mass action, equilibrium reactions according

to law of mass action and mineral reactions in equilibrium. For Monod reactions it

is referred to [KK05, Sec. 5] and kinetic mineral reactions are subject of Chapter 5.

The reduction scheme presented in Chapter 3 is an extension to that one

in [KK05], [KK07], [Hof05], [Krä08]. In Section 3.1 the equations of the reduc-

tion scheme are derived by taking linear combinations of the original equations

and performing a linear variable transformation. Doing so some linear partial dif-

ferential equations decouple from the nonlinear system. In Section 3.2 the number

of equations in the coupled nonlinear system is diminished even more with help of

a resolution function. Some equations, that (after space discretization) depend

only on the values of one nodal point, are solved for certain variables and are

plugged into the other ones. The existence of such a resolution function is proven

in two ways. In Section 3.3 the used discretization techniques are explained. As

no explicit formula of the resolution function is known it is necessary to use a

Newton iteration for the evaluation of the resolution function (Sec. 3.3.2). The

evaluation of the resolution function is called local problem while solving the

remaining coupled nonlinear system is called global problem.

In Section 3.4 the special numerical treatment due to the numerical difficul-

ties of realistic problems is described. It is necessary to use the logarithms of the

concentrations and a special solver for the linear system in the local problems be-

cause of concentration values varying over many orders of magnitude (Sec. 3.4.1).

As the logarithms are used it is essential that the concentration values are pos-

itive. To ensure this it is necessary to modify the starting value of the global

Newton iteration (Sec. 3.4.2) and to cut off the global Newton steps (Sec. 3.4.3).

For convection dominated problems a stabilization is needed (Sec. 3.4.4). Also an

anisotropic diffusion tensor can lead to negative concentration values. To avoid

this an adapted grid is used (Sec. 3.4.5).

In Section 3.5 it is analyzed why this method has good convergence properties.
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It is shown that the derivative of the resolution function, which appears in the

global Jacobian matrix, is bounded (Sec. 3.5.1). For a representative example it

is shown that for ∆t = 0 the condition number of the global Jacobian matrix is

bounded by a fixed number (Sec. 3.5.2) and that for the other limit case, a very

large time step size, the problem decomposes in well conditioned subproblems

(Sec. 3.5.3).

In Chapter 3.6 variants of the used formulation are mentioned. The three

variants in the Sections 3.6.1-3.6.3 have less equations in the global problem

but it turns out that all these variants are not applicable to realistic problems.

In 3.6.1 the original formulation out of [KK07], [Krä08] is considered. Here the

derivatives of the resolution function are not bounded and so this method is not

convergent for realistic problems. In Section 3.6.2 some variables are eliminated

to get a smaller coupled system. This variant has a ill-conditioned Jacobian

for large time step sizes. So it converges only for very small time step sizes.

In Section 3.6.3 some other variables are eliminated. It can be shown that the

resulting method is equivalent to that one in Section 3.6.2. Instead of using a

resolution function it is possible to eliminate the local equations on the linear

level (Sec. 3.6.4). But it turns out that using a resolution function is much more

efficient.

In Section 3.7 the implementation developed in the framework of this the-

sis is described. In Section 3.8 the connections between the reduction scheme

and the widely used Morel formulation are shown: The variables used in the

Morel formulation are linear combinations of the variables used in the reduction

scheme. In absence of kinetic reactions the local problem of the reduction scheme

is equivalent to the chemical subproblem of the Morel formulation and the equa-

tions in the transport problem of the Morel formulation are linear combinations

of the equations of the global problem of the reduction scheme. So a chemical

solver (Morel formulation) can be used to solve the local problem. In this sense

a modular implementation of the reduction scheme is possible. In Section 3.9 a

generalization of the reduction scheme is presented. The generalization is con-

structed in such a way that the reduction scheme out of the Sections 3.1-3.4 and

the Morel formulation are special cases of the generalized formulation.

The MoMaS–benchmark [BBC+] is a numerically very challenging reactive

transport benchmark. Using the implementation of the reduction scheme com-

putations of this benchmark were carried out. In Section 4.1 a short problem for-

mulation is given. In Section 4.2 the reduction scheme is applied to the MoMaS–

benchmark. The results of the computations can be found in Section 4.3. In

Section 4.4 this results are compared with that ones of other benchmark partic-

ipants. In Section 4.5 the implementation of the generalized formulation of the
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reduction scheme (see Sec. 3.9) is used to compare the reduction scheme with the

global ODE approach and with iterative splitting (SIA). The different methods

used by the benchmark participants are briefly presented in Section 4.6. Despite

of the different methods used to solve the transport the results are very similar.

So in Section 4.7 a suggestion for a second version of the benchmark is given, in

which more differences are expected.

Chapter 5 handles the kinetic mineral problem. For this problem there are

three different mathematical formulations. Concerning weak solutions these for-

mulations are equivalent (Sec. 5.1). In Section 5.2 the three different formulations

are compared regarding algorithmic aspects. In Section 5.3 the reduction scheme

is applied to the kinetic mineral problem and with the resulting method travelling

waves are computed. Last the existence of a global solution of the kinetic mineral

problem is proven (Sec. 5.4).



Chapter 2

Mathematical Model

2.1 Mass Transport

The following physical quantities are required for the modelling:

• concentration vector c = (c1, . . . , cI)
T : amount of substance of all mobile

species per volume water

• water content θ: volume water per total volume

• Darcy flow q: volume water per time and cross-sectional area

• concentration vector c̄ = (c̄I+1, . . . , c̄I+Ī)
T : amount of substance of all

immobile species per volume water

The number of the mobile species is denoted with I and the number of the

immobile species with Ī.

In this work the concentrations of the immobile species are given in amount

of substance per volume water like in [YT89]. Another possibility for the unit

of the immobile concentrations would be amount of substance per mass earth.

The advantage of the choice taken here is that it is possible to add mobile and

immobile concentrations without the need of multiplying one of them with a

conversion factor.

Mass balance for the i-th mobile species leads to

∂t(θci) + ∇ · (qci) + ∇ · ji = fi , i = 1, . . . , I

with the diffusive mass flow ji and the source/sink term fi. The mass flow ji is

caused by two different physical phenomena. The first one is mechanic dispersion

ji,1 = −θDmech∇ci

16



2.2. CHEMICAL REACTIONS 17

with the symmetric positive definite mechanic dispersion matrix Dmech, which

depends on q/θ. The second one is the molecular diffusion according to Fick’s

law

ji,2 = −θddiff,i∇ci ,

where ddiff,i is the diffusion coefficient of the i-th species.

In the following the Scheidegger diffusion/dispersion tensor Di (see [Sch61])

is used to describe these two phenomena

ji = −
(

(θddiff,i + βt|q|)I + (βl − βt)
q ⊗ q

|q|
︸ ︷︷ ︸

=: Di

)

∇ci (2.1)

with the notation I for the identity matrix and the two parameters βl and βt,

the longitudinal and the transversal dispersion coefficients, with βl > βt.

Altogether for every mobile species the partial differential equation

∂t(θci) −∇ · (Di∇ci − qci) = fi , i = 1, . . . , I (2.2)

is obtained. For every immobile species mass balance leads to the ordinary dif-

ferential equation

∂t(θc̄i) = fi , i = I + 1, . . . , I + Ī . (2.3)

2.2 Chemical Reactions

The chemical reactions are given by the stoichiometric matrix S. Each column

of S corresponds to one chemical reaction. The number of chemical reactions

is named J . The entries sij, called stoichiometric coefficients, specify if and on

which scale a species takes part in a chemical reaction. A negative sign of the

stoichiometric coefficient denotes that the species is an educt and a positive sign

stands for a product.

The reaction rate vector r = (r1, . . . , rJ)T specifies how fast the chemical re-

actions proceed, i.e., how many moles per volume and time are reacting. These

reaction rates appear in the source/sink term fi. As all chemical reactions con-

sidered here can only take place in aqueous solution there is a factor θ in front of

rj. So the source/sink term is the following sum of the reaction rates

fi =
J∑

j=1

θsijrj .



18 CHAPTER 2. MATHEMATICAL MODEL

2.2.1 Kinetic Reactions According to Law of Mass Action

Concerning kinetic reactions according to the law of mass action the rate term

is given by the difference of the forward and the backward reaction rate (see

e.g. [Bet96])

rkin,j(c, c̄) = kf,j

I+Ī∏

i=1
sij<0

c
−sij

i − kb,j

I+Ī∏

i=1
sij>0

c
+sij

i . (2.4)

Here kf,j denotes the forward coefficient and kb,j the backward coefficient of the

chemical reaction. For the sake of clarity the bars over the ci regarding immobile

species are left out. The number of reactions of this type is denoted with Jkin.

Another kind of kinetic reactions are biodegradation reactions, that can be

described with help of the Monod model. A presentation of the model and how

to apply the reduction mechanism (see Chap. 3) to this kind of reactions can be

found in [KK05, Sec. 5].

2.2.2 Equilibrium Reactions According to Law of Mass

Action

Reactions that are fast in comparison to the flow and dispersion/diffusion pro-

cesses can be assumed to adopt an stationary state at all times, i.e., on every

point an equilibrium condition holds. If the j-th equilibrium reaction can be

described by the law of mass action the j-th equilibrium condition reads

φj(c, c̄) := − ln(Kj) +
I+Ī∑

i=1

sij ln(ci) = 0 (2.5)

with the equilibrium constant Kj.

In case of equilibrium reactions the reaction rate req,j is not known. So req,j

gets an additional unknown and the equilibrium condition (2.5) is added to the

system of equations (2.2), (2.3) as an additional equation.

2.2.3 Equilibrium Minerals

In the mineral case the sum analogous to that one in (2.5) does not depend on the

mineral concentration. Furthermore we assume that no other immobile species

take part in the mineral reaction. So if the j-th equilibrium reaction is a mineral

reaction we define

ψj(c) := − ln(Kj) +
I∑

i=1

sij ln(ci) (2.6)
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where it is assumed that the stoichiometric coefficient of the mineral is positive.

In this case the equilibrium condition consisting of equations and inequalities

reads
(

ψj(c) = 0 ∧ c̄min,j ≥ 0
)

∨
(

ψj(c) > 0 ∧ c̄min,j = 0
)

where c̄min,j denotes the concentration of that mineral taking part in the j-th

equilibrium reaction. The first case, where the mineral is present, is called sat-

urated and the second one, where no mineral is existing without saturation, is

called undersaturated. It is possible to rewrite this condition as a complemen-

tarity condition (see [PHKK06] or [Krä08])

ψj(c) c̄min,j = 0 ∧ ψj(c) ≥ 0 ∧ c̄min,j ≥ 0 .

This complementarity condition can be replaced by the equivalent algebraic equa-

tion (see e.g. [Kan04])

φj(c, c̄min) := min
{
ψj(c), c̄min,j

}
= 0 . (2.7)

This equation can be added to the system (2.2), (2.3) like in the case of equilib-

rium according to law of mass action.

2.3 Reactive Transport Model

The columns of the stoichiometric matrix S are sorted in the following way. First

we take the columns associated with equilibrium reactions, then the columns

associated with kinetic reactions. The submatrices with the index 1 contain the

stoichiometric coefficients of the mobile species and the ones with index 2 the

coefficients of the immobile species. So we get the block structure

S =
(
Seq Skin

)
=

(
S1

S2

)

=

(
S1,eq S1,kin

S2,eq S2,kin

)

. (2.8)

The number of all equilibrium reactions is denoted Jeq .

In the present of kinetic and equilibrium reactions the source/sink terms fi

are

fi =

Jkin∑

j=1

θskin,ijrkin,j(c, c̄) +

Jeq∑

j=1

θseq,ijreq,j .

Plugging this in (2.2), (2.3) and adding the equilibrium conditions (2.5), (2.7)
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leads to

∂t(θci) + Lici =

Jkin∑

j=1

θskin,ijrkin,j(c, c̄) +

Jeq∑

j=1

θseq,ijreq,j i = 1, . . . , I

∂t(θc̄i) =

Jkin∑

j=1

θskin,ijrkin,j(c, c̄) +

Jeq∑

j=1

θseq,ijreq,j i = I + 1, . . . , I + Ī

φj(c, c̄) = 0 j = 1, . . . , Jeq

with the linear transport operator Liu := −∇ · (Di∇u − qu). This system of

equations is widely used for modelling reactive transport (compare e.g. [SAC98,

eq. (19),(1)]). In matrix notation this system reads

∂t(θc) + Lc = θS1,kinrkin(c, c̄) + θS1,eqreq

∂t(θc̄) = θS2,kinrkin(c, c̄) + θS2,eqreq

φ(c, c̄) = 0 .

(2.9)



Chapter 3

The Reduction Scheme

The reduction scheme presented in this chapter is an extension to the reduction

scheme described in [KK05], [KK07], [Hof05] and [Krä08]. To apply the reduction

scheme the assumption that the diffusion coefficient ddiff,i is the same for all

species is needed. This assumption is justified because the molecular diffusion is

small compared to the mechanic dispersion.

3.1 Transformation of the System of Equations

We sort the equilibrium reactions in the following order. First we take the re-

actions in that only mobile species take part, then the equilibrium sorption re-

actions, i.e., heterogeneous without mineral species, and last the equilibrium

mineral reactions:

S1,eq =
(
S1,mob S1,sorp S1,min

)
, S2,eq =

(
0 S2,sorp 0

0 0 IJmin

)

(3.1)

IJmin
denotes the identity matrix of the size Jmin. The number of the reactions

of each type is denoted with Jmob, Jsorp and Jmin, respectively. Also the immobile

species are sorted. Here we take the nonminerals first and then the minerals:

c̄ =

(
c̄nmin

c̄min

)

The number of nonminerals1 is named Īnmin and the number of minerals Īmin.

We assume that we can write S1,sorp in the form

S1,sorp =
(
S1,sorp,li S1,minAld

)
(3.2)

1In this work nonminerals always denotes all immobile species that are not a mineral

21
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with a coefficient matrix Ald such that the columns of
(
S1,mob S1,sorp,li S1,min

)

are linear independent2. The number of columns of the matrix S1,sorp,li is denoted

Jsorp,li. Hence the coefficient matrix Ald has the size Jmin × (Jsorp − Jsorp,li).

When the linear independence condition is not fulfilled because some columns

of
(
S1,mob S1,sorp,li

)
are linear dependent it is possible to apply preprocessing

steps described in [KK07, Chap. 4] to make also in this situation the use of the

reduction scheme possible. Furthermore we assume that the columns of S2,sorp

are linear independent.

Then the matrices S1 and S2, containing all entries of S connected to mobile

and immobile species, respectively, are of the form:

S1 =
(
S1,eq S1,kin

)
=

(
S1,mob S1,sorp,li S1,minAld S1,min S1,kin

)

S2 =
(
S2,eq S2,kin

)
=

(

0 S2,sorp 0 S̃2,kin

0 0 IJmin
0

)

(3.3)

It is not allowed that an equilibrium mineral participates in a kinetic reaction.

So the stoichiometric coefficients in S2,kin connected to minerals are zero. Hence

it is possible to write S2,kin as

(

S̃2,kin

0

)

.

With (3.3) we can rewrite the system (2.9) as

∂t(θc) + Lc = θS1

(
req

rkin(c, c̄)

)

(3.4)

∂t(θc̄) = θS2

(
req

rkin(c, c̄)

)

(3.5)

φ(c, c̄) = 0 . (3.6)

Now we define the matrices S∗
1 and S∗

2 that contain a maximal system of

linear independent columns of S1 and S2, respectively. Because of the linear

independence assumption (see (3.2)) it is always possible to choose S∗
1 and S∗

2

such that the matrices have the form

S∗
1 =

(
S1,mob S1,sorp,li S1,min S∗

1,kin

)
(3.7)

S∗
2 =

(
S2,sorp 0 S∗

2,kin

0 IJmin
0

)

(3.8)

where S∗
1,kin consists of some of the columns of S1,kin and S∗

2,kin consists of some

of the columns of S̃2,kin. For clarity we do not put a tilde on S∗
2,kin. The number

2In [Krä08, Chap. 4] it is assumed that the columns of
(
S1,mob S1,sorp S1,min

)
are linear

independent.
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of columns of S∗
1,kin is denoted J∗

1,kin and the number of columns of S∗
2,kin is

denoted J∗
2,kin.

There are always matrices A1 and A2 such that

Si = S∗
i Ai i = 1, 2 . (3.9)

With the block structure from (3.3) for S1, S2 and the block structure from (3.7),

(3.8) for S∗
1, S∗

2, respectively, we get for A1 and A2 the block structure

A1 =








IJmob
0 0 0 A1,mob

0 IJsorp,li
0 0 A1,sorp

0 0 Ald IJmin
A1,min

0 0 0 0 A1,kin








A2 =





0 IJsorp
0 A2,sorp

0 0 IJmin
0

0 0 0 A2,kin



 .

(3.10)

Then we construct the matrices S⊥
1 and S⊥

2 . These matrices consist of a

maximal system of linear independent vectors that are orthogonal to all columns

of S∗
1 and S∗

2, respectively. So S⊥
1 has I − Jmob − Jsorp,li − Jmin − J∗

1,kin columns

and S⊥
2 has Ī − Jsorp − Jmin − J∗

2,kin columns. We choose matrices B1, B2 being

of the same size as S∗
1, S∗

2, respectively, that fulfil the condition that the columns

of Bi, S⊥
i form a basis of the whole space. Furthermore B2 should be of the

form (
∗ 0 ∗

0 IJmin
0

)

(3.11)

like it is S∗
2. The simplest choice fulfilling these conditions is B1 = S∗

1, B2 = S∗
2.

In [KK05], [KK07], [Krä08] the reduction scheme is only formulated for this

choice. Analogously to S⊥
1 , S⊥

2 matrices B⊥
1 , B⊥

2 are constructed from B1, B2.

There hold the orthogonality relations

S⊥
i

T
S∗

i = 0, BT
i B⊥

i = 0 . (3.12)

With the condition that the columns of Bi, S⊥
i form a basis of the whole

space it is possible to represent S∗
i , B⊥

i as

S∗
i = BiN i + S⊥

i M i , B⊥
i = BiU i + S⊥

i V i .

with the quadratic coefficient matrices N i, V i and the rectangular coefficient

matrices M i, U i. Multiplication from left with S∗
i
T and B⊥

i

T
, respectively, leads

to

S∗
i
T
S∗

i = S∗
i
T
BiN i , B⊥

i

T
B⊥

i = B⊥
i

T
S⊥

i V i .
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Since the columns of S∗
i and B⊥

i are linear independent according to the con-

struction of the matrices, the matrices on the left hand side are invertible. It

follows that also the quadratic matrices S∗
i
T
Bi and B⊥

i

T
S⊥

i , respectively, on the

right hand side as well as the transposed of these matrices are invertible.

Multiplying from left block (3.4) with

(
S⊥

1

T
B⊥

1

)−1
S⊥

1

T
and (BT

1 S∗
1)

−1
BT

1

and block (3.5) with

(
S⊥

2

T
B⊥

2

)−1
S⊥

2

T
and (BT

2 S∗
2)

−1
BT

2

and plugging in (3.9) leads to

(
S⊥

1

T
B⊥

1

)−1
S⊥

1

T (
∂t(θc) + Lc

)
= θ

(
S⊥

1

T
B⊥

1

)−1
S⊥

1

T
S∗

1A1

(
req

rkin(c, c̄)

)

(BT
1 S∗

1)
−1

BT
1

(
∂t(θc) + Lc

)
= θ(BT

1 S∗
1)

−1
BT

1 S∗
1A1

(
req

rkin(c, c̄)

)

(
S⊥

2

T
B⊥

2

)−1
S⊥

2

T
∂t(θc̄) = θ

(
S⊥

2

T
B⊥

2

)−1
S⊥

2

T
S∗

2A2

(
req

rkin(c, c̄)

)

(BT
2 S∗

2)
−1

BT
2 ∂t(θc̄) = θ(BT

2 S∗
2)

−1
BT

2 S∗
2A2

(
req

rkin(c, c̄)

)

φ(c, c̄) = 0 .

Since the matrices, the equations are multiplied with, are constant in time and

space the matrix multiplication commutates with the differential operators. Using

this and the orthogonality relations (3.12) we get

∂t

(

θ
(
S⊥

1

T
B⊥

1

)−1
S⊥

1

T
c
)

+ L
(
S⊥

1

T
B⊥

1

)−1
S⊥

1

T
c = 0

∂t

(
θ(BT

1 S∗
1)

−1
BT

1 c
)

+ L(BT
1 S∗

1)
−1

BT
1 c = θA1

(
req

rkin(c, c̄)

)

∂t

(

θ
(
S⊥

2

T
B⊥

2

)−1
S⊥

2

T
c̄
)

= 0

∂t

(
θ(BT

2 S∗
2)

−1
BT

2 c̄
)

= θA2

(
req

rkin(c, c̄)

)

φ(c, c̄) = 0 .

This implies the following definition of the new variables:

η :=
(
S⊥

1

T
B⊥

1

)−1
S⊥

1

T
c, ξ := (BT

1 S∗
1)

−1
BT

1 c

η̄ :=
(
S⊥

2

T
B⊥

2

)−1
S⊥

2

T
c̄, ξ̄ := (BT

2 S∗
2)

−1
BT

2 c̄

(3.13)



3.1. TRANSFORMATION OF THE SYSTEM OF EQUATIONS 25

The vector ξ has Jmob + Jsorp,li + Jmin + J∗
1,kin and the vector η has I − Jmob −

Jsorp,li−Jmin−J∗
1,kin entries. So

(
ξ

η

)

is an representation of the vector c regarding

to another basis of the R
I . Analogously ξ̄ has Jsorp + Jmin + J∗

2,kin and η̄ has

Ī−Jsorp−Jmin−J∗
2,kin entries and the vector

(
ξ̄

η̄

)

is an representation of the vector

c̄ regarding to another basis of the R
Ī . The variables ξ and ξ̄ are partitioned

analogously to the partitioning of the columns of S∗
1 and S∗

2, respectively, in (3.7),

(3.8) in

ξ =








ξmob

ξsorp

ξmin

ξkin








, ξ̄ =





ξ̄sorp

ξ̄min

ξ̄kin



 . (3.14)

As retransformation we get

c = S∗
1ξ + B⊥

1 η

c̄ = S∗
2ξ̄ + B⊥

2 η̄ .

That this is the retransformation of (3.13) can easily be seen by plugging the

retransformation in (3.13) together with the orthogonality relations (3.12).

As the matrices S∗
2 and B2 are of the form (3.11) the transformed variables

ξ̄sorp and ξ̄kin depend only on c̄nmin and not on c̄min. Furthermore as the second

column block of (3.11) consists of unit vectors the last Jmin entries in every

column of S⊥
2 and B⊥

2 are always zero. Hence also η̄ depends only on c̄nmin and

not on c̄min. So we can write B⊥
2 as

(

B̃
⊥
2

0

)

. Using this and the partitionings

(3.7), (3.8), (3.14) we can rewrite the retransformation as

c = S1,mobξmob + S1,sorp,liξsorp + S1,minξmin + S∗
1,kinξkin + B⊥

1 η

c̄ =

(

S2,sorpξ̄sorp + S∗
2,kinξ̄kin + B̃

⊥
2 η̄

ξ̄min

)

.
(3.15)

Then the equilibrium reaction rates req and the equilibrium conditions φ are

partitioned analogously to S1,eq in (3.1) in req =





rmob

rsorp

rmin



 and φ =





φmob

φsorp

φmin



,

respectively. Furthermore the vector rsorp is partitioned analogously to S1,sorp

in (3.2) in rsorp =

(
rsorp,li

rsorp,ld

)

. Using this, the block structure of Ai (3.10), the
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definition of the transformed variables (3.13) and the partitioning of ξ, ξ̄ (3.14)

we get

∂t(θη) + Lη = 0

∂t







θ








ξmob

ξsorp

ξmin

ξkin















+ L








ξmob

ξsorp

ξmin

ξkin








= θ








IJmob
0 0 0 A1,mob

0 IJsorp,li
0 0 A1,sorp

0 0 Ald IJmin
A1,min

0 0 0 0 A1,kin

















rmob

rsorp,li

rsorp,ld

rmin

rkin(c, c̄)










∂t(θη̄) = 0

∂t



θ





ξ̄sorp

ξ̄min

ξ̄kin







 = θ





0 IJsorp
0 A2,sorp

0 0 IJmin
0

0 0 0 A2,kin












rmob

rsorp

rmin

rkin(c, c̄)








φmob(c) = 0

φsorp(c, c̄nmin) = 0

φmin(c, c̄min) = 0 .

Analogously to S1,sorp in (3.2) the vector ξ̄sorp is split in

ξ̄sorp =

(
ξ̄sorp,li

ξ̄sorp,ld

)

. (3.16)

Expanding leads to

∂t(θη) + Lη = 0 (3.17)

∂t(θξmob) + Lξmob = θ(rmob + A1,mobrkin(c, c̄)) (3.18)

∂t(θξsorp) + Lξsorp = θ(rsorp,li + A1,sorprkin(c, c̄)) (3.19)

∂t(θξmin) + Lξmin = θ(rmin + Aldrsorp,ld + A1,minrkin(c, c̄)) (3.20)

∂t(θξkin) + Lξkin = θA1,kinrkin(c, c̄) (3.21)

∂t(θη̄) = 0 (3.22)

∂t(θξ̄sorp,li) = θ(rsorp,li + A2,sorp,lirkin(c, c̄)) (3.23)

∂t(θξ̄sorp,ld) = θ(rsorp,ld + A2,sorp,ldrkin(c, c̄)) (3.24)

∂t(θξ̄min) = θrmin (3.25)

∂t(θξ̄kin) = θA2,kinrkin(c, c̄) (3.26)

φmob(c) = 0 (3.27)

φsorp(c, c̄nmin) = 0 (3.28)

φmin(c, c̄min) = 0 . (3.29)
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Here A2,sorp,li denotes the submatrix of A2,sorp which contains the first Jsorp,li

rows of A2,sorp and A2,sorp,ld denotes the submatrix of A2,sorp which contains the

last (Jsorp − Jsorp,li) rows of A2,sorp.

To compute the equilibrium reaction rates req = (rmob, rsorp, rmin)T is not of

interest. So when an equilibrium reaction rate appears in only one equation this

equation can be left out. This is the case for the rate rmob in block (3.18). By

subtracting block (3.23) from block (3.19) and block (3.24) multiplied with Ald

from block (3.20) it can be achieved that rsorp,li and rsorp,ld appear only in block

(3.23) and block (3.24), respectively. Likewise by subtracting block (3.25) from

block (3.20) it can be achieved that rmin appears only in block (3.25). Then also

the blocks (3.23)-(3.25) can be left out. Doing so we get

∂t(θη) + Lη = 0 (3.30)

∂t(θξsorp) + Lξsorp = ∂t(θξ̄sorp,li) + θ(A1,sorp − A2,sorp,li)rkin(c, c̄) (3.31)

∂t(θξmin) + Lξmin = ∂t(θξ̄min) + Ald∂t(θξ̄sorp,ld)

+ θ(A1,min − AldA2,sorp,ld)rkin(c, c̄)
(3.32)

∂t(θξkin) + Lξkin = θA1,kinrkin(c, c̄) (3.33)

∂t(θη̄) = 0 (3.34)

∂t(θξ̄kin) = θA2,kinrkin(c, c̄) (3.35)

φmob(c) = 0 (3.36)

φsorp(c, c̄nmin) = 0 (3.37)

φmin(c, c̄min) = 0 . (3.38)

The blocks (3.30) and (3.34) decouple from the rest of the system. So these

equations can be solved independent from the other ones. (3.30) consists of linear

PDEs for that a numerical solution can be computed with standard methods.

For θ constant in time (3.34) says that η̄ is always equal to its initial value. In

numerical computations the decoupled equations (3.30) and (3.34) are solved at

the beginning of every time step and afterwards the remaining system is solved.

In the following we assume that the solution of the linear PDEs (3.30) and the

ODEs (3.34) are known and focus on solving the remaining system.

The blocks (3.35)-(3.38) do not contain any space derivative. These equations

are called local equations, because after space discretization these equations do

only depend on the values of the variables at one point. In the next section we

will see that (after time discretization of (3.35) with the implicit Euler method)

there is a resolution function solving these blocks for certain variables. Then we

can plug this resolution function in the remaining equations. So the system we

have to solve consists only of the blocks (3.31)-(3.33).



28 CHAPTER 3. THE REDUCTION SCHEME

3.2 Resolution Function

First we introduce the additional variables3

ξ̃ :=

(

ξ̃sorp

ξ̃min

)

:=

(
ξsorp − ξ̄sorp,li

ξmin − ξ̄min − Aldξ̄sorp,ld

)

. (3.39)

The motivation for this definition is that the new variables ξ̃sorp, ξ̃min are reaction

invariant regarding to the equilibrium reactions. This holds because in case of no

kinetic reactions and no transport (3.31) and (3.32) degenerate to (θξ̃sorp) = 0,

(θξ̃min) = 0, respectively. Due to the additional variables there is a need for

additional equations. Therefore the defining equations of ξ̃sorp and ξ̃min (3.39)

are added to the system (3.30)-(3.38).

Because of the additional variables there is a freedom of choice in the formula

for the calculation of the concentrations (3.15). Here the following possibility is

chosen: The defining equations for ξ̃sorp and ξ̃min (3.39) are solved for ξsorp and

ξmin and plugged in the retransformation (3.15). So we get the new retransfor-

mation ((3.2) and (3.16) are used to simplify the new retransformation)

c = S1,mobξmob + S1,sorp,liξ̃sorp + S1,sorpξ̄sorp + S1,min(ξ̃min + ξ̄min)

+ S∗
1,kinξkin + B⊥

1 η

c̄ =

(

S2,sorpξ̄sorp + S∗
2,kinξ̄kin + B̃

⊥
2 η̄

ξ̄min

)

.

(3.40)

3.2.1 Existence of the Resolution Function

Then the unknowns are split in so-called local unknowns

ξloc :=








ξmob

ξ̄sorp

ξ̄min

ξ̄kin








(3.41)

and global unknowns

ξglob :=










ξ̃sorp

ξ̃min

ξsorp

ξmin

ξkin










. (3.42)

3In [KK05], [KK07], [Krä08] no additional variables are used. See Section 3.6.1 for the

proceeding without additional variables.
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Now we want to prove the existence of a resolution function ξloc(ξglob) defined

by the equations (3.35)-(3.38) (after time discretization of (3.35) with the implicit

Euler method) and (c, c̄) given by (3.40). Note that the resolution function

ξloc(ξglob) does not depend on the variables ξsorp and ξmin because these variables

do not appear in the equations (3.35)-(3.38) and in the retransformation (3.40).

In a first step we show the existence of a resolution function

(ξ̃sorp, ξ̃min, ξkin, ξ̄kin) 7→ (ξmob, ξ̄sorp, ξ̄min)

for the blocks (3.36)-(3.38) under the assumption that a positive bound for the

concentrations exists. For that purpose the equilibrium mineral reactions are

split in inactive (index I) and active (index A) reactions:

S1,min =
(
S1,min,I S1,min,A

)

A reaction is called inactive when in min{− ln(Kj) +
∑I

i=1 smin,ij ln(ci), c̄min,j}
the minimum is attained in the first argument and otherwise called active.

The following proof is adapted from [KK07, Appendix]. To apply the implicit

function theorem we have to check that the matrix
∂(φmob,φsorp,φmin)

∂(ξmob,ξ̄sorp,ξ̄min)
is invertible.

We get

∂(φmob,φsorp,φmin)

∂(ξmob, ξ̄sorp, ξ̄min)

=






∂φmob

∂c
S1,mob

∂φmob

∂c
S1,sorp

∂φmob

∂c
S1,min

∂φsorp

∂c
S1,mob

∂φsorp

∂c
S1,sorp +

∂φsorp

∂c̄nmin
S2,sorp

∂φsorp

∂c
S1,min

∂φmin

∂c
S1,mob

∂φmin

∂c
S1,sorp

∂φmin

∂c
S1,min + ∂φmin

∂c̄min






=








ST
1,mobΛS1,mob ST

1,mobΛS1,sorp ST
1,mobΛS1,min

ST
1,sorpΛS1,mob ST

1,sorpΛS1,sorp + ST
2,sorpΛ̄nminS2,sorp ST

1,sorpΛS1,min

ST
1,min,IΛS1,mob ST

1,min,IΛS1,sorp ST
min,IΛS1,min

0 0
(
0 IA

)








with the diagonal matrices

Λ =






1/c1 0
. . .

0 1/cI




 , Λ̄nmin =






1/c̄I+1 0
. . .

0 1/c̄I+Īnmin




 .

We can rewrite the matrix as

∂(φmob,φsorp,φmin)

∂(ξmob, ξ̄sorp, ξ̄min)
=

(
M 1 M 2

0 IA

)
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with

M 1 =





ST
1,mob 0

ST
1,sorp ST

2,sorp

ST
1,min,I 0





(
Λ 0

0 Λ̄nmin

)(
S1,mob S1,sorp S1,min,I

0 S2,sorp 0

)

M 2 =





ST
1,mob

ST
1,sorp

ST
1,min,I



ΛS1,min,A .

Due to the linear independence assumption (see after (3.2)) the columns of the

matrices
(
S1,mob S1,min

)
and S2,sorp are linear independent. Therewith also the

columns of the matrix

(
S1,mob S1,sorp S1,min,I

0 S2,sorp 0

)

are linear independent. It

follows that the matrix M 1 is symmetric positive definite because the matrix
(
Λ 0

0 Λ̄nmin

)

is a diagonal matrix with only positive entries. So all diagonal

blocks of the upper triangular matrix

(
M 1 M 2

0 IA

)

are invertible and therefore

the whole matrix is invertible.

The next steps to show the existence of the resolution function

(ξ̃sorp, ξ̃min, ξkin) 7→ (ξmob, ξ̄sorp, ξ̄min, ξ̄kin)

for sufficiently small ∆t are exactly the same as in the proof of the existence

of a resolution function (ξsorp, ξkin) 7→ (ξmob, ξ̄sorp, ξ̄kin, ξ̄immo), which is done

in [KK07].

Using this resolution function and assuming that the η-equations (3.30) and

(3.34) are solved, (3.30)-(3.38) together with (3.39) can be reduced to

ξ̃sorp = ξsorp − ξ̄sorp,li(ξ̃sorp, ξ̃min, ξkin) (3.43)

ξ̃min = ξmin − ξ̄min(ξ̃sorp, ξ̃min, ξkin)

− Aldξ̄sorp,ld(ξ̃sorp, ξ̃min, ξkin)
(3.44)

∂t(θξ̃sorp) + Lξsorp = θ(A1,sorp − A2,sorp,li)rkin(ξ̃sorp, ξ̃min, ξkin) (3.45)

∂t(θξ̃min) + Lξmin = θ(A1,min − AldA2,sorp,ld)rkin(ξ̃sorp, ξ̃min, ξkin) (3.46)

∂t(θξkin) + Lξkin = θA1,kinrkin(ξ̃sorp, ξ̃min, ξkin) (3.47)

The reaction rates rkin are written as a function of ξ̃sorp, ξ̃min, ξkin. This can be

achieved by (3.40) and the resolution function. This nonlinear system will be

used for the numerical computations.
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3.2.2 As Minimum Problem

When there are no variables ξ̄kin it is possible to rewrite the local problem as

minimization problem. In [Krä08, Sec. 2.4.4] this is done for the case that there

are no equilibrium minerals and without using the variables ξ̃.

First we define the functional

G(c, c̄) :=
I∑

i=1

µi(ci)ci +
I+Ī∑

i=I+1

µ̄i(c̄i)c̄i

where

µi(ci) := µ0,i − 1 + ln(ci)

µ̄i(c̄i) :=

{

µ̄0,i − 1 + ln(c̄nmin,i) for i = I + 1, . . . , I + Īnmin

µ̄0,i for i = I + Īnmin + 1, . . . , I + Ī .

Thereby the vector

(
µ0

µ̄0

)

∈ R
I+Ī is a solution of the linear system

ST
eq

(
µ0

µ̄0

)

= − ln(K) . (3.48)

We calculate

∇G(c, c̄) =





µ0

µ̄0,nmin

µ̄0,min



 +





ln(c)

ln(c̄nmin)

0



 .

We see that ∇G is monotonically increasing for positive concentration values. So

it follows that G as a function of (c, c̄) is a convex functional.

With help of the retransformation (3.40) and for given values for the variables

η, ξ̃sorp, ξ̃min, ξkin, η̄ we can write G as a function of the variables ξmob, ξ̄sorp, ξ̄min.

Note that in this subsection we assume that there are no variables ξ̄kin. Also as

a function of (ξmob, ξ̄sorp, ξ̄min) G is a convex functional. This can be seen as

follows. Using the fact that ∂(c,c̄)

∂(ξmob,ξ̄sorp,ξ̄min)
= Seq, which follows immediately

from (3.40), we compute

∇(ξmob,ξ̄sorp,ξ̄min)G = ST
eq∇(c,c̄)G = ST

eq





µ0

µ̄0,nmin

µ̄0,min



 + ST
eq





ln(c)

ln(c̄nmin)

0



 (3.49)

Using again the fact that ∂(c,c̄)

∂(ξmob,ξ̄sorp,ξ̄min)
= Seq we get for the second derivatives

of G

D2
(ξmob,ξ̄sorp,ξ̄min)G = ST

eqΛSeq
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with Λ = diag(1/c1, . . . , 1/cI , 1/c̄I+1, . . . , 1/c̄I+Īnmin
, 0, . . . , 0). We know that the

matrix ST
eqΛSeq is positive semidefinite because Λ is a diagonal matrix with

nonnegative entries. Hence G as a function of (ξmob, ξ̄sorp, ξ̄min) is a convex

functional.

Now we consider the minimization problem

min G(ξmob, ξ̄sorp, ξ̄min)

s.t. ξ̄min ≥ 0 .
(3.50)

The Lagrange functional of this minimization problem reads

L(ξmob, ξ̄sorp, ξ̄min,ν) = G(ξmob, ξ̄sorp, ξ̄min) − ξ̄min · ν .

Using (3.49) and (3.48) we get for the associated KKT system

0 = ∇(ξmob,ξ̄sorp,ξ̄min)L

= ST
eq





µ0

µ̄0,nmin

µ̄0,min



 + ST
eq





ln(c)

ln(c̄nmin)

0



 +





0

0

−ν





= − ln(K) + ST
eq





ln(c)

ln(c̄nmin)

0



 +





0

0

−ν





=





φmob(c)

φsorp(c, c̄nmin)

ψmin(c)



 +





0

0

−ν



 ,

νj ξ̄min,j = 0, ξ̄min,j ≥ 0, νj ≥ 0 j = 1, . . . , Jmin

where the entries of ψmin are defined according to (2.6). Hence the minimization

problem (3.50) is equivalent to solving the equilibrium conditions (3.36)-(3.38).

So the resolution function ξloc(ξglob) of the previous subsection can also be defined

as the solution of the minimization problem (3.50) when there are no variables

ξ̄kin. The difference to [Krä08, Sec. 2.4.4], where the additional variables ξ̃ are

not used, is that we can write the local problem as one minimization problem

while there two coupled minimization problems are needed.

3.3 Discretization

The linear partial differential equation (3.30) and the system of equations (3.43)-

(3.47) should be solved numerically on the space-time-cylinder Ω × (0, T ) with
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T > 0 and Ω ⊂ R
2 bounded Lipschitz domain. We need boundary conditions

for the variables η, ξsorp, ξmin and ξkin. As boundary conditions Dirichlet- and

homogeneous Neumann boundary conditions are considered, so e.g. for η we have

ηi = ηD,i on ΓD × (0, T )

D∇ηi · ν = 0 on ΓN × (0, T )

with ν the outer normal of the domain. The boundary parts ΓD, ΓN form a

disjunct partitioning of ∂Ω

∂Ω = ΓD

.
∪ ΓN

where ΓD is closed.

Dirichlet boundary conditions are used at the inflow boundary (q·ν < 0) while

homogeneous Neumann boundary conditions are used at the rest of the boundary.

At that parts of the boundary where the flow is tangential to the boundary

(q ·ν = 0) homogeneous Neumann boundary conditions describe an impermeable

barrier. At the outflow boundary (q · ν > 0) homogeneous Neumann boundary

conditions imply that the solute can leave the domain driven by advection but

not driven by dispersion or diffusion.

When Dirichlet values for the concentrations c are given the needed values

for the variables η, ξsorp, ξmin and ξkin can be calculated with the definition of

these variables (see (3.13), (3.14)).

Additionally we need initial values for the variables η, η̄, ξ̃sorp, ξ̃min, ξkin

and ξ̄kin. Because of equation (3.34) η̄ is always equal to its initial value for θ

constant in time. ξ̄kin is computed in the local problem with help of the ordinary

differential equation (3.35). Again for given initial values for the concentrations

(c, c̄) the needed values for the transformed variables can be calculated with their

definitions (see (3.13), (3.14), (3.39)).

3.3.1 Space and Time Discretization

The used discretization for the partial differential equations should be illustrated

with the model equation

∂t(θu) −∇ · (D∇u − qu) = G(u).

This equation contains all types of terms that appear in the partial differential

equations (3.30), (3.45)-(3.47) (terms with time derivative, second space deriva-

tive, first space derivative and a nonlinear term not depending on any derivative).

First we need a variational formulation of this equation. We define the func-

tion space

H1
0,D(Ω) :=

{
v ∈ H1(Ω)|γ0(v) = 0 on ΓD

}
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where γ0 denotes the trace operator. First it is assumed that the given Dirichlet

values on ΓD are zero. We multiply the partial differential equation with a test

function v ∈ H1
0,D(Ω) and integrate over the domain Ω:

∫

Ω

∂t(θu)v dx −
∫

Ω

∇ · (D∇u)v dx +

∫

Ω

∇ · (qu)vdx =

∫

Ω

G(u)v dx

Partial integration of the diffusive term gives:
∫

Ω

∂t(θu)v dx+

∫

Ω

D∇u·∇v dx−
∫

∂Ω

D∇u·νv dσ+

∫

Ω

∇·(qu)vdx =

∫

Ω

G(u)v dx

The boundary integral vanishes because v = 0 on ΓD and D∇u · ν = 0 on

ΓN . So we get the variational formulation for homogeneous Dirichlet boundary

conditions:

Find u ∈ L2((0, T ), H1
0,D(Ω)) with u′ ∈ L2((0, T ), L2(Ω)) such that for almost

every t ∈ (0, T )
∫

Ω

∂t(θ(·, t)u(t))v dx +

∫

Ω

D(·, t)∇u(t) · ∇v dx +

∫

Ω

∇ · (q(·, t)u(t))vdx

=

∫

Ω

G(u(t))v dx ∀v ∈ H1
0,D(Ω)

and

u(0) = u0

The case inhomogeneous Dirichlet boundary conditions can be reduced to the

homogeneous case by replacing u through ũ + w with ũ ∈ L2((0, T ), H1
0,D(Ω))

and w ∈ H1(Ω) where w takes the given boundary values, i.e., γ0(w) = uD on

ΓD. Therewith we get the variational formulation:

Find ũ ∈ L2((0, T ), H1
0,D(Ω)) with ũ′ ∈ L2((0, T ), L2(Ω)) such that for almost

every t ∈ (0, T )
∫

Ω

∂t(θ(·, t)ũ(t))v dx +

∫

Ω

D(·, t)∇ũ(t) · ∇v dx +

∫

Ω

∇ · (q(·, t)ũ(t))vdx

= −
∫

Ω

∂t(θ(·, t)w)v dx −
∫

Ω

D(·, t)∇w · ∇v dx −
∫

Ω

∇ · (q(·, t)w)vdx

+

∫

Ω

G(ũ(t) + w)v dx ∀v ∈ H1
0,D(Ω)

and

ũ(0) = u0 − w

For the space discretization conform Finite Elements are used. Therefore a

triangulation Th of the domain Ω is needed. Only triangulations consisting of
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triangles or parallelograms are considered. Furthermore only Lagrange elements

are considered, i.e., all degrees of freedom are function values at certain points of

the element T ∈ Th. In this work these points are called nodes. The number of

the nodes is denoted with M . Further let the nodes ai be numerated in such a

way that

a1, . . . ,aM1
∈ Ω ∪ ΓN

aM1+1, . . . ,aM ∈ ΓD .

Let the basis functions ϕi be polynomial on each element T ∈ Th and let them

fulfil

ϕi(aj) = δij .

Using the Finite Element method the basic space H1
0,D(Ω) is replace by the finite

dimensional space

Vh := span{ϕ1, . . . , ϕM1
} .

Thus a function uh(t) =
∑M

i=1 di(t)ϕi is searched which fulfills the variational for-

mulation for all test functions vh ∈ Vh for almost every t, the Dirichlet condition

for every Dirichlet node aj (j = M1 + 1, . . . ,M) and the initial condition for

every node aj (j = 1, . . . ,M):

Find uh of the form uh(t) =
∑M

i=1 di(t)ϕi such that for almost every t ∈ (0, T )
∫

Ω

∂t(θ(·, t)uh(t))vh dx +

∫

Ω

D(·, t)∇uh(t) · ∇vh dx +

∫

Ω

∇ · (q(·, t)uh(t))vh dx

=

∫

Ω

G(uh(t))vh dx ∀vh ∈ Vh

uh(t)(aj) = uD(aj) j = M1 + 1, . . . ,M

and

uh(0)(aj) = u0(aj) j = 1, . . . ,M

For the time discretization the implicit Euler method is used. The time inter-

val (0, T ) is divided in N subintervals (tn−1, tn) (n = 1, . . . , N). In the implicit

Euler method the time derivative is replaced by the backward difference quotient

uh − uh,old

∆t

with the time step size ∆t = tn − tn−1. For the sake of clarity the quantities do

not get an index specifying the point in time. Only the values at the old point in

time tn−1 get a subscript old. All other quantities are evaluated at tn. Also the

time step size ∆t does not get an index specifying the number of the time step

although the time step size ∆t may differ from time step to time step.
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Using the implicit Euler method the time discrete problem reads:

For every point in time tn (n = 1, . . . , N) find uh ∈ span{ϕ1, . . . , ϕM} such

that
∫

Ω

θuh − (θuh)old

∆t
vh dx +

∫

Ω

D∇uh · ∇vh dx +

∫

Ω

∇ · (quh)vh dx

=

∫

Ω

G(uh)vh dx ∀vh ∈ Vh

uh(aj) = uD(aj) j = M1 + 1, . . . ,M

where uh(aj) = u0(aj) (j = 1, . . . ,M) at the time t0
With the representation

uh(x) =
M∑

i=1

uiϕi(x)

and using the test functions vh = ϕj (j = 1, . . . ,M1) we get

M∑

i=1

(
θui − (θui)old

∆t

∫

Ω

ϕiϕj dx + ui

∫

Ω

D∇ϕi · ∇ϕj dx + ui

∫

Ω

∇ · (qϕi)ϕj dx

)

=

∫

Ω

G(uh)ϕj dx j = 1, . . . ,M1

uj = uD(aj) j = M1 + 1, . . . ,M

where uj = u0(aj) (j = 1, . . . ,M) at the time t0. This is the fully discrete

formulation used for the numerical computations.

Mass Lumping

The integrals
∫

Ω
ϕiϕj dx and

∫

Ω
G(uh)ϕj dx are approximated by a node orien-

tated quadrature rule, i.e., a quadrature rule of the form

I(f) =
M∑

i=1

ωif(ai)

which is exact for all basis functions.

This is not possible for the standard quadratic element P2 on triangles. For the

standard quadratic element P2 the only node orientated quadrature rule which

is exact for polynomials of degree 2 has the weights ωs = 0 (s for summit) at the

corner points. So using this quadrature rule the mass matrix is not invertible.

From the theory it is not clear if this leads to a convergent method. So it is not

possible to do mass lumping for the element P2.
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Instead of that the modified element P̃2 (see [CJRT01]) can be used. It has the

barycenter as additional degree of freedom and the bubble function as additional

ansatz function (Written in barycentric coordinates the bubble function b on one

triangle is b = λ1λ2λ3).

b

b

b

b

b

b

T

s2

m1

s1

m2

s0

m0

b

b

b

b

b

b

b

T

s2

m1

s1

m2

s0

m0

g

Figure 3.1: Degrees of freedom of P2 (left) and P̃2 (right) on one triangle T

The shape functions of this element are

λi(2λi − 1) + 3λ1λ2λ3 i = 1, 2, 3

4λiλj − 12λ1λ2λ3 i, j = 1, 2, 3, i < j

27λ1λ2λ3 .

For this element there is a node orientated quadrature rule with strictly positive

weights. On one triangle this quadrature rule has the weights

ωs =
1

20
, ωm =

2

15
, ωg =

9

20

for the corner points, the midpoints and the center of gravity, respectively. So it

is possible to do mass lumping for quadratic elements on triangles without any

problems.

3.3.2 Implicit Elimination

For the local problem it is only known that a resolution function exists. There is

no explicit representation for this function which can be plugged in the system of

coupled partial differential equations. But such a representation is not necessary

to solve the system of nonlinear equations, which results from the discretization

of the coupled partial differential equations (3.43)-(3.47), with Newton’s method.
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We consider the system

f(u,v) = 0

g(u,v) = 0

of nonlinear equations. Let the number of equations in the first block correspond

with the length of the vector u and the number of equations in the second block

with the length of the vector v. Furthermore let it be known that for the second

block a resolution function v(u) exists, i.e., the function v(u) is defined by

g(u,v(u)) = 0 for all u .

Therewith we can rewrite the system of nonlinear equations as

f(u,v(u)) = 0 .

To solve this system with Newton’s method the evaluation of v(u) and the Jaco-

bian matrix are needed. The evaluation can be done by solving g(u,v) = 0 with

Newton’s method for fixed u. The Jacobian matrix is

J = ∂1f + ∂2fv′ (3.51)

where ∂1/2 denotes the partial derivative with respect to the first/second block of

variables. The derivative v′ is obtained by differentiating the defining equation

of the function v with respect to u. This yields the linear system

∂2gv′ = −∂1g . (3.52)

The matrix ∂2g is invertible because for g a resolution function with respect to

the second variable exists. So this linear system can be used to calculate v′.

Calculation of v′ for the reduction scheme

We want to apply this approach to our problem. The variables u correspond

to the global unknowns ξglob defined in (3.42) and the variables v to the local

unknowns ξloc defined in (3.41). So v′ contains the derivatives Dξglob
ξloc. Fur-

thermore the equations f(u,v) correspond to the global problem consisting of

the discretization of the equations (3.43)-(3.47) and the equations g(u,v) corre-

spond to the local problem consisting of the equations (3.35)-(3.38) (after time

discretization of (3.35)).

First we make the approximation Dξglob
ξ̄kin ≈ 0. ξ̄kin describes kinetic re-

actions while the other local variables ξmob, ξ̄sorp and ξ̄min describe equilibrium
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reactions. Kinetic reactions proceed much more slowly than equilibrium reac-

tions. So only small changes of ξ̄kin are due and therewith the approximation

Dξglob
ξ̄kin ≈ 0 is justified. Using this approximation we have to solve a smaller

linear system to calculate v′. Now in (3.52) v corresponds to (ξmob, ξ̄sorp, ξ̄min)

and g(u,v) corresponds to (3.36)-(3.38).

The equations (3.36) − (3.38) do not depend on ξsorp and ξmin. Hence the

derivatives Dξsorp
ξloc and Dξmin

ξloc vanishes. So it is not necessary to consider

the whole vector ξglob, as the vector corresponding to u, we can restrict us to the

subvector (ξ̃sorp, ξ̃min, ξkin).

To set up the linear system for v′ we need the matrix

∂2g =
∂(φmob,φsorp,φmin)

∂(ξmob, ξ̄sorp, ξ̄min)
.

With the computations of Section 3.2.1 we can write this matrix as

∂2g =

(

BT Λ̃B ∗

0 IA

)

with

B =

(
S1,mob S1,sorp S1,min,I

0 S2,sorp 0

)

, Λ̃ =

(
Λ 0

0 Λ̄nmin

)

and Λ, Λ̄nmin defined as in Section 3.2.1. Analogously we can calculate that

−∂1g = −
∂(φmob,φsorp,φmin,I ,φmin,A)

∂(ξ̃sorp, ξ̃min, ξkin)
=

(

BT Λ̃C

0

)

with

C =

(
−S1,sorp,li −S1,min −S∗

1,kin

0 0 0

)

Because of the structure of ∂1g and ∂2g we get that the lower block of v′,

by a partitioning of v′ analogously to ∂1g, is zero. This lower block consists of

the derivatives D(ξ̃sorp,ξ̃min,ξkin)ξ̄min,A. We can write v′ as

(
X

0

)

where X is the

solution of the linear systems

BT Λ̃BX = BT Λ̃C . (3.53)

X contains the derivatives D(ξ̃sorp,ξ̃min,ξkin)(ξmob, ξ̄sorp, ξ̄min,I). The matrix of the

linear systems BT Λ̃B is symmetric and positive definite and hence it is always

invertible.
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To assemble the global Jacobi matrix with (3.51) the terms ∂1f and ∂2f are

needed. By differentiation of the discretization of (3.43)-(3.47) with respect to

ξglob (treating ξloc as a variable and not as a function of ξglob) one gets

∂1f =










I 0 −I 0 0

0 I 0 −I 0

θI 0 ∆tLh 0 0

0 θI 0 ∆tLh 0

0 0 0 0 θI + ∆tLh










− ∆tθ











0 0 0 0 0

0 0 0 0 0

AsorpDξ̃sorp
rkin AsorpDξ̃min

rkin 0 0 AsorpDξkin
rkin

AminDξ̃sorp
rkin AminDξ̃min

rkin 0 0 AminDξkin
rkin

A1,kinDξ̃sorp
rkin A1,kinDξ̃min

rkin 0 0 A1,kinDξkin
rkin











with Asorp := A1,sorp − A2,sorp,li, Amin := A1,min − AldA2,sorp,ld and Lh the

discretization of the transport operator L. The derivatives of rkin can be obtained

by plugging in (3.40) and using the chain rule.

By differentiation of the discretization of (3.43)-(3.47) with respect to the

variables (ξmob, ξ̄sorp,li, ξ̄sorp,ld, ξ̄min) (ξ̄sorp is split like in (3.16)) one gets

∂2f =











0 I 0 0

0 0 Ald I

−∆tθAsorpD(ξmob,ξ̄sorp,li,ξ̄sorp,ld,ξ̄min)rkin

−∆tθAminD(ξmob,ξ̄sorp,li,ξ̄sorp,ld,ξ̄min)rkin

−∆tθA1,kinD(ξmob,ξ̄sorp,li,ξ̄sorp,ld,ξ̄min)rkin











.

Performing the matrix multiplication with v′ gives

∂2fv′ =







D
ξ̃sorp

ξ̄sorp,li D
ξ̃min

ξ̄sorp,li 0 0 Dξkin
ξ̄sorp,li

D
ξ̃sorp

ξ̄min+AldD
ξ̃sorp

ξ̄sorp,ld D
ξ̃min

ξ̄min+AldD
ξ̃min

ξ̄sorp,ld 0 0 Dξkin
ξ̄min+AldDξkin

ξ̄sorp,ld

RsorpD
ξ̃sorp

(ξmob,ξ̄sorp,ξ̄min) RsorpD
ξ̃min

(ξmob,ξ̄sorp,ξ̄min) 0 0 RsorpDξkin
(ξmob,ξ̄sorp,ξ̄min)

RminD
ξ̃sorp

(ξmob,ξ̄sorp,ξ̄min) RminD
ξ̃min

(ξmob,ξ̄sorp,ξ̄min) 0 0 RminDξkin
(ξmob,ξ̄sorp,ξ̄min)

RkinD
ξ̃sorp

(ξmob,ξ̄sorp,ξ̄min) RkinD
ξ̃min

(ξmob,ξ̄sorp,ξ̄min) 0 0 RkinDξkin
(ξmob,ξ̄sorp,ξ̄min)








with Rsorp := −∆tθAsorpD(ξmob,ξ̄sorp,li,ξ̄sorp,ld,ξ̄min)rkin,

Rmin := −∆tθAminD(ξmob,ξ̄sorp,li,ξ̄sorp,ld,ξ̄min)rkin and

Rkin := −∆tθA1,kinD(ξmob,ξ̄sorp,li,ξ̄sorp,ld,ξ̄min)rkin.
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Altogether we get for the global Jacobian matrix

J glob = Jnkin + Jkin (3.54)

where

Jnkin =










I + Dξ̃sorp
ξ̄sorp,li Dξ̃min

ξ̄sorp,li −I 0 Dξkin
ξ̄sorp,li

Dξ̃sorp
ξ̄min,ld I + Dξ̃min

ξ̄min,ld 0 −I Dξkin
ξ̄min,ld

θI 0 ∆tLh 0 0

0 θI 0 ∆tLh 0

0 0 0 0 θI + ∆tLh










with ξ̄min,ld := ξ̄min + Aldξ̄sorp,ld and

Jkin = −∆tθ











0 0 0 0 0

0 0 0 0 0

AsorpDξ̃sorp
rkin AsorpDξ̃min

rkin 0 0 AsorpDξkin
rkin

AminDξ̃sorp
rkin AminDξ̃min

rkin 0 0 AminDξkin
rkin

A1,kinDξ̃sorp
rkin A1,kinDξ̃min

rkin 0 0 A1,kinDξkin
rkin











+







0 0 0 0 0

0 0 0 0 0

RsorpD
ξ̃sorp

(ξmob,ξ̄sorp,ξ̄min) RsorpD
ξ̃min

(ξmob,ξ̄sorp,ξ̄min) 0 0 RsorpDξkin
(ξmob,ξ̄sorp,ξ̄min)

RminD
ξ̃sorp

(ξmob,ξ̄sorp,ξ̄min) RminD
ξ̃min

(ξmob,ξ̄sorp,ξ̄min) 0 0 RminDξkin
(ξmob,ξ̄sorp,ξ̄min)

RkinD
ξ̃sorp

(ξmob,ξ̄sorp,ξ̄min) RkinD
ξ̃min

(ξmob,ξ̄sorp,ξ̄min) 0 0 RkinDξkin
(ξmob,ξ̄sorp,ξ̄min)







.

Using the implicit elimination strategy we get the following algorithm for one

time step of the reduction scheme:

One time step of the reduction scheme

Solve η-problem

Solve local problem

Calculate defect d of the global problem

Stopping criteria for global problem not fulfilled

Assemble Jacobi matrix J of the global problem

Solve linear system J∆ξglob = d

Update ξglob −= ∆ξglob

Solve local problem

Calculate defect d of the global problem
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3.4 Special Numerical Treatment

3.4.1 Local Problem

In the local problem the variables ξmob, ξ̄sorp, ξ̄min and ξ̄kin are calculated with

the equations

φmob(c) = 0

φsorp(c, c̄nmin) = 0

φmin(c, c̄min) = 0

θξ̄kin − (θξ̄kin)old

∆t
= θA2,kinrkin(c, c̄)

where c and c̄ are defined by (3.40). Solving this system of nonlinear equations

with Newton’s method can lead to very ill conditioned linear systems. For ex-

ample in a test computation with the chemistry of the MoMaS–benchmark (see

Chap. 4) the condition number of the Jacobian matrix is κ(J) ≈ 1070. It is not

possible to solve such a linear system numerically. In this computation the order

of magnitude of the smallest concentration value is 10−25, the one of the largest

concentration value is 1. Because of this large range of magnitudes the Jacobian

matrix is so ill conditioned.

Therefore it is necessary to use the logarithms of the variables as unknowns

of the numerical computation. But in the formulation above this is not possible

because in the equilibrium conditions there is the logarithm of a sum, e.g.:

kmob + ST
1,mob ln(S1,mobξmob + · · · + S∗

1,kinξkin + B⊥
1 η) = 0

The reason for this is that we have plugged in (3.40) for the concentrations. So it

is not allowed to plug in the retransformation. Instead of that we have to use the

concentrations as variables. So we replace the variables ξmob, ξ̄sorp and ξ̄min by c

and c̄. The number of the concentrations is I + Ī and is larger than the number

of the replaced transformed variables, which is Jmob + Jsorp + Jmin. So we need

I + Ī − Jmob − Jsorp − Jmin additional equations so that the number of unknowns

is equal to the number of equations again. Hence the defining equations of the

transformed variables η, ξ̃sorp, ξ̃min, ξkin, η̄ and ξ̄kin are added as additional

equations. Indeed the number of these defining equations is

(I − Jmob − Jsorp,li − Jmin − J∗
1,kin) + Jsorp,li + Jmin + J∗

1,kin

+ (Ī − Jsorp − Jmin − J∗
2,kin) + J∗

2,kin

= I + Ī − Jmob − Jsorp − Jmin .
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Then in the local problem we have to compute the variables c, c̄ and ξ̄kin with

help of the equations

φmob(c) = 0

η =
(
S⊥

1

T
B⊥

1

)−1
S⊥

1

T
c

ξ̃sorp =
(

(BT
1 S∗

1)
−1

BT
1 c

)

i=Jmob+1,...,Jmob+Jsorp,li

−
(

(BT
2 S∗

2)
−1

BT
2 c̄

)

i=1,...,Jsorp,li

ξ̃min =
(

(BT
1 S∗

1)
−1

BT
1 c

)

i=Jmob+Jsorp,li+1,...,Jeq,li

− c̄min

− Ald

(

(BT
2 S∗

2)
−1

BT
2 c̄

)

i=Jsorp,li+1,...,Jsorp

ξkin =
(

(BT
1 S∗

1)
−1

BT
1 c

)

i=Jeq,li+1,...,Jeq,li+J∗

1,kin

φsorp(c, c̄nmin) = 0

φmin(c, c̄min) = 0

η̄ =
(
S⊥

2

T
B⊥

2

)−1
S⊥

2

T
c̄

ξ̄kin =
(

(BT
2 S∗

2)
−1

BT
2 c̄

)

i=Jsorp+Jmin+1,...,Jsorp+Jmin+J∗

2,kin

θξ̄kin − (θξ̄kin)old

∆t
= θA2,kinrkin(c, c̄)

with Jeq,li = Jmob+Jsorp,li+Jmin. Remember that because of the special structure

(3.11) of S∗
2 and B2 the transformed variables η̄, ξ̄kin and the last summands in

the defining equations for ξ̃sorp and ξ̃min do not depend on c̄min (see Sec. 3.1).

Now the equilibrium conditions are, e.g.:

kmob + ST
1,mob ln(c) = 0

So it possible to use the logarithms of the concentrations as unknowns. It turns

out that is useful to use the logarithms of the concentrations of the mobile spe-

cies and the nonminerals but not of the mineral concentrations. The reason why

the mineral concentrations are not logarithmized is that because of the mineral

equilibrium φj(c, c̄min) = min{ψj(c), c̄min,j} = 0 it is necessary that c̄min can

have the value zero which would not be possible if we replaced c̄min by its log-

arithm. Written as a root-finding problem with the logarithms of the mobile

concentrations l and the logarithms of the nonminerals l̄nmin instead of c and
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c̄nmin, respectively, the local problem reads

φmob(l) = 0 (3.55)

−η +
(
S⊥

1

T
B⊥

1

)−1
S⊥

1

T
exp(l) = 0 (3.56)

−ξ̃sorp +
(

(BT
1 S∗

1)
−1

BT
1 exp(l)

)

i=Jmob+1,...,Jmob+Jsorp,li

(3.57)

−
(

(BT
2 S∗

2)
−1

BT
2

(
exp(l̄nmin)

c̄min

))

i=1,...,Jsorp,li

= 0 (3.58)

−ξ̃min +
(

(BT
1 S∗

1)
−1

BT
1 exp(l)

)

i=Jmob+Jsorp,li+1,...,Jeq,li

− c̄min

−Ald

(

(BT
2 S∗

2)
−1

BT
2

(
exp(l̄nmin)

c̄min

))

i=Jsorp,li+1,...,Jsorp

= 0
(3.59)

−ξkin +
(

(BT
1 S∗

1)
−1

BT
1 exp(l)

)

i=Jeq,li+1,...,Jeq,li+J∗

1,kin

= 0 (3.60)

φsorp(l, l̄nmin) = 0 (3.61)

φmin(l, c̄min) = 0 (3.62)

−η̄ +
(
S⊥

2

T
B⊥

2

)−1
S⊥

2

T
(

exp(l̄nmin)

c̄min

)

= 0 (3.63)

−ξ̄kin+

(

(BT
2 S∗

2)
−1

BT
2

(
exp(l̄nmin)

c̄min

))

i=Jsorp+Jmin+1,...,Jsorp+Jmin+J∗

2,kin

= 0 (3.64)

θξ̄kin − (θξ̄kin)old

∆t
− θA2,kinrkin(exp(l), exp(l̄nmin), c̄min) = 0. (3.65)

The transformed variables ξmob and ξ̄sorp are calculated after solving the local

problem with their definitions

ξmob =
(

(BT
1 S∗

1)
−1

BT
1 c

)

i=1,...,Jmob

, ξ̄sorp =
(

(BT
2 S∗

2)
−1

BT
2 c̄

)

i=1,...,Jsorp

and the transformed variable ξ̄min is equal to c̄min.

If we neglect the dependency of rkin on c̄min (in most cases rkin is indeed

independent of c̄min) each mineral concentration c̄min,k appears only once in the

system (3.55)-(3.65). When the k-th mineral is present c̄min,k appears only in

(3.59) because in this case the k-th equation of (3.62) gets ψk(l) = 0 and so is

independent of c̄min,k. If the k-th mineral is not present c̄min,k appears only in

(3.62) because in this case the k-th mineral concentration is identical to zero and

so the term −c̄min,k in (3.59) can be left out. So it is possible to use a smaller

system and to calculate the mineral concentrations c̄min afterwards.



3.4. SPECIAL NUMERICAL TREATMENT 45

In the implementation done in the framework of this thesis this is done in the

following way: For each mineral reaction it is checked if the minimum in the k-th

equation of (3.62) is attained in the first or in the second argument (definition

of φmin see (2.7)) and the result is stored in a vector AI. A ‘1’ stands for the

minimum is attained in the first argument that means that the mineral is present.

A ‘0’ stands for the minimum is attained in the second argument that means that

the mineral is not present and the mineral concentration c̄min,k is set to zero. This

is done before the computation of the defect of the local problem.

The computation of the mineral concentrations c̄min is also done before the

computation of the local defect. Here it is important that the mineral concentra-

tion is computed before it is checked if the minimum is attained in the first or in

the second argument. Furthermore if the value of AIk has changed it is necessary

to compute c̄min,k again. Altogether the following algorithm is used:

Detailed algorithm for calculating the local defect

For each mineral reaction k
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

¡
¡

¡
¡

¡
¡

AIk

1 0

c̄min,k = −ξ̃min,k +
(
(BT

1 S∗
1)

−1
BT

1 exp(l)
)

Jsorp,li+k

−
(

Ald

(
(BT

2 S∗
2)

−1
BT

2 c̄nmin

)

i=Jsorp,li+1,...,Jsorp

)

k

∅

@
@

@
@

@
@

((((((((((((((((((((((((((((((((((

ψk(l) > c̄min,k

TRUE FALSE

AIk = 0

c̄min,k =

0

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

¡
¡

¡
¡

¡

AIk

0 1

c̄min,k = −ξ̃min,k+
(
(BT

1 S∗
1)

−1
BT

1 exp(l)
)

Jsorp,li+k

−
(

Ald

(
(BT

2 S∗
2)

−1
BT

2 c̄nmin

)

i=Jsorp,li+1,...,Jsorp

)

k

∅

AIk = 1

∅

Assemble local defect (3.55)-(3.65) without (3.62)

For each mineral reaction k
````````````````````````̀

³³³³³³³³³³³³³³³

AIk

1 0

defectJmob+Nη+Jsorp,li+k = ψk(l) ∅
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It is important to use a damped Newton’s method for solving the local problem

because otherwise for realistic examples the Newton’s method does not converge.

In the implementation done in the framework of this thesis line search is used.

Newton’s method with line search

l = Maximal number of line search steps

Calculate defect b

d = ‖b‖
Stopping criteria not fulfilled

Calculate Jacobi matrix J

Solve linear system Jc = b

x−= c

Calculate defect b

j = 0

j < l

d1 = ‖b‖
hhhhhhhhhhhhhhhhhhh

»»»»»»»»»»»»»

d1 < d

TRUE FALSE
break ∅

c ∗= 0.5, x += c

Calculate defect b

j = j + 1

d = d1

In the test computation mentioned at the beginning of this section the order

of magnitude of the condition number is 103 (instead of 1070) when solving the

enlarged problem using the logarithms of the unknowns. Such a linear system

can be solved numerically without problems.

However it can happen that in one row of the Jacobian matrix which corre-

sponds to a defining equation of a transformed variable all entries are very close

to zero and so the Jacobian matrix gets numerically singular. This is the case

when one of the global variables is close to zero and this variable is defined by a

linear combination of concentrations in which all coefficients have the same sign,

e.g.:

ξ̃sorp,1 = −c2 − c4 − 3c5 − c8 − c̄11

If ξ̃sorp,1 is close to zero it holds for every positive solution that all occurring

concentrations values are close to zero. Because of the use of the logarithms as
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variables the corresponding row of the Jacobian matrix is

(
0 −c2 0 −c4 −3c5 0 0 −c8 0 0 −c̄11 0

)
.

In this row all entries gets close to zero as soon as the Newton iterate is situated

near the solution. Then the Jacobian matrix gets numerically singular. Numerical

tests showed that multiplying the row in which all entries are close to zero with

a large number, such that at least one entry is close to one, does not improve

the condition number of the Jacobian matrix. Obviously the resulting row is

numerically linear dependent.

Therefore instead of solving the linear system Jx = d the substitution prob-

lem

Minimize ‖x‖2 on

L(d) :=
{
x ∈ R

n
∣
∣ ‖Jx − d‖2 = min

{
‖Jy − d‖2 |y ∈ R

n
}}

is solved. This problem always has a unique solution. To compute the solution

a QR-factorization for matrices with numerical rang smaller than n and with

column pivot search JP = Q

(
R B

0 0

)

can be used (see [Kna02]). With help of

this factorization we get the solution of the minimization problem in the following

way (The indices 1,2 denote the partitioning in two blocks analogously to the

partitioning of the rows in the right triangular matrix of the factorization):

Calculation of the smallest-norm minimum

Calculate QR-factorization for matrices with numerical

rang smaller than n and with column pivot search

JP = Q

(
R B

0 0

)

Calculate V by solving RV = B

Calculate z by solving Rz = (QT d)1

Calculate y2 by solving (I + V T V )y2 = V T z

Set y1 = z − V y2 and x = Py

When solving the substitution problem all equations of the local problem are

solved exactly except of defining equations of transformed variables in that the

order of magnitude of the transformed variable is the machine precision. So the

only error, which is obtain by solving the substitution problem instead of the

linear system, is a mass balance error whose order of magnitude is the machine

precision.
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To enlarge the robustness of the method it is also useful to replace the linear

system (3.53) by a minimization problem and to solve this problem with the

algorithm above. Especially when many concentration values are close to zero

solving the linear system can fail.

3.4.2 Starting Value Search After η–Problem

The obvious choice of the starting value of the global Newton method is the value

at the old time step. This choice is here not possible. It can be seen with the

following example consisting of two equilibrium reactions

B ↔ 2A

B + C ↔ D .

The choice of the transformation matrix

B1 =





1 0

0 0

0 1





leads to the transformed variables

(
ξmob

ξsorp

)

=
(
BT

1 S∗
1

)−1
BT

1 c

=





(
1 0 0

0 0 1

)




2 0

−1 −1

0 −1









−1
(

1 0 0

0 0 1

)




c(A)

c(B)

c(C)





=

(
1
2
c(A)

−c(C)

)

η =
(
S⊥

1

T
B⊥

1

)−1
S⊥

1

T
c

=




(
1 2 −2

)





0

1

0









−1

(
1 2 −2

)





c(A)

c(B)

c(C)





=
1

2
c(A) + c(B) − c(C)

ξ̄sorp = c(D)

ξ̃sorp = ξsorp − ξ̄sorp = −c(C) − c(D) .
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The retransformation is

c(A) = 2ξmob

c(B) = −ξmob − ξ̃sorp − ξ̄sorp + η

c(C) = −ξ̃sorp − ξ̄sorp

c(D) = ξ̄sorp .

Let the value at the old time step be

c(A) = c(B) = c(C) = c(D) = 0 .

As the variable transformation is linear all transformed variables are also zero at

the old time step.

After solving the η-problem let η = −0.5 at one node. This matches an inflow

of C. With this value for η and the values at the old time step for the other

transformed variables we get the concentrations

c(A) = c(B) = c(D) = 0, c(B) = −0.5.

The concentration of B is negative. With the values of η = −0.5 and ξ̃sorp = 0

there is no nonnegative solution of the local problem. We see this in the following

way: Plugging ξmob = 1
2
c(A) and ξ̄sorp = c(D) in c(B) = −ξmob − ξ̃sorp − ξ̄sorp + η

leads to

c(B) = −1

2
c(A) − c(D) − 0.5

and we see immediately that there exists no nonnegative solution.

Hence it is necessary to modify the starting value of the global Newton method

when it corresponds to negative concentration values because it can happen that

there is no nonnegative solution of the local problem. As the logarithms of the

concentrations are used as unknowns the solver of the local problem will not

converge when there is no nonnegative solution. So we have to change the trans-

formed variables in such a way that they correspond to nonnegative concentration

values.

Under the assumption that there is a positive bound for the concentrations it

exists a resolution function (ξ̃sorp, ξ̃min, ξkin) 7→ (ξmob, ξ̄sorp, ξ̄min, ξ̄kin). Therefore

it is secured that there is a positive solution of the local problem when the values

of the transformed variables correspond to positive concentrations.

It is sufficient to modify the variables ξmob, ξ̃sorp, ξ̃min and ξkin

ξmob += ∆ξmob , ξ̃sorp += ∆ξ̃sorp , ξ̃min += ∆ξ̃min , ξkin += ∆ξkin .
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As η only affects the mobile species it is not possible that the concentration

of an immobile species gets negative during the η-step. Hence the transformed

variables η̄, ξ̄sorp, ξ̄min, ξ̄kin that correspond to immobile species need not to be

considered.

Under the assumption that the discrete solution is positive it always exists

an appropriate starting value where we need not modify η because η is already

computed and because of the linearity of the η-equations equal to the η-value of

the discrete solution. There always exists an appropriate starting value because

the values of the transformed variables, corresponding to the discrete solution,

are one possible starting value.

During the starting value search the values of the transformed variables should

be altered as less as possible. This leads to a linear minimization problem with

constraints:
min ǫ|∆ξmob| + |∆ξ̃sorp| + |∆ξ̃min| + |∆ξkin|
s.t. S1,mob∆ξmob + S1,sorp∆ξ̃sorp + S1,min∆ξ̃min

+S∗
1,kin∆ξkin ≥ −c + Ecmaxe

(3.66)

with e = (1, . . . , 1)T , cmax = maxi=1,...,I ci and the parameters, e.g., ǫ = 0.1,

E = 2 ·10−16. The term Ecmaxe ensures that despite of numerical rounding errors

it holds ci ≥ 0. The parameter ǫ effects that first an starting value is search at

which only the local variables are modified. When there is no such starting value

then the global variables are modified.

3.4.3 Cutting-off of Global Newton Step

Also after a global Newton step it can happen that the transformed variables

correspond to negative concentrations and so it is possible that the local problem

has no positive solution. Therefore it is necessary to check after each global

Newton step if the Newton iterate has to be modified.

For modifying the current Newton iterate there are two different approaches.

First the whole Newton step can be cut-off by taking only a part of the Newton

update ∆ξglob instead of the whole Newton update, i.e., the update of the global

variables

ξglob −= ∆ξglob

is replaced by

ξglob −= τ∆ξglob

with τ ∈ (0, 1). This has consequences for all nodes.

The other approach is to modify the Newton iterate only locally. Thereby

only the values of nodes at that the Newton iterate corresponds to negative
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concentrations are modified. Numerical tests showed that it is most efficient

to cut-off the whole Newton step only when a large modification of the current

Newton iterate is necessary and otherwise to modify the Newton iterate only

locally.

This adaptive approach can be performed by solving the minimization prob-

lem (3.66) two times at each node. First the values of |∆ξ̃sorp|, |∆ξ̃min| and

|∆ξkin| are determined by solving (3.66) on each node but no modification of the

variables ξmob, ξ̃sorp, ξ̃min and ξkin is performed. If there are values of |∆ξ̃sorp|,
|∆ξ̃min| or |∆ξkin| that are larger than a given bound Smax the whole Newton

step is cut-off. After that the minimization problem (3.66) is solved again at each

node. But this time the modification of the variables ξmob, ξ̃sorp, ξ̃min and ξkin

is performed.

Simplification for linear combinations with same sign

In the case that all global variables are linear combination of concentrations

where all coefficients have the same sign there is a much simpler approach. The

MoMaS–benchmark (see Chap. 4) is an example where this simplification can

be applied. In the “easy test case” of this benchmark we have the four global

variables

ξ̃sorp,1 = −C2 − C4 − 3C5 − X3 − CS1

ξ̃sorp,2 = −C3 − 3C4 − C5 − X4 − CS2

ξsorp,1 = −C2 − C4 − 3C5 − X3

ξsorp,2 = −C3 − 3C4 − C5 − X4.

Note that this is only possible because of the decoupling of the variables η. The

variable η1 is a linear combination of the concentrations with positive and negative

coefficients:

η1 = −C1 − 2C2 + 2C3 + 2C4 − 2C5 + X2 − 3X3 + 3X4

In this case it is sufficient to guarantee that the global variables are nonposi-

tive. With the help of the resolution function it is secured that a solution of the

local problem with positive concentration values exists. Like in the general case

the whole Newton step should be cut off for large modifications of the Newton

iterate and the Newton iterate should be modified only locally for small modifi-

cations. This can be done with the following algorithm (The upper index denotes

the Newton step. Note the sign of the Newton update: ξk
glob = ξk−1

glob − ∆ξk
glob):
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Cutting-off of global Newton step — simplified case

τ = 1

For each node
````````````````````

³³³³³³³³³³³³

ξk
glob,i > Smax

TRUE FALSE

τ = min

{

τ,
ξk−1

glob,i

∆ξk
glob,i

}

∅

`````````````````````̀

³³³³³³³³³³³³³

τ < 1

TRUE FALSE

ξk
glob += (1 − 0.99τ)∆ξk

glob ∅

For each node
````````````````````

³³³³³³³³³³³³

ξk
glob,i > 0

TRUE FALSE

ξk
glob,i = 0 ∅

The factor 0.99 ensures that despite of numerical rounding errors it holds that

ξk
glob,i is nonpositive.

Update of concentration values

As two sets of variables (the transformed variables and the concentrations) are

used it is necessary to update the concentrations when the transformed variables

have changed. So after solving the η-problem the concentrations must be updated

by

c += B⊥
1 (η − ηold) .

Also after solving the global problem the concentrations must be updated.

Here it must be considered that we use a resolution function ξloc(ξglob) to get a

smaller global system. So we have ∆ξloc = Dξglob
ξloc∆ξglob. Hence if we write the

retransformation (3.40) in the form c = Sglobξglob + Slocξloc we have to update

the concentrations by

c−= Sglob∆ξglob + SlocDξglob
ξloc∆ξglob .

Like in Section 3.3.2 the derivatives Dξglob
ξ̄kin are neglected. Written in detail
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it reads

c−= S1,mobDξglob
ξmob∆ξglob + S1,sorp,li∆ξ̃sorp + S1,sorpDξglob

ξ̄sorp∆ξglob

+ S1,min(∆ξ̃min + Dξglob
ξ̄min∆ξglob) + S∗

1,kin∆ξkin

c̄nmin −= S2,sorpDξglob
ξ̄sorp∆ξglob

c̄min −= Dξglob
ξ̄min∆ξglob .

Incorporating the strategies of this section and the section before we get the

following algorithm for one step of the reduction scheme:

One time step of the reduction scheme

Solve η-problem

Update concentrations c += B⊥
1 (η − ηold)

If ci < 0 starting value search

Solve local problem (unknowns: c, c̄, ξ̄kin)

Calculate ξmob, ξ̄sorp, ξ̄min by their definitions

Calculate defect d of the global problem

Stopping criteria for global problem not fulfilled

Assemble Jacobi matrix J of the global problem

Solve linear system J∆ξglob = d

Update ξglob −= ∆ξglob

If ξglob,i > 0 cutting-off of global Newton step

Update concentrations

c−= Sglob∆ξglob + SlocDξglob
ξloc∆ξglob

Solve local problem (unknowns: c, c̄, ξ̄kin)

Calculate ξmob, ξ̄sorp, ξ̄min by their definitions

Calculate defect d of the global problem

3.4.4 FV–Stabilization for Convection Dominated Prob-

lems

The stabilization technique given in this section is only applicable for linear el-

ements on triangles. To a given triangulation Th consisting of triangles T a

dual grid is generated by connecting all edge midpoints of one triangle with the

barycenter of the triangle. Thus to each node ak a control volume Ωk is generated

(see Fig. 3.2). Such a family of control volumes is called Donald–Diagram.
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Figure 3.2: Control volume Ωk associated to the node ak

The integral appearing at the discretization of the advective term with linear

Finite Elements can be approximated by

∫

Ω

∇ · (qch,i)ϕk dx ≈
∫

Ωk

∇ · (qch,i) dx =

∫

∂Ωk

(qch,i) · ν dσ

where ϕk is the basis function associated to the node ak. This boundary integral

allows the treatment of the advective term with the Finite Volume method. The

approximation of the integral is the same approximation which is applied to terms

without spatial derivatives by using mass lumping. Hence the approximation is

justified.

Another point of view is that we carry out a Finite Volume discretization

for the whole partial differential equation. Let us consider the Finite Volume

scheme treated in [KA03, chapter 6.2] for the case of the Donald Diagram. In

this scheme the diffusive term is discretized as in the Finite Element method

and the discretization of the terms without any space derivative is the same as

using linear Finite Elements and mass lumping, because for the Donald Diagram

it holds |Ωi ∩ T | = |T |/3. So in this FV scheme the discretization of all terms

except of the advective one coincides with that one of the linear Finite Element

Method using mass lumping. Hence we only have to replace the advective term

in the linear Finite Element discretization to get a Finite Volume scheme.
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The integral
∫

∂Ωk

(qch,i) · ν dσ =
∑

T∈Th

∫

∂Ωk∩T

(qch,i) · ν dσ

is discretized in the following way (see Fig. 3.3 for the used notation):
∫

∂Ωk∩T

(qch,i) · ν dσ ≈ q((ā0 + ac)/2) · ν [ā0,ac](r01ch,i(a0) + (1 − r01)ch,i(a1))

+ q((ac + ā2)/2) · ν [ac,ā2](r02ch,i(a0) + (1 − r02)ch,i(a2))

where the normal vectors ν [ā0,ac] and ν [ac,ā2] have the length |ā0−ac| and |ac−ā2|,
respectively. For the choice of the parameters r01, r02 ∈ [0, 1] there are two

possibilities.

b

b

b

b

b

b

b
b

b

Ωi ∩ T

a2

ā1

a1

ā2

a0

ā0

ac

ν [ac,ā2]

ν [ā0,ac]

Figure 3.3: Intersection of a control volume with a triangle

The first one is full upwinding. Here the parameters r01, r02 are chosen in the

following way:

r01 =

{

1 for q((ā0 + ac)/2) · ν [ā0,ac] ≥ 0

0 else

r02 =

{

1 for q((ac + ā2)/2) · ν [ac,ā2] ≥ 0

0 else

(3.67)

This discretization is suitable for convection dominated problems.

But using full upwinding the PDE is stabilized on the whole domain. When

the PDE is convection dominated only on a part of the domain this is not neces-

sary and leads to an imprecise solution in that part of the domain which is not
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convection dominated. In this case it is preferable to use exponential upwinding

instead.

Using exponential upwinding the parameters rij are chosen in the following

way

rij = 1 − 1

zij

(

1 − zij

exp(zij) − 1

)

with the local Péclet numbers zij

z01 =
q((ā0 + ac)/2) · ν [ā0,ac]

−|T |D∇ϕ1 · ∇ϕ0

z02 =
q((ac + ā2)/2) · ν [ac,ā2]

−|T |D∇ϕ2 · ∇ϕ0

where ϕi is the linear Finite Element basis function to the node ai on the triangle

T . Note that ∇ϕi is constant on the triangle T . Using for D the Scheidegger

tensor (2.1) D depends on q. In this case q is evaluated at the barycenter ac of

the triangle T , i.e.

D = D(q(ac)) .

When the denominator −|T |D∇ϕ2 · ∇ϕ0 is not positive (which can happen be-

cause D is a full tensor) the parameters rij are computed with (3.67).

The calculation of the local Péclet numbers zij is slightly different to that one

used in [KA03, chapter 6.2]. There the quantities on the two adjacent triangles,

which have the vertices ai and aj in common, are used to calculate zij. Here

because of programming restrictions only the quantities on one triangle can be

used.

At the Neumann boundary additional boundary integrals on ∂Ω∩∂Ωk appear.

Here we only handle homogeneous Neumann boundary conditions. Let [a0, ā0]

be a half edge on the Neumann boundary. Then the additional boundary integral

is discretized in the following way:

∫

[a0,ā0]

(qch,i) · ν dσ ≈ q((a0 + ā0)/2) · ν [a0,ā0]ch,i(a0)

The advantage of the Finite Volume method is the inverse monotonicity. For

full upwinding, a triangulation Th consisting of solely nonobtuse triangles and a

scalar diffusion coefficient, which is constant on the single elements of Th, one can

proof that the resulting discretization is inverse monotone (see [KA03, Theorem

6.19]). Numerical experiments showed that in most cases also for exponential

upwinding this FV method is inverse monotone.
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In the transport reaction problems considered in this work the equilibrium

conditions are formulated with the logarithms of the concentrations. So it is im-

portant that the discrete solution is nonnegative and hence an inverse monotone

method is needed.

3.4.5 Anisotropic Diffusion Tensors

Another fact which can cause negative values in the discrete solution is the

anisotropic diffusion tensor. In this section we want to examine under which

conditions we can guarantee that the discretization of the diffusive term leads to

an M-matrix despite of the anisotropic tensor. We restrict the examination to

linear elements on regular triangular grids. By use of the Scheidegger dispersion

tensor (2.1) we have to study the terms

∫

Ω

(

(βl − βt)
q ⊗ q

|q| ∇ϕi · ∇ϕj + βt|q|∇ϕi · ∇ϕj

)

dx

where ϕi and ϕj are basis functions of linear Finite Elements. First we assume

that we have a constant flow q =

(
q1

q2

)

. Then we can rewrite the integral as

|q|
(

(βl − βt)

∫

Ω

q ⊗ q

|q|2 ∇ϕi · ∇ϕj dx + βt

∫

Ω

∇ϕi · ∇ϕj dx

)

. (3.68)

For a Friedrichs–Keller triangulation with side length of the squares h we get

the following contributions of the term
∫

Ω
∇ϕi · ∇ϕj dx. For simplicity we write

the contributions as a stencil:





−1

−1 4 −1

−1



 (3.69)

In a Friedrichs–Keller triangulation with diagonals from the lower right to the

upper left (compare Fig. 3.4 left) we get from the term
∫

Ω
q⊗q

|q|2 ∇ϕi · ∇ϕj dx

1

q2
1 + q2

2





q1q2 −q1q2 − q2
2

−q1q2 − q2
1 (q2

1 + q2
2) + (q1 − q2)

2 −q1q2 − q2
1

−q1q2 − q2
2 q1q2



 .

We see immediately that for a flow parallel to a coordinate axis the matrix fulfills

that the diagonal entries are positive and the nondiagonal entries are nonpositive

because in this case we have q1q2 = 0. We also see that it is not possible to get
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an M-matrix when q1q2 > 0 because then the upper left and lower right entry are

positive and there are no entries in (3.69) that can cancel these positive entries.

In a Friedrichs–Keller triangulation with diagonals from the lower left to the

upper right (compare Fig. 3.4 right) we get from the term
∫

Ω
q⊗q

|q|2 ∇ϕi · ∇ϕj dx

1

q2
1 + q2

2





q1q2 − q2
2 −q1q2

q1q2 − q2
1 (q2

1 + q2
2) + (q1 − q2)

2 q1q2 − q2
1

−q1q2 q1q2 − q2
2



 .

For this choice of the diagonals it holds that for q1q2 < 0 it is not possible to get

an M-matrix.

b

ai
b

ai

Figure 3.4: Support of one basis function

So we choose the direction of the diagonals depending on the flow. For q1q2 > 0

we take the diagonals from the lower left to the upper right and for q1q2 < 0 we

take the diagonals from the lower right to the upper left. That means we choose

the diagonals as parallel as possible to the flow direction.

To guarantee that (3.68) is nonpositive for i 6= j we have to check that

(βl − βt)
−q1q2 − q2

i

q2
1 + q2

2

+ βt(−1) ≤ 0 for q1q2 < 0, i = 1, 2 (3.70)

(βl − βt)
q1q2 − q2

i

q2
1 + q2

2

+ βt(−1) ≤ 0 for q1q2 > 0, i = 1, 2 . (3.71)

For this purpose we determine the maximum of
−q1q2−q2

i

q2

1
+q2

2

,
q1q2−q2

i

q2

1
+q2

2

, respectively. By

differentiating and some simple calculations we get that these maxima are
√

2−1
2

.

So with this choice of the diagonals it is secured for

(βl − βt)

√
2 − 1

2
− βt ≤ 0 ⇔ βl

βt

≤ 3 + 2
√

2 (≈ 5.528)
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that all nondiagonal entries are nonpositive.

For a nonconstant flow this motivates the following proceeding. We start

with a grid of squares with side length h. Let ci denote the center of the i-th

square. Then for each cell we check if q1(ci)q2(ci) is positive or negative. For

q1(ci)q2(ci) < 0 we take the diagonal from the lower right to the upper left and

for q1(ci)q2(ci) > 0 we take the diagonal from the lower left to the upper right.

In Fig. 3.5 a nonconstant flow and an appropriate grid constructed with this

strategy is shown.

0 0.5 1 1.1 1.6 2.1
0

0.2

0.4

0.6

0.8

1

x

y

Figure 3.5: Nonconstant flow and appropriate grid

Even for ratios βl/βt that are greater than 3 + 2
√

2 it is advantageous to use

this alignment of the diagonals. Numerical tests with pure transport problems

and βl/βt = 10 have shown that the number of points on which the discrete

solution is negative can be decreased significantly and that the absolute value of

the negative values is much smaller.

There is a second possibility to derive the condition for the choice of the

diagonals and the conditions (3.70) and (3.71). First we define the linear trans-
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formation

F (x̃) = Bx̃ + d

and the transformed triangle

T̃ := F−1(T ) .

Using the transformation formula (see e.g. [KA03, Sec. 3.5.2])

∫

T

D∇xϕi(x) · ∇xϕj(x) dx =

∫

T̃

DB−T∇x̃ϕ̃i(x̃) · B−T∇x̃ϕ̃j(x̃) dx̃| det(B)|

with B = D1/2 (D1/2 exists because D is symmetric) we get

∫

Ω

D∇xϕi(x) · ∇xϕj(x) dx =

∫

Ω̃

∇x̃ϕ̃i(x̃) · ∇x̃ϕ̃j(x̃) dx̃| det(B)| .

Remember that to derive the conditions (3.70) and (3.71) we have assumed that

the flow q is constant and so the diffusion tensor D is constant. For the integral

on the right hand side it is known that the angle condition must be fulfilled to

get an M-matrix (see [KA03, Sec. 3.9]). The angle condition says that for any

two triangles of Th with a common edge the sum of the interior angles opposite

to this edge does not exceed the value π.

In a Friedrichs–Keller triangulation two angles opposite to one edge are equal.

This remains true for the transformed triangulation because we use a linear trans-

formation with a constant matrix B. So here the angle condition is equivalent to

all angles are not obtuse. So we have to check under which conditions all angles

of the transformed triangles T̃ are not obtuse.

This can be done by examining the sign of the scalar product of two sides of

a transformed triangle T̃ . The vertices of the transformed triangle T̃ are denoted

with ã1, ã2, ã3 and the vertices of the original triangle T with a1,a2,a3. So we

get for the scalar product of two sides of a transformed triangle T̃

(ã3 − ã1) · (ã2 − ã1)

=
(
B−1a3 + B−1d − (B−1a1 + B−1d)

)
·
(
B−1a2 + B−1d − (B−1a1 + B−1d)

)

= (a3 − a1)
T D−1(a2 − a1) .

We calculate that (see (2.1) for the definition of D)

D−1 =
1

(q2
1 + q2

2)
(3/2)

βlβt

(
q2
1βt + q2

2βl −q1q2(βl − βt)

−q1q2(βl − βt) q2
1βl + q2

2βt

)

.
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For a triangle T of a Friedrichs–Keller triangulation with the diagonal from the

lower left to the upper right we get the three conditions

(
−h 0

)
D−1

(
0

h

)

= h2 q1q2(βl − βt)

(q2
1 + q2

2)
(3/2)βlβt

≥ 0 (3.72)

(
0 −h

)
D−1

(
−h

−h

)

= h2 q2
1βl + q2

2βt − q1q2(βl − βt)

(q2
1 + q2

2)
(3/2)βlβt

≥ 0 (3.73)

(
h h

)
D−1

(
h

0

)

= h2 q2
1βt + q2

2βl − q1q2(βl − βt)

(q2
1 + q2

2)
(3/2)βlβt

≥ 0 . (3.74)

Condition (3.72) is equivalent to q1q2 ≥ 0, i.e., the direction of the diagonal from

the lower left to the upper right can only be chosen for q1q2 ≥ 0, condition (3.73)

is equivalent to (3.71) with i = 1 and condition (3.74) is equivalent to (3.71) with

i = 2.

For a triangle T of a Friedrichs–Keller triangulation with the diagonal from

the lower right to the upper left we get the three conditions

(
0 h

)
D−1

(
h

0

)

= −h2 q1q2(βl − βt)

(q2
1 + q2

2)
(3/2)βlβt

≥ 0 (3.75)

(
h −h

)
D−1

(
0

−h

)

= h2 q2
1βl + q2

2βt + q1q2(βl − βt)

(q2
1 + q2

2)
(3/2)βlβt

≥ 0 (3.76)

(
−h 0

)
D−1

(
−h

h

)

= h2 q2
1βt + q2

2βl + q1q2(βl − βt)

(q2
1 + q2

2)
(3/2)βlβt

≥ 0 . (3.77)

Condition (3.75) is equivalent to q1q2 ≤ 0, i.e., this direction of the diagonal can

only be chosen for q1q2 ≤ 0, condition (3.76) is equivalent to (3.70) with i = 1

and condition (3.77) is equivalent to (3.70) with i = 2.

3.5 Analysis of the Method

3.5.1 Boundedness of the Derivatives Dξglob
ξloc

The reason, why the method with the additional variables ξ̃ has been developed, is

that by use of the additional variables the derivatives Dξglob
ξloc has small absolute

values. In the first formulation of the reduction scheme out of [KK07], [Krä08]

it is not the case that the derivatives Dξglob
ξloc has small absolute values (see

Sec. 3.6.1). This is probably the reason why the method with the additional

variables has much better convergence properties.

We look at one example with the chemistry of the “easy test case” of the

MoMaS–benchmark (see Chap. 4). The matrix of the linear system to calculate

Dξglob
ξloc (see Sec. 3.3.2 how to compute Dξglob

ξloc) is in this example
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1.00 -0.00 0.00 0.00 -0.00 -0.00 0.00

-0.00 1.00 -0.00 0.21 0.62 0.21 -0.00

0.16 -0.16 0.31 1.00 -0.52 -0.48 0.60

0.00 0.33 0.00 0.69 1.00 0.33 0.00

-0.00 0.00 -0.00 0.00 1.00 0.00 -0.00

-0.00 0.33 -0.00 0.33 1.00 0.33 -0.00

0.21 -0.21 0.26 1.00 -0.79 -0.54 0.93

and the right hand side is:

0.00 -0.00

-0.21 0.00

0.48 -0.60

-0.33 -0.00

-0.00 0.00

-0.33 0.00

0.63 -0.68

This yields for Dξ̃sorp
ξ̄sorp:

-1.00 -0.00

0.22 -0.42

In this example the derivatives Dξ̃sorp
ξ̄sorp have small absolute values. In the

following a proof will be given that using the additional variables ξ̃ the absolute

values of the derivatives Dξglob
ξloc are bounded with a bound independent of the

concentration values and the reaction constants.

The linear system of equations for calculating Dξglob
ξloc has the form (see

(3.53))

BT Λ̃BX = BT Λ̃C

where B, C consist only of stoichiometric coefficients. We can rewrite the linear

system as BX = PC with

P := B(BT Λ̃B)
−1

BT Λ̃ . (3.78)

P is a projection because P 2 = P . Obviously im(P ) ⊂ B and PB = B. So P

projects onto B.

The linear system can also be interpreted as the normal equations of the linear

least squares problem

min ‖Λ̃1/2
(BX − C)‖2 . (3.79)

This formulation will be used to prove that X is bounded with a bound only

depending on the entries of B and C. So the bound depends only on the stoi-

chiometric coefficients.
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For B consisting of one column b, b 6= 0, C consisting of one column c and

X a scalar x it holds

min
bi 6=0

ci

bi

≤ x ≤ max
bi 6=0

ci

bi

. (3.80)

This should be proven by contradiction. If the second relation were not be true

we would have

x > max
bi 6=0

ci

bi

.

Then choose ε > 0 sufficiently small such that

x − ε > max
bi 6=0

ci

bi

.

It follows

bix > bi(x − ε) > ci for all bi > 0 (3.81)

bix < bi(x − ε) < ci for all bi < 0 . (3.82)

1. case: bi > 0

Because of ε > 0 we always have

0 > −biε

⇔ bix − ci > bi(x − ε) − ci .

Because of (3.81) it follows

|bix − ci| > |bi(x − ε) − ci| .

2. case: bi < 0

Because of ε > 0 we always have

0 > biε

⇔ −bix + ci > −bi(x − ε) + ci .

Because of (3.82) it follows

|bix − ci| > |bi(x − ε) − ci| .

Altogether we have

|bix − ci| > |bi(x − ε) − ci| for all bi 6= 0.
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So the absolute value of each component of bx(1 − ε) − c is smaller or equal to

that one of bx − c, where it is strictly smaller for bi 6= 0. So if b 6= 0 it is not

possible that x is the minimum of

‖Λ̃1/2
(bx − c)‖2

because Λ̃ is a diagonal matrix with positive entries and so we have ‖Λ̃1/2
(bx(1−

ε) − c)‖2 < ‖Λ̃1/2
(bx − c)‖2. So we have proven the second relation of (3.80).

The first relation of (3.80) can be proven completely analogously.

In the case b, c ∈ R
2 this proceeding can be interpreted in a graphical way:

The point c is projected on the straight line span{b} such that the distance

between the point and the projection of the point is minimal in the norm ‖Λ̃1/2·‖2.

With the contradiction argument used above one shows that the projection of the

point must be in the red part of the straight line in Fig. 3.6.
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Figure 3.6: Graphical interpretation

Now let us consider the case where B is a matrix and C consists of one column

c. As (3.79) is a linear problem it is sufficient to examine the case where c is

a unit vector ek. We can assume that the matrix B does not contain a row in

which all entries are zero. If the matrix B contains a row in which all entries are

zero this row and the corresponding entry of c can be left out without changing

the result of (3.79). Let bi denote the i-th row of B.

Assertion:

0 ≤ bk · x ≤ 1 (3.83)

If the second relation were not be true we would have

bk · x > 1.

Now choose ε > 0 sufficiently small such that

bk · x(1 − ε) > 1. (3.84)
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Let us consider

Bx(1 − ε) − ek .

For the absolute value of the i-th component of this vector it holds

|bi · x(1 − ε)| ≤ |bi · x| for i 6= k

|bi · x(1 − ε) − 1| < |bi · x − 1| for i = k .

The second relation is true because of (3.84).

Altogether it follows that the absolute value of each component of Bx(1 −
ε) − ek is smaller or equal to that one of Bx − ek where the k-th component is

strictly smaller. So it is not possible that x is the minimum of

‖Λ̃1/2
(Bx − ek)‖2

because Λ̃ is a diagonal matrix with positive entries. So we have proven the

second relation of assertion (3.83). The first relation can be proven analogously.

We write x as αbk + a with a vector a fulfilling a · bk = 0. Taking the scalar

product with bk of the equation x = αbk + a and using (3.83) gives

α =
bk · x
|bk|2

⇒ 0 ≤ α ≤ 1

|bk|2
.

Plugging the representation x = αbk + a in (3.79) gives

min
∥
∥Λ̃

1/2
(Bx − c)

∥
∥ = min

∥
∥Λ̃

1/2
(Ba − (c − αBbk))

∥
∥ .

Because of bk · a = 0 (notice that bk is the k-th row of B) we can leave out the

k-th component of the vector Λ̃
1/2

(Ba − (c − αBbk)). This does not affect the

value of a at the minimum. As a fulfills the condition bk · a = 0 we can write a

as B⊥
k â with B⊥

k the orthogonal complement of bk. One possible choice for B⊥
k

is (w.l.o.g. we assume that bk1 6= 0, this is possible because of the assumption

that the matrix B does not contain a row in which all entries are zero)

B⊥
k =










−bk2 −bk3 . . . −bkn

bk1 0 . . . 0

0 bk1 . . . 0
...

...
. . .

...

0 0 . . . bk1










. (3.85)
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So we get the minimization problem

min
∥
∥Λ̂

1/2
(B̂â − ĉ)

∥
∥

with

B̂ = (B without k-th row)B⊥
k

ĉ = (c without k-th row) − α(B without k-th row)bk

Λ̂ = (Λ̃ without k-th row and k-th column) .

Then we apply the assertion (3.83) to this new problem. The matrix B̂ has one

column less than the matrix B. We iterate this procedure until the matrix B̂

consists of one column. Then we can apply (3.80). So we get a bound for x. In

the case C is a matrix we can treat every column of C separately.

The matrices B, C contain stoichiometric coefficients. Typically stoichio-

metric coefficients are integer and have a small absolute value. Hence we know

that:

• For B integer and the choice (3.85) for B⊥
k the matrix B⊥

k has only integer

entries.

• Then the entries of B̂ are also integer and they depend only on the entries

of B. Especially dividing by |b̂k|2 does not lead to large numbers.

• It holds |ĉi| ≤ |ci| + 1
|bk|2 |(Bbk)i|. So the entries of ĉ are bounded with a

bound only depending on B and c.

So we get a bound for Dξglob
ξloc which depends only on the stoichiometric co-

efficients of the matrices B, C. Particularly the bound is independent of the

concentration values and the reaction constants.

The estimate (3.80) is sharp. This should be shown with help of the following

example. Let us consider one mobile species, two immobile species and one

equilibrium sorption reaction, namely

A + B ↔ 2C

with the equilibrium condition

Kc(A)c̄(B) = c̄(C)
2
.

Applying the reduction scheme with the transformation matrices

S⊥
2 =

(
2

1

)

, B2 =

(
0

1

)

, B⊥
2 =

(
1

0

)
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leads to the new variables

ξsorp = −c(A) , ξ̄sorp =
1

2
c̄(C) , η̄ = c̄(B) +

1

2
c̄(C) , ξ̃sorp = −c(A) − 1

2
c̄(C) .

For this example the resolution function ξ̄sorp(ξ̃sorp) can be calculated explicitly.

One gets

ξ̄sorp(ξ̃sorp) =
−K(ξ̃sorp − η̄) −

√

K2(ξ̃2
sorp − 2ξ̃sorpη̄ + η̄2) + 4K(K − 4)ξ̃sorpη̄

2(K − 4)
.

So we get for the derivative of the resolution function

ξ̄′sorp(ξ̃sorp) =
−K

2K − 8
− K2ξ̃sorp + K2η̄ − 8Kη̄

(2K − 8)
√

K2ξ̃2
sorp + 2K2ξ̃sorpη̄ + K2η̄2 − 16Kξ̃sorpη̄

.

As ξ̃sorp is a linear combination of concentrations with negative coefficients ξ̃sorp

is nonpositive and so
√

ξ̃2
sorp = −ξ̃sorp. Using this one gets for η̄ = 0

ξ̄′sorp(ξ̃sorp) =
−K2

K(2K − 8)
− K2

(2K − 8)(−K)
= 0 .

As η̄ is a linear combination of concentrations with positive coefficients η̄ is non-

negative. So one gets for ξ̃sorp = 0

ξ̄′sorp(0) =
−K2

K(2K − 8)
− K2 − 8K

(2K − 8)K
= −1 .

In this example the vectors b, c in estimate (3.80) are b =





−1

−1

2



, c =





1

0

0



. So

(3.80) yields

−1 ≤ ξ̄′sorp(ξ̃sorp) ≤ 0 .

Hence one can see that the estimate is sharp.

3.5.2 Condition Number of the Global Jacobian Matrix

for ∆t = 0

For ∆t = 0 the global Jacobian matrix (see (3.54)) simplifies to

Jglob =










I + Dξ̃sorp
ξ̄sorp,li Dξ̃min

ξ̄sorp,li −I 0 Dξkin
ξ̄sorp,li

Dξ̃sorp
ξ̄min,ld I + Dξ̃min

ξ̄min,ld 0 −I Dξkin
ξ̄min,ld

θI 0 0 0 0

0 θI 0 0 0

0 0 0 0 θI










.
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For ∆t = 0 the determinant of J glob is always nonzero. This can easily be seen

by expanding the determinant along the last (Jsorp,li + Jmin + J∗
1,kin) rows. So for

∆t small enough the Jacobian matrix is always invertible.

We consider the case that there is one equilibrium sorption reaction and no

other chemical reactions. Applying the reduction scheme gives the following

transformed variables: one variable ξsorp, one variable ξ̄sorp, one variable ξ̃sorp

and some variables η, η̄ depending on the number of the species. The global

problem consists of the equations

ξ̃sorp − ξsorp + ξ̄sorp(ξ̃sorp) = 0

∂t(θξ̃sorp) + Lξsorp = 0 .

The Jacobian matrix of the global problem is

J =

(

I + Dξ̃sorp
ξ̄sorp −I

θI ∆tLh

)

. (3.86)

In this case the vectors b and c in (3.80) are

b =

(
S1,sorp

S2,sorp

)

, c =

(
−S1,sorp

0

)

where the matrices S1,sorp, S2,sorp consist only of one column. So with the esti-

mate (3.80) we get

−1 ≤ ξ̄′sorp(ξ̃sorp) ≤ 0 . (3.87)

Now we will compute the spectral condition number of the global Jacobian

for θ = 1 and ∆t = 0. In this case the Jacobian is

J =

(

I + Dξ̃sorp
ξ̄sorp −I

I 0

)

.

To simplify the computations we calculate the condition number of

J̃ :=

(
−I 0

0 I

)

︸ ︷︷ ︸

=:Q

J =

(

−I − Dξ̃sorp
ξ̄sorp I

I 0

)

.

As the matrix Q is orthogonal the spectral condition numbers of J and J̃ are

the same. For the eigenvectors vi we make the ansatz

vi =

(
aiei

ei

)
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with ei the i-th unit vector and ai ∈ R. So we get

J̃v =

(
(−ai − aidi + 1)ei

aiei

)
!
= λi

(
aiei

ei

)

⇒ ai = λi , −λi − λidi + 1 = λ2
i

with di the i-th entry of the diagonal matrix Dξ̃sorp
ξ̄sorp. It follows

λi,1,2 =
−(1 + di) ±

√

(1 + di)
2 + 4

2
.

We know that di ∈ [−1; 0] (see (3.87)). Hence we get the eigenvalue with the

highest absolute value for “–” and di = 0, thus

|λ| ≤
∣
∣
∣
∣
∣

−1 −
√

12 + 4

2

∣
∣
∣
∣
∣
=

1 +
√

5

2

and the eigenvalue with the smallest absolute value for “+” and di = 0, thus

|λ| ≥
∣
∣
∣
∣
∣

−1 +
√

12 + 4

2

∣
∣
∣
∣
∣
=

−1 +
√

5

2
.

Because J̃ is symmetric we can calculate the spectral condition number of J̃ by

cond J̃ =
max |λ|
min |λ| ≤ 1 +

√
5

−1 +
√

5
=

(1 +
√

5)
2

4
≈ 2.6180 . (3.88)

So the condition number is bounded independent of the value of the reaction

constant K and the values of the concentrations (c, c̄).

3.5.3 Condition of the Problem for Large ∆t

For the examination the same example as in the last section is used. As large

time step sizes ∆t are considered we assume that the term θI in the Jacobian

matrix (3.86), which stems from the discretization of the time derivative, can

be neglected. Note that the terms in Lh stemming from the discretization of

the second derivative contain the factor 1
h2 . So for example for ∆t = 0.5 and

h = 0.01, that are realistic discretization parameters, the terms of θI are small

compared with that one of ∆tLh and the assumption is justified.

Neglecting θI the Jacobian matrix is

J =

(

I + Dξ̃sorp
ξ̄sorp −I

0 ∆tLh

)

.
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As a consequence the problem decomposes in two subproblems. The first sub-

problem has the matrix ∆tLh. This subproblem is equivalent to solving an elliptic

PDE. So it is possible to solve it.

The second subproblem has the matrix I + Dξ̃sorp
ξ̄sorp. We know that the

entries of the diagonal matrix Dξ̃sorp
ξ̄sorp are between minus one and zero (see

(3.87)). So it is possible that the diagonal matrix I + Dξ̃sorp
ξ̄sorp has one entry

equal to ε and one equal to 1 − ε. Hence the condition number of the matrix

I + Dξ̃sorp
ξ̄sorp can be very large. But for the case of a diagonal matrix the

condition analysis is to pessimistic (see [Kna02, Sec. 2.6]). As the matrix is

diagonal every equation can be solved independent of the other ones. To solve one

equation one only has to perform a division, which is a well conditioned operation.

Hence it is possible to solve the second subproblem numerically without problems.

Altogether it is possible to solve the problem in the case that the term θI is

neglected despite of the large condition number of the whole Jacobian matrix J .

Hence one can hope that the reduction scheme works well also for large time step

sizes.

3.6 Variants

3.6.1 No Additional Variables

It is also possible to use the formulation (3.30)-(3.38) together with the retrans-

formation (3.15) directly and not to introduce additional variables. This is done

in [KK07] for the case no minerals. Without the additional variables we have to

use another resolution function. In the case no equilibrium minerals it reads

(ξsorp, ξkin) 7→ (ξmob, ξ̄sorp, ξ̄kin) .

This approach leads to the remaining nonlinear system

∂t(θξsorp) + Lξsorp = ∂t(θξ̄sorp(ξsorp, ξkin)) + θ(A1,sorp − A2,sorp)rkin(ξsorp, ξkin)

∂t(θξkin) + Lξkin = θA1,kinrkin(ξsorp, ξkin)

which consists of less equations than that one which we get by use of the additional

variables. By use of the additional variables we have to add the defining equations

of the additional variables to the system and that way the coupled nonlinear

system gets bigger. But it is not possible to use this smaller system for realistic

problems with large reaction constants because it does not converge (see below).

In [Krä08] the case with equilibrium minerals is treated without use of the

additional variables. The main difference is that the partitioning in local and
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global variables depends on the fact if the equilibrium minerals are present at this

point or not. Not using the additional variables the global and local variables are

ξloc =








ξmob

ξI
min

ξ̄sorp

ξ̄kin








, ξglob =





ξsorp

ξA
min

ξkin





where ξI
min denotes the vector which contains all entries of ξmin for which the

associated mineral is present and analogously ξA
min contains all entries of ξmin

where the associated mineral is not present. The mineral concentrations ξ̄min are

treated in a special way. They are computed a-posteriori by evaluating the left

hand side of a PDE.

That the case differentiation is unavoidable when not using the additional

variables should be illustrated with the following example. We consider the fol-

lowing simple example with one mobile species, one mineral and one mineral

reaction in equilibrium:

A ↔ B

In this example the transformed variables are

ξmin = −c(A), ξ̄min = c̄(B), ξ̃min = −c(A) − c̄(B)

where the last one only appears by use of the additional variables.

Depending if we use the additional variables (right) or not (left) we have:

∂tξmin + Lξmin = ∂tξ̄min

min{ξ̄min, K + ξmin} = 0

Resolving the min-function with re-

spect to one variable is not possible.

So it is necessary to make a case dif-

ferentiation in the partitioning in lo-

cal and global variables.

ξ̃min + ξ̄min − ξmin = 0

∂tξ̃min + Lξmin = 0

min{ξ̄min, K + ξ̃min + ξ̄min} = 0

Resolving the min-function with re-

spect to ξ̄min is possible:

ξ̄min = 0 for K + ξ̃min ≥ 0

ξ̄min = −K − ξ̃min else

Without use of the additional variables the equations of the local problem are

φmob(c) = 0

φsorp(c, c̄nmin) = 0

ψI(c) = 0

θξ̄kin − (θξ̄kin)old

∆t
= θA2,kinrkin(c, c̄) .
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For the case that there is no linear dependency of S1,sorp and S1,min (compare

(3.2)) the global problem reads

∂t(θξsorp) + Lξsorp = ∂t(θξ̄sorp(ξsorp, ξ
A
min, ξkin))

+ θ(A1,sorp − A2,sorp)rkin(ξsorp, ξ
A
min, ξkin)

∂t(θξ
A
min) + LξA

min = ∂t(θξ̄
A
min(ξsorp, ξ

A
min, ξkin)) + θAA

1,minrkin(ξsorp, ξ
A
min, ξkin)

∂t(θξkin) + Lξkin = θA1,kinrkin(ξsorp, ξ
A
min, ξkin) .

Note that we have the second equation only on that parts of the domain on

which the associated mineral is not present. The mineral concentrations ξ̄min are

computed in the following way: When the mineral is not present we have the

trivial equation ξ̄
A
min = 0. When the mineral is present we compute the mineral

concentrations ξ̄
I
min with help of the PDEs (see [Krä08] for details)

∂t(θξ
I
min) + LξI

min = ∂t(θξ̄
I
min) + θAI

1,minrkin(c, c̄) .

The case differentiation in the variant with no additional variables causes some

difficulties in the implementation that do not occur by the use of the additional

variables. Firstly we have to solve the PDE for the variable ξA
min only on a part

of the domain. So the number of unknowns per node differs from node to node

and the number of unknowns at one node changes if a mineral fully dissolves or

precipitates. Secondly we have to evaluate the left hand side of a PDE during

the computation of ξ̄
I
min with the PDE. That is an unusual way to use a PDE

for numerical computations. So most platforms for solving PDEs do not provide

this kind of using a PDE.

The main problem of the formulation without the additional variables is that

the resulting method does not converge for realistic problems. For example it

is not possible to compute the MoMaS–benchmark (see Chap. 4), not even for

extremely small time step sizes.

Probably the high values of the derivatives Dξsorp
ξ̄sorp are the reason for the

non-convergence. Because of the implicit elimination (see 3.3.2) this derivatives

appear in the global Jacobian matrix.

We look at the same example with the chemistry of the “easy test case” of

the MoMaS–benchmark, which is mentioned in Section 3.5.1. Using this variant

the matrix of the linear system to calculate Dξglob
ξloc is:

1.00 -0.00 0.00 0.00 -0.00 -0.00 -0.00

-0.00 1.00 -0.00 0.21 0.62 -0.00 -0.00

0.16 -0.16 0.31 1.00 -0.52 -0.00 -0.00

0.00 0.33 0.00 0.69 1.00 -0.00 -0.00

-0.00 0.00 -0.00 0.00 1.00 -0.00 -0.00

-0.00 6845.42 -0.00 6845.42 20536.27 1.00 0.00

0.85 -0.85 1.07 4.05 -3.21 0.38 1.00
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The associated right hand side is:

0.00 -0.00

-0.21 0.00

0.48 -0.60

-0.33 -0.00

-0.00 0.00

-6845.42 0.00

2.56 -2.77

Therewith we get for Dξsorp
ξ̄sorp:

-3113.96 0.00

1180.07 -0.71

The other entries in the global Jacobi matrix have order of magnitude one. So

these entries destroy the convergence of the method.

By use of the additional variables one can prove that the derivatives Dξglob
ξloc

are bounded and the bound only depends on stoichiometric coefficients that are

integral and small (see Sec. 3.5.1).

Like in Section 3.5.2 we examine the condition number of the Jacobian matrix

for ∆t = 0. We consider the following easy example with one chemical reaction,

one mobile and one immobile species. The chemical reaction is the equilibrium

sorption reaction

B ↔ 2A

with the equilibrium condition

c̄ = Kc2 .

Applying the reduction scheme gives the transformed variables

ξsorp =
1

2
c , ξ̄sorp = −c̄ .

Using this variant the global problem consists of the equation

∂t(θξsorp) + Lξsorp = ∂t(θξ̄sorp(ξsorp))

with the resolution function

ξ̄sorp(ξsorp) = −4Kξ2
sorp . (3.89)

Here the Jacobian of the global problem is

J = θI + ∆tLh − θDξsorp
ξ̄sorp

where

ξ̄′sorp(ξsorp) = −8Kξsorp = −4Kc . (3.90)
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As K and c are positive we know that

−∞ < ξ̄′sorp(ξsorp) ≤ 0 .

Like in Section 3.5.2 we consider the case θ = 1 and ∆t = 0. In this case the

global Jacobian is

J = I − Dξsorp
ξ̄sorp = I + 4K diag(c) .

J is a diagonal matrix with only strictly positive entries. Hence the spectral

condition number of J is the largest entry divided by the smallest entry. So we

get

cond J =
1 + 4Kcmax

1 + 4Kcmin

.

Here the condition number depends on the equilibrium constant and the concen-

tration values. In realistic scenarios a species is often only present in a part of

the domain. Hence cmin is zero and the order of magnitude of cmax is roughly

one. Furthermore the reaction constants K often assume very high values. In

such a situation we get

cond J ≈ 4K

and so we see that because of the large reaction constant the spectral condition

number of the Jacobian matrix has a very high value. Hence this numerical

method is not suitable for this problem when K has a high value because then

convergence problems would occur. This is opposite to the case with the addi-

tional variables, where condJ is bounded by a fixed number (see (3.88)).

For this example the resolution function ξ̄sorp(ξ̃sorp) can also be stated explic-

itly by use of additional variable ξ̃sorp. Some simple calculations give

ξ̄sorp(ξ̃sorp) = −ξ̃sorp −
1

8K
+

√

ξ̃sorp

4K
+

1

64K2
. (3.91)

Hence the derivative is

ξ̄′sorp(ξ̃sorp) = −1 +
1

√

16Kξ̃sorp + 1
. (3.92)

The reason for the different condition numbers are the derivatives of the res-

olution functions (see (3.92), (3.90)). Let us consider the batch situation where

ξ̃sorp = ξsorp − ξ̄sorp = 1
2
c + c̄ is a constant. The equilibrium condition is the limit

for k → ∞ of the ODE

∂tc̄ = k(rf (2(ξ̃sorp − c̄)) − rb(c̄))
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with rf (c) = kfc
2 and rb(c̄) = kbc̄. Treating rf and rb implicitly gives

c̄ − c̄old

∆t
= k(rf (2(ξ̃sorp − c̄)) − rb(c̄)) .

Resolving for c̄ and passing to the limit k → ∞ gives

c̄ = ξ̃sorp +
1

8K
−

√

ξ̃sorp

4K
+

1

64K2

with K = kf/kb. This corresponds to the resolution function by use of the

additional variables (3.91). Treating rf explicitly and rb implicitly gives

c̄ − c̄old

∆t
= k(rf (2(ξ̃sorp − c̄old)) − rb(c̄)) .

Resolving for c̄ and passing to the limit k → ∞ gives

c̄ = 4K(ξ̃sorp − c̄old)
2
.

This corresponds to the resolution function of the formulation without additional

variables (3.89). So the different resolution functions are connected with the

explicit or implicit treatment of the forward reaction rate rf .

So we can conclude that it is necessary to use the additional variables ξ̃sorp

and ξ̃min. In the case no equilibrium mineral reactions two more variants are

possible.

3.6.2 Eliminating ξsorp

By using the additional variables ξ̃ there are two possibilities to eliminate one

block of variables. The first one is to resolve the defining equation of ξ̃sorp

(see (3.39)) for ξsorp and to plug the resulting equation in (3.31). The other

possibility is described in the next section.

It is also possible to do the elimination of ξsorp not on the nonlinear level but

on the linear level. First the equations are linearized and then ξsorp is eliminated.

This technique is described in [Krä08, Sec. 4.4.3]. As both equations (3.39),

(3.31) are linear in ξsorp this leads to the same equations after linearization of

the equations resulting from the elimination on the nonlinear level.

Doing the elimination on the nonlinear level we get the new PDE

∂t(θξ̃sorp) + Lξ̃sorp = θ(A1,sorp − A2,sorp)rkin(c, c̄) − Lξ̄sorp . (3.93)
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The retransformation is the same as by adding the defining equations of ξ̃sorp as

additional equation:

c = S1,mobξmob + S1,sorpξ̃sorp + S∗
1,kinξkin + B⊥

1 η + S1,sorpξ̄sorp

c̄ = S2,sorpξ̄sorp + S∗
2,kinξ̄kin + B⊥

2 η̄

Also the resolution function is the same:

(ξ̃sorp, ξkin) 7→ (ξmob, ξ̄sorp, ξ̄kin)

So the existence of the resolution function is secured as we can apply the existence

proof of Section 3.2.1.

Altogether we have to solve the same local problem as by adding the defining

equations of the additional variables as additional equations. But now the global

problem is

∂t(θξ̃sorp) + Lξ̃sorp = θ(A1,sorp − A2,sorp)rkin(ξ̃sorp, ξkin) − Lξ̄sorp(ξ̃sorp, ξkin)

∂t(θξkin) + Lξkin = θA1,kinrkin(ξ̃sorp, ξkin) .

The number of equations is the same as in the variant without the additional

equations and so the number is less than by adding the defining equations of the

additional variables as additional equations.

The advantage of this variant in comparison to the variant not using the

additional variables ξ̃sorp is that the derivatives Dξglob
ξloc are bounded. Because

of the use of the same resolution function as by adding the defining equations of

ξ̃sorp as additional equation all considerations about Dξglob
ξloc of this case (see

Sec. 3.5.1) are applicable.

The disadvantage of this variant is that the transport operator applied to

immobile species (Lξ̄sorp) appears. This term is physically not meaningful. The

operator L describes the transport of a mobile species but ξ̄sorp is immobile,

i.e., it is not transported. Also from a numerical point of view this term is

problematic. Because of the use of a resolution function ξ̄sorp is a nonlinear

function of (ξ̃sorp, ξkin) and it is known that nonlinearities under the transport

operator cause numerical difficulties.

Numerical tests with the “easy test case” of the MoMaS–benchmark (see

Chap. 4) have shown that this variant leads to a converging method but only for

very small time step sizes. The restriction on the time step size is so heavy that

it is preferable to use the standard method with the additional equations because

the total CPU time is less than by use of this variant despite of the larger system

of equations.



3.6. VARIANTS 77

Applying this variant to the example of Sec. 3.5.3 leads to the equation

∂t(θξ̃sorp) + Lξ̃sorp = −Lξ̄sorp(ξ̃sorp) .

Solving this nonlinear PDE with Newton’s method one gets the Jacobian matrix

J = θI + ∆tLh + ∆tLhDξ̃sorp
ξ̄sorp .

Neglecting the term θI like it is done in Section 3.5.3 gives

J = ∆tLh(I + Dξ̃sorp
ξ̄sorp) .

This matrix can be ill conditions, e.g., when the diagonal matrix Dξ̃sorp
ξ̄sorp

has entries −ε and −1 + ε (compare Sec. 3.5.3). But here the argumentation

of Sec. 3.5.3, how the problem can be solved numerically despite of the large

condition number, is not applicable. So using this variant numerical problems

are expected for large time step sizes.

3.6.3 Eliminating ξ̄sorp

The second possible variant is to eliminate the variables ξ̄sorp. For this purpose

the defining equation of ξ̃sorp (see (3.39)) is solved for ξ̄sorp and the resulting

equation is plugged in (3.31). So we get the new PDE

∂t(θξ̃sorp) + Lξsorp = θ(A1,sorp − A2,sorp)rkin(c, c̄) . (3.94)

This time we have to change the partitioning in local and global variables. We

take ξsorp as local variables instead of global ones. Also in the retransformation

we have to eliminate ξ̄sorp with help of the defining equation of ξ̃sorp. This leads

to the new retransformation

c = S1,mobξmob + S1,sorpξsorp + S∗
1,kinξkin + B⊥

1 η

c̄ = S2,sorpξsorp − S2,sorpξ̃sorp + S∗
2,kinξ̄kin + B⊥

2 η̄ .

With this new partitioning in local and global variables we have to show the

existence of a resolution function

(ξ̃sorp, ξkin) 7→ (ξmob, ξsorp, ξ̄kin) .

This can be done analogously to the existence proof in Section 3.2.1. Mainly we

have to replace ξ̄sorp by ξsorp. Note that the variables the resolution function

depends on are unchanged.
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When we compute the solution of the local problem like it is described in

Section 3.4.1 we have to solve the same equations. Only at the end we have to

compute ξsorp by its defining equation instead of ξ̄sorp. The global problem of

this variant reads

∂t(θξ̃sorp) + Lξsorp(ξ̃sorp, ξkin) = θ(A1,sorp − A2,sorp)rkin(ξ̃sorp, ξkin)

∂t(θξkin) + Lξkin = θA1,kinrkin(ξ̃sorp, ξkin) .

The disadvantage of this variant is that a nonlinearity under the transport

operator (Lξsorp(ξ̃sorp, ξkin)) appears because of the new partitioning in local and

global variables. It is known that a nonlinearity under the differential operator

can cause numerical problems.

Numerical tests of this variant have shown that we get exactly the same

Newton iterates as by using the variant where ξsorp is eliminated. This can be

seen in the following way: In both cases the local problem contains the defining

equations

ξ̃sorp =
(

(BT
1 S∗

1)
−1

BT
1 c

)

i=Jmob+1,...,Jeq

−
(

(BT
2 S∗

2)
−1

BT
2 c̄

)

i=1,...,Jsorp

.

The local variables ξsorp in this variant and ξ̄sorp in the other variant are calculated

after solving the local problem with their defining equations

ξ̄sorp =
(

(BT
2 S∗

2)
−1

BT
2 c̄

)

i=1,...,Jsorp

, ξsorp =
(

(BT
1 S∗

1)
−1

BT
1 c

)

i=Jmob+1,...,Jeq

,

respectively. If we solve the local problems of the two variants with the same

values for the global variables we get that ξsorp of this variant minus ξ̄sorp of the

variant where ξsorp is eliminated is equal to ξ̃sorp. Therewith we see immediately

that calculating the defect of the PDEs (3.93) and (3.94) provides the same

results.

The derivatives Dξglob
ξloc are calculated with a linear system of equations of

the form BT Λ̃BX = BT Λ̃C (see (3.53)). For the variant where ξsorp is elimi-

nated we have exactly the linear system (3.53) because we have the same local

problem and the same retransformation as by adding the defining equations of the

additional variables as additional equations. For this variant we can analogously

derive a linear system of this form. Doing so we see that in the two variants only

the matrix C differs. For this variant we get

C =

(
0 −S∗

1,kin

S2,sorp 0

)

.

So we get by calculating the difference

BT Λ̃B(X1 − X2) = BT Λ̃(C1 − C2)
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where the index denotes the variants. We know that

C1 − C2 =

(
−S1,sorp 0

−S2,sorp 0

)

.

As B(BT Λ̃B)
−1

BT Λ̃ is a projection onto B (see (3.78)) and as the first column

block of C1 − C2 is minus the second column block of B we get

X1 − X2 =

(
0 0

−IJsorp
0

)

.

Particularly we have the identity

Dξ̃sorp
ξ̄sorp − Dξ̃sorp

ξsorp = −IJsorp
.

Therewith it is easy to see that the PDEs (3.93) and (3.94) provide the same

contribution to the global Jacobi matrix.

In summary the first variant without the additional variables cannot be used

for realistic problems because it does not converge. The next two variants, where

the variables ξsorp and ξ̄sorp, respectively, are eliminated, are inappropriate for

realistic problems because they only converge for small time step sizes. Hence

it is reasonable to use the global system (3.43)-(3.47) although its global system

consists of more equations than the global systems of these three variants.

3.6.4 Elimination on Linear Level Instead Use of Resolu-

tion Function

Instead of using a resolution function to eliminate the local equations, like it is

described in Section 3.2, it is also possible to eliminate the local equations on

the linear level. For the case that no additional variables ξ̃ are used a detailed

description of this technique can be found in [Krä08, Sec. 4.4.3]. By use of the

additional variables this elimination technique is applicable exactly in the same

way.

The reason why here the elimination of the local equations is done on the

nonlinear level with help of a resolution function is that using the resolution

function the resulting method is more efficient. This can be seen in the following

way: Let us assume that the equilibrium conditions are not fulfilled at one node

and that twenty Newton-steps are necessary to equilibrate the concentrations.

The equilibrium conditions of realistic scenarios are highly nonlinear. So the

assumption that twenty Newton-steps are necessary is realistic.

Using the resolution function one has to perform twenty local Newton-steps.

To do so one has to solve twenty linear systems with the number of equations
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equal to the number of concentrations. This does not take much time. But using

the elimination on the linear level one has to perform twenty global Newton-steps.

Here one has to solve twenty linear systems of the size number of nodes times

number of global variables. This is very time consuming. So with the resolution

function the method is much more efficient.

3.7 Implementation

The algorithm was implemented using a software kernel for parallel computations

in the field of PDEs called M++ [Wie05]. M++ itself is an object oriented code

based on C++ using MPI for the parallelization. So the code runs on clusters

consisting of several machines. Running the code on a single computer all cores

of a multi-core CPU can be used.

The code is implemented for 2D and 3D problems and uses finite elements

on unstructured grids. For solving the nonlinear systems of equations Newton’s

method is used. Different iterative linear solvers (e.g., GMRES, BiCGStab, QM-

RCGStab) and different standard preconditioners (e.g., SSOR) are implemented.

The coarse grid must be specified in a text file with a certain format. It is possible

to refine this grid regularly as often as it is wanted.

The user specifies the problem in a script file including ansatz spaces, the

discretization parameters, type of linear solver/preconditioner, stopping criteria

for nonlinear/linear solver, etc. As output M++ build text files for visualization

with different programs (gnuplot, OpenDX, vtk-files for e.g. ParaView). How

many output files of each type are built is also specified in the script file.

In the framework of this PhD thesis the reduction scheme was implemented us-

ing conformal finite elements like it is described in the previous sections including

the special numerical treatment of the local problem described in Section 3.4.1,

the starting value search out of Section 3.4.2, the cutting-off strategy of the global

Newton step out of Section 3.4.3 (the simplified case for the normal formulation

and the general case for the generalized formulation out of Section 3.9) and the

FV-stabilization for the convection dominated case like in Section 3.4.4. So real-

istic problems with high reaction constants can be handled.

The implementation was carried out in such a way that also the number of

species, the transport parameters and the chemical reactions are specified by

entries in the script file. So changes of the simulated problem are easily possible.

Furthermore a small C–program was written which generates grids for a given

flow field according to the strategy described in Section 3.4.5.

The Darcy velocity q, the transport operator L is based on, and the water
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content θ can either be provided by the user as an input or it is computed by

solving Richards equation

∂tθ(ψ) + ∇ · q = 0

q = −Kskr(ψ)∇(ψ + z)

where ψ denotes the pressure measured in meter water head, Ks the saturated

hydraulic conductivity, kr the relative hydraulic conductivity and z the height

against the gravity direction.

In the fully saturated case Richards equation degenerates to the elliptic equa-

tion

−∇ · Ks∇(ψ + z) = 0 .

In this case the solver for the Richards equation is called only once at the begin-

ning of the simulation.

For solving Richards equation Hybrid Mixed Finite Elements are used. The

advantages of Mixed Finite Elements are that they are mass conserving and

that they can handle discontinuous hydraulic conductivities Ks which occurs

in realistic scenarios. Two types of hybrid mixed finite elements are available:

Lowest order Raviart–Thomas (RT0) and lowest order Brezzi–Douglas–Marini

(BDM1), which has a higher order of convergence in the flux variable. For details

to the solver of the Richards equation see [Koh05].

When the Darcy velocity q is constant in time (e.g., in the fully saturated

case) the discrete transport operator is only assembled once at the beginning of

the computation and is stored in a matrix. Subsequently in every time step this

precomputed matrix is used to set up that part of the global Jacobian matrix

which is related to the transport operator. With this procedure CPU time is

saved.

The stopping criterion for both the linear and the nonlinear solver is a com-

bined criterion, i.e., the iteration is stopped if the residual r fulfills

|r| < max{Eps, |r0|Red} (3.95)

where r0 is the initial residual and Eps, Red are user specified parameters. For

each solver different parameters Eps, Red can be given.

An adaptive time stepping is implemented. The time step size is chosen

between a given minimum and maximum value: ∆tmin ≤ ∆t ≤ ∆tmax. The

criterion of the time step choice depends on the number of Newton steps in the

last time step. For a small number the time step size is enlarged and for a high

number it is reduced. When it is necessary a time step is repeated with a smaller

time step size. For the computations of the MoMaS benchmark (see Chap. 4) the

following algorithm is used:
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Adaptive time stepping
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Num. of global Newton steps

<3

∆t ∗= 1.6

3–6

∅

7–9

∆t ∗= 0.5

9–12

∆t ∗= 0.25

>12
∆t ∗= 0.25

Repeat

time step
hhhhhhhhhhhhhhhhhhhhh

»»»»»»»»»»»»»»

∆t > ∆tmax

TRUE FALSE

∆t = ∆tmax ∅
hhhhhhhhhhhhhhhhhhhhh

»»»»»»»»»»»»»»

∆t < ∆tmin

TRUE FALSE

∆t = ∆tmin ∅

The starting values for both the η-problem and the nonlinear problem are

calculated by extrapolation from two time levels. If the starting value of the non-

linear problem computed by extrapolation corresponds to negative concentrations

the starting value search of Section 3.4.2 is used.

For some applications much CPU time can be saved by performing extrap-

olation in comparison to the usage of the value of the old time step as starting

value. In Table 3.1 the normalized CPU time for a computation of the “advective

easy test case” in 2D is shown. The used grid consists of 26660 triangles. In this

computation 35% of the CPU time can be saved by using extrapolation. As pro-

posed in [BBC+] the CPU time is measured in normalized units (see Chap. 4).

CPU time time steps Newton steps

with extrapolation 5838.7 13044 2.18

without extrapolation 8918.8 17100 2.88

Table 3.1: CPU time with and without extrapolation, “advective easy test case”

in 2D

The speed-up of the parallelization is quite good. In Table 3.2 the CPU times

for a computation using one processor and a computation using eight processors

are shown. The considered problem is the “advective easy test case” in 2D on
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a grid consisting of 26660 triangles without extrapolation. In this performance

test the speed-up factor is 6.05.

CPU time time steps Newton steps

1 proc. 8918.8 17100 2.88

8 proc.s 1473.4 16987 2.89

Table 3.2: CPU time with different numbers of processors, “advective easy test

case” in 2D without extrapolation

3.8 Link to Morel Formulation

The goal of this section is to show the connections between the reduction scheme

presented in the Sections 3.1, 3.2 and the widely used Morel formulation (see

e.g. [AK09], [dDEK09], [HKK09]).

To derive the Morel formulation it is necessary to transform the stoichiometric

matrix S to standard form. It is always possible to transform the stoichiometric

matrix S (compare (3.3)) such that it is of the form4

S =






S1,mob S1,sorp S1,min S1,kin

0 S2,sorp 0 S̃2,kin

0 0 IJmin
0






∼










C A D

−IJmob
0 0

F

0 B̂ 0

0 −IJsorp
0

G

0 0 −IJmin
0










=














C1 A1 D1 F 1

C2 A2 D2 F 2

−IJmob
0 0 F 3

0 B̂1 0 G1

0 B̂2 0 G2

0 −IJsorp
0 G3

0 0 −IJmin
0














where the blocks Ai have the substructure (with Ald out of (3.2))

(
A1

A2

)

=

(
A1,li D1Ald

A2,li D2Ald

)

(3.96)

4In order that the submatrices Bi of S can not be mixed up with the transformation matrices

Bi out of Section 3.1 the submatrices of S are mark with a hat B̂, B̂i.
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and with

(
C2 A2,li D2 F ∗

2

−IJmob
0 0 F ∗

3

)

, G∗
2 and

(

B̂2 G∗
2

−IJsorp
G∗

3

)

invertible. The

matrices F ∗
i and G∗

i consist of some columns of F i and Gi, respectively, anal-

ogously to Si,kin in (3.7) and (3.8), respectively. To get such a stoichiometric

matrix one has to perform only the following operations: taking a multiple of

one column, adding one column of the block of mobile equilibrium reactions to a

column in the block of equilibrium reactions, adding one column of the block of

sorption equilibrium reactions to another column in this block and interchanging

rows within the block of mobile species or within the block of fixed nonmineral

species. Adding a column to another one in the block of equilibrium reactions

corresponds to adding the equilibrium conditions in the logarithmized form (or

multiplying the equilibrium conditions in the nonlogarithmized form). Thus the

equilibrium conditions for the transformed stoichiometric matrix are of the same

form as the original ones.

In detail the transformation can be done in the following way:

(i) Replacing S1,kin and S̃2,kin by S∗
1,kin and S∗

2,kin, respectively, such that the

matrices S∗
i (see (3.7), (3.8)) are a maximal system of linear independent

columns of S1 and S2, respectively.

(ii) Sorting the rows in the block of the nonminerals such that in the ma-

trix





S2,sorp,1 S∗
2,kin,1

S2,sorp,2 S∗
2,kin,2

S2,sorp,3 S∗
2,kin,3



 the quadratic submatrices

(
S2,sorp,2 S∗

2,kin,2

S2,sorp,3 S∗
2,kin,3

)

,

S2,sorp,3 and S∗
2,kin,2 are invertible.

It is always possible to sort the rows such that

(
S2,sorp,2 S∗

2,kin,2

S2,sorp,3 S∗
2,kin,3

)

is invert-

ible because the columns of the original matrix
(
S2,sorp S∗

2,kin

)
are linear

independent.

Moreover it is always possible to sort the rows of

(
S2,sorp,2 S∗

2,kin,2

S2,sorp,3 S∗
2,kin,3

)

such

that S2,sorp,3 and S∗
2,kin,2 are invertible because of the expansion theorem

of Laplace (see e.g. [Zie97, Satz 5.3.21])

det A =
∑

γ∈Gp

(sgn γ)(det Aγ)(det A∗
γ)

with Gp the set of all permutations σ ∈ Sn for which σ(1) < σ(2) < · · · <

σ(p) and σ(p + 1) < σ(p + 2) < · · · < σ(n), Aγ the matrix which arises

of A by removing the last (n − p) columns and the rows with the indices
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γ(p + 1), . . . , γ(n) and A∗
γ the matrix which arises of A by removing the

first p columns and the rows with the indices γ(1), . . . , γ(p). Applying this

theorem with A =

(
S2,sorp,2 S∗

2,kin,2

S2,sorp,3 S∗
2,kin,3

)

gives: If there were no invertible

matrices S2,sorp,3 and S∗
2,kin,2 the product (detAγ)(det A∗

γ) would be zero

for all γ and so the det A would be zero. That is a contradiction to the

invertibility of A.

(iii) By applying the Gauss algorithm (with interchanging of rows if necessary)

to
(
ST

1,sorp ST
2,sorp

)
one can get the −IJsorp

block in the submatrix with

the sorption equilibrium reactions. Because of the invertibility of S2,sorp,3

the Gauss algorithm can always be performed. Now the immobile part is

of the required form. By applying the Gauss algorithm the space spanned

by the columns of S1,sorp is unchanged. So as the columns of the original

matrix S∗
1 are linear independent the columns of the modified matrix S∗

1

are still linear independent.

(iv) If the columns of
(
S1,sorp S1,min

)
are linear dependent one has to divide

the submatrix S1,sorp in
(
S1,sorp,li S1,minAld

)
such that the columns of

(
Smob S1,sorp,li S1,min

)
are linear independent. When some columns are

permuted the corresponding rows in the block of the nonminerals must also

be permuted such that the −IJsorp
block in submatrix with the sorption

equilibrium reactions is preserved.

(v) Sorting the rows in the block of the mobile species such that in the ma-

trix





S1,mob,1 S1,sorp,li,1 S1,min,1 S∗
1,kin,1

S1,mob,2 S1,sorp,li,2 S1,min,2 S∗
1,kin,2

S1,mob,3 S1,sorp,li,3 S1,min,3 S∗
1,kin,3



 the submatrices S1,mob,3 and

(
S1,mob,2 S1,sorp,li,2 S1,min,2 S∗

1,kin,2

S1,mob,3 S1,sorp,li,3 S1,min,3 S∗
1,kin,3

)

are invertible. This is always pos-

sible with the same argument as in (ii).

(vi) By applying the Gauss algorithm to ST
1,mob one gets the −IJmob

block in the

submatrix with the mobile equilibrium reactions. Then by adding columns

of the submatrix with the mobile equilibrium reactions to columns of the

submatrix with sorption and mineral equilibrium reactions one can form the

two zero blocks in the submatrix with the sorption and mineral equilibrium

reactions. Now the whole matrix is of the required form.

In the Morel formulation the concentrations are split in primary and secondary
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concentrations

c =

(
cprim

csec

)

, c̄ =





c̄nmin,prim

c̄nmin,sec

c̄min





where the number of the mobile secondary concentrations csec is Jmob and the

number of immobile secondary concentrations c̄nmin,sec is Jsorp. The variables

used in the Morel formulation are the total concentrations T and the total fixed

concentrations W that are defined by

T := cprim + Ccsec + Ac̄nmin,sec + Dc̄min (3.97)

W := c̄nmin,prim + B̂c̄nmin,sec . (3.98)

Furthermore we define the mobile part of the total concentrations T M and the

immobile part of the total concentrations T F

T M := cprim + Ccsec (3.99)

T F := Ac̄nmin,sec + Dc̄min . (3.100)

The equations of the Morel formulation can be split into the chemical problem

cprim + Ccsec + Ac̄nmin,sec + Dc̄min = T

c̄nmin,prim + B̂c̄nmin,sec = W

CT ln(cprim) − ln(csec) = kmob

AT ln(cprim) + B̂
T

ln(c̄nmin,prim) − ln(c̄nmin,sec) = ksorp

min
{
DT ln(cprim) − kmin, c̄min

}
= 0

(3.101)

which consists of mass balance equations and equilibrium conditions and the

transport problem

∂t(θT ) + LT M = 0 (3.102)

T = T M + T F (c̄nmin,sec, c̄min) (3.103)

∂t(θW ) = 0 (3.104)

with T F (c̄nmin,sec, c̄min) = Ac̄nmin,sec +Dc̄min . The transport problem is formu-

lated without kinetic reactions because in most papers dealing with the Morel

formulation kinetic reactions are excluded.

Now we derive the reduction scheme for that case that the stoichiometric

matrix is in standard form.5 Using the transformed stoichiometric matrix the

5The link between the variables of the Morel formulation and the reduction scheme is much

simpler in the case no kinetic reactions. This simpler case can be found in Appendix A.1
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matrix S∗
1 and S∗

2, consisting of the linear independent columns of S1 and S2,

respectively, are of the form

S∗
1 =





C1 E1

C2 E2

−IJmob
E3



 , S∗
2 =








B̂1 0 G∗
1

B̂2 0 G∗
2

−IJsorp
0 G∗

3

0 −IJmin
0








with the abbreviations E1 :=
(
A1,li D1 F ∗

1

)
, E2 :=

(
A2,li D2 F ∗

2

)
and

E3 :=
(
0 0 F ∗

3

)
. The entries of the concentrations vectors c and c̄ are parti-

tioned analogously to the rows of S∗
1 and S∗

2, respectively,

c =





cprim,1

cprim,2

csec



 , c̄ =








c̄nmin,prim,1

c̄nmin,prim,2

c̄nmin,sec

c̄min








.

It is useful to choose as matrix S⊥
1 , consisting of a maximal system of linear

independent vectors that are orthogonal to all columns of S∗
1, the following one

S⊥
1 =






II−Jmob−Jsorp,li−Jmin−J∗

1,kin

−(E2 + C2E3)
−T (E1 + C1E3)

T

CT
1 − CT

2 (E2 + C2E3)
−T (E1 + C1E3)

T




 .

The existence of the inverse of E2 +C2E3 is shown below. Calculating (S∗
1)

T
S⊥

1

one can see that the columns of S⊥
1 are orthogonal to those of S∗

1. Furthermore

it is useful to choose the following transformation matrices B1 and B⊥
1

B1 =






0 0

0 IJsorp,li+Jmin+J∗

1,kin

IJmob
0




 , B⊥

1 =






II−Jmob−Jsorp,li−Jmin−J∗

1,kin

0

0




 .

The condition that the columns of B1, S⊥
1 form a basis of the whole space is

fulfilled. The standard form of the stoichiometric matrix is constructed in such

a way that

(
C2 E2

−IJmob
E3

)

is invertible. Hence also the inverse of BT
1 S∗

1 =

(
−IJmob

E3

C2 E2

)

exists.
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Let the inverse (BT
1 S∗

1)
−1

be partitioned in

(
N 1 N 2

N 3 N 4

)

. We know that

(

IJmob
0

0 IJsorp,li+Jmin+J∗

1,kin

)

=

(
−IJmob

E3

C2 E2

) (
N 1 N 2

N 3 N 4

)

=

(
−N 1 + E3N 3 −N 2 + E3N 4

C2N 1 + E2N 3 C2N 2 + E2N 4

)

.

Resolving the equation of the upper right block for N 2 and plugging in the

equation of the lower right block yields

(C2E3 + E2)N 4 = IJsorp,li+Jmin+J∗

1,kin
.

Because the matrix on the right hand side is invertible both quadratic matrices

on the left hand side must be invertible and we get N 4 = (C2E3 + E2)
−1. Again

using the equation of the upper right block yields N 2 = E3(C2E3 + E2)
−1. With

help of the identity
(

IJmob
0

0 IJsorp,li+Jmin+J∗

1,kin

)

=

(
N 1 N 2

N 3 N 4

)(
−IJmob

E3

C2 E2

)

one can derive analogously N 3 = (E2 + C2E3)
−1

C2. If the matrix E2 is invert-

ible one also gets the formula N 1 = −(IJmob
+ E3E

−1
2 C2)

−1
.

Using this we get for the transformed variables ξ (compare (3.13), (3.14))







ξmob




ξsorp

ξmin

ξkin












= (BT
1 S∗

1)
−1

BT
1 c

=

(
E3(C2E3 + E2)

−1
cprim,2 + N 1csec

(E2 + C2E3)
−1cprim,2 + (E2 + C2E3)

−1C2csec

)

.

(3.105)

And for the transformed variables η we have (compare (3.13))

η =
(
(S⊥

1 )
T
B⊥

1

)−1
(S⊥

1 )
T
c

= cprim,1 − (E1 + C1E3)(E2 + C2E3)
−1cprim,2

+
(
C1 − (E1 + C1E3)(E2 + C2E3)

−1C2

)
csec .

(3.106)

Now we consider the immobile species. As a basis of the orthogonal comple-

ment of S∗
2 we choose

S⊥
2 =









I Ī−Jsorp−Jmin−J∗

2,kin

−(G∗
2 + B̂2G

∗
3)

−T
(G∗

1 + B̂1G
∗
3)

T

B̂
T

1 − B̂
T

2 (G∗
2 + B̂2G

∗
3)

−T
(G∗

1 + B̂1G
∗
3)

T

0









.
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The existence of the inverse of G∗
2 + B̂2G

∗
3 is shown below. Like in the case of

mobile species it is easy to see that this matrix is orthogonal to S∗
2. Here it is

useful to choose as transformation matrices

B2 =








0 0 0

0 0 IJ∗

2,kin

IJsorp
0 0

0 IJmin
0








, B⊥
2 =








I Ī−Jsorp−Jmin−J∗

2,kin

0

0

0








.

Like in the case of mobile species it is obvious that B2 and S⊥
2 form a basis of the

whole space and due to the construction of the standard form of the stoichiometric

matrix the inverse of (BT
2 S∗

2)
−1

exists.

With the same methods with that we have calculated (BT
1 S∗

1)
−1

one can

compute that (Note that we know that G∗
2 is invertible)

(BT
2 S∗

2)
−1

=






−(IJsorp
+ G∗

3(G
∗
2)

−1
B̂2)

−1
0 G∗

3(B̂2G
∗
3 + G∗

2)
−1

0 −IJmin
0

(G∗
2 + B̂2G

∗
3)

−1
B̂2 0 (B̂2G

∗
3 + G∗

2)
−1




 .

Using this we get for the transformed variables ξ̄ (compare (3.13), (3.14))





ξ̄sorp

ξ̄min

ξ̄kin



= (BT
2 S∗

2)
−1BT

2 c̄

=






G∗
3(G

∗
2+B̂2G

∗
3)

−1
c̄nmin,prim,2−(IJsorp

+G∗
3(G

∗
2)

−1
B̂2)

−1
c̄nmin,sec

−c̄min

(G∗
2+B̂2G

∗
3)

−1
c̄nmin,prim,2+(G∗

2+B̂2G
∗
3)

−1
B̂2c̄nmin,sec




.

(3.107)

Moreover we get for the transformed variables η̄ (compare (3.13))

η̄ =
(
(S⊥

2 )
T
B⊥

2

)−1
(S⊥

2 )
T
c̄

= c̄nmin,prim,1 − (G∗
1 + B̂1G

∗
3)(G

∗
2 + B̂2G

∗
3)

−1
c̄nmin,prim,2

+
(
B̂1 − (G∗

1 + B̂1G
∗
3)(G

∗
2 + B̂2G

∗
3)

−1
B̂2

)
c̄nmin,sec .

(3.108)

Now we define the additional variables ξ̃ (compare (3.39))

ξ̃ =






ξ̃sorp

ξ̃min

ξkin




 :=





ξsorp − ξ̄sorp,li + (G∗
3ξ̄kin)li

ξmin − ξ̄min − Aldξ̄sorp,ld + Ald(G
∗
3ξ̄kin)ld

ξkin



 .
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Differing from the proceeding in Section 3.2 these variables contain also a term

with ξ̄kin.

We want to replace the mass balance equations for η, ξ̃, η̄ and ξ̄ in the local

problem (see Sec. 3.4.1) by the following linear combinations of these equations

η + (E1 + C1E3)ξ̃, (E2 + C2E3)ξ̃, η̄ + (G∗
1 + B̂1G

∗
3)ξ̄kin and (G∗

2 + B̂2G
∗
3)ξ̄kin.

To calculate the right hand side of the first two equations we have to compute

(i = 1, 2):

(Ei + CiE3)ξ̃

= (Ei+CiE3)





ξsorp

ξmin

ξkin



−(Ei+CiE3)





ξ̄sorp,li−(G∗
3ξ̄kin)li

ξ̄min+Aldξ̄sorp,ld−Ald(G
∗
3ξ̄kin)ld

0





First we consider the second summand. Using the definitions of the matrices

Ei =
(
Ai,li Di F ∗

i

)
and E3 =

(
0 0 F ∗

3

)
we see that the second summand is

Ai,liξ̄sorp,li − Ai,li(G
∗
3ξ̄kin)li + Diξ̄min + DiAldξ̄sorp,ld − DiAld(G

∗
3ξ̄kin)ld .

With help of the substructure of Ai =
(
Ai,li DiAld

)
we get

= Aiξ̄sorp + Diξ̄min − AiG
∗
3ξ̄kin .

Plugging in the definitions of the variables ξ̄ (see (3.107)) gives

= Ai

(
G∗

3(G
∗
2+B̂2G

∗
3)

−1
c̄nmin,prim,2−(IJsorp

+G∗
3(G

∗
2)

−1
B̂2)

−1
c̄nmin,sec

)
−Dic̄min

− AiG
∗
3

(

(G∗
2+B̂2G

∗
3)

−1
c̄nmin,prim,2 + (G∗

2+B̂2G
∗
3)

−1
B̂2c̄nmin,sec

)

= −Dic̄min − Ai(IJsorp
+ G∗

3(G
∗
2)

−1
B̂2)

−1
c̄nmin,sec

− AiG
∗
3(G

∗
2+B̂2G

∗
3)

−1
B̂2c̄nmin,sec

= −Dic̄min − Ai(IJsorp
+ G∗

3(G
∗
2)

−1
B̂2)

−1

(

IJsorp
+ (G∗

3 + G∗
3(G

∗
2)

−1
B̂2G

∗
3)(G

∗
2+B̂2G

∗
3)

−1
B̂2

)

c̄nmin,sec

= −Dic̄min − Ai(IJsorp
+ G∗

3(G
∗
2)

−1
B̂2)

−1

(

IJsorp
+ G∗

3(G
∗
2)

−1(G∗
2+B̂2G

∗
3)(G

∗
2+B̂2G

∗
3)

−1
B̂2

)

c̄nmin,sec

= −Dic̄min − Aic̄nmin,sec .

Using this and the definition of ξ (see (3.105)) we get in summary

(E2 + C2E3)ξ̃ = cprim,2 + C2csec + D2c̄min + A2c̄nmin,sec

(E1 + C1E3)ξ̃ = (E1 + C1E3)(E2 + C2E3)
−1(cprim,2 + C2csec)

+ D1c̄min + A1c̄nmin,sec .
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Adding the definition of η to the last one of the two equations leads to

η + (E1 + C1E3)ξ̃ = cprim,1 + C1csec + D1c̄min + A1c̄nmin,sec .

This equation and the first one of the two equations above will be used as mass

balance equations in the local problem instead of the defining equations of η, ξ̃.

Concerning the immobile species we compute with help of the definition of

ξ̄kin (see (3.107)) and the definition of η̄ (see (3.108))

η̄ + (G∗
1 + B̂1G

∗
3)ξ̄kin = c̄nmin,prim,1 + B̂1c̄nmin,sec

(G∗
2 + B̂2G

∗
3)ξ̄kin = c̄nmin,prim,2 + B̂2c̄nmin,sec .

These equations will be used in the local problem instead of the definitions of η̄

and ξ̄kin. For the moment we put the ODE for the variable ξ̄kin in the global

problem instead of the local problem. Doing so and using the new mass balance

equations, the local problem with the logarithmized mobile concentrations l, the

logarithmized nonmineral concentrations l̄nmin and the mineral concentrations

c̄min as unknowns reads:

CT
1 lprim,1 + CT

2 lprim,2 = lsec + kmob

η + (E1 + C1E3)ξ̃ = exp(lprim,1) + C1 exp(lsec)

+ A1 exp(l̄nmin,sec) + D1c̄min

(E2 + C2E3)ξ̃ = exp(lprim,2) + C2 exp(lsec)

+ A2 exp(l̄nmin,sec) + D2c̄min

AT
1 lprim,1 + AT

2 lprim,2

+ B̂
T

1 l̄nmin,prim,1 + B̂
T

2 l̄nmin,prim,2 = l̄nmin,sec + ksorp

min
{
DT

1 lprim,1+DT
2 lprim,2−kmin, c̄min

}
= 0

η̄ + (G∗
1 + B̂1G

∗
3)ξ̄kin = exp(l̄nmin,prim,1)+B̂1 exp(l̄nmin,sec)

(G∗
2 + B̂2G

∗
3)ξ̄kin = exp(l̄nmin,prim,2)+B̂2 exp(l̄nmin,sec)

Comparing the mass balance equations with the definition of the total con-

centrations T (3.97) and the total fixed concentrations W (3.98) one sees that

(

η + (E1 + C1E3)ξ̃

(E2 + C2E3)ξ̃

)

= T (3.109)

(

η̄ + (G∗
1 + B̂1G

∗
3)ξ̄kin

(G∗
2 + B̂2G

∗
3)ξ̄kin

)

= W . (3.110)
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Using this and undoing the partitioning of the primary variables in two parts

one gets

CT lprim − lsec = kmob

exp(lprim) + C exp(lsec) + A exp(l̄nmin,sec) + Dc̄min = T

AT lprim + B̂
T
l̄nmin,prim − l̄nmin,sec = ksorp

min
{
DT lprim − kmin, c̄min

}
= 0

exp(l̄nmin,prim) + B̂ exp(l̄nmin,sec) = W .

Thus the local problem is the same as the chemical problem of the Morel

formulation (3.101). So a modular implementation of the reduction scheme is

possible. That means any existing chemical solver (e.g. the solver of the chemical

subproblem of a splitting code) can be reused to solve the local problem of the

reduction scheme. This is an advantage of using the standard form of the sto-

ichiometric matrix. Applying the reduction scheme to arbitrary stoichiometric

matrices this would not be possible.

As the standard form of the stoichiometric matrix is used, it is possible to

reduce the size of the local problem by resolving the equilibrium conditions of

the mobile and sorption equilibrium reactions for the secondary concentrations

lsec and l̄nmin,sec, respectively, and then plugging these equations in the other

ones. This is also an advantage of using the standard form of the stoichiometric

matrix. Applying the reduction scheme to arbitrary stoichiometric matrices the

reduction of the local problem size is not possible. Doing so the smaller local

problem reads

exp (lprim) + C exp
(
CT lprim − kmob

)

+A exp
(

AT lprim + B̂
T
l̄nmin,prim − ksorp

)

+ Dc̄min − T = 0

min
{
DT lprim − kmin, c̄min

}
= 0

B̂ exp
(

AT lprim + B̂
T
l̄nmin,prim − ksorp

)

+ exp
(
l̄nmin,prim

)
− W = 0 .

If variables ξ̄kin appear in the problem there are two possibilities to treat

them. The first one is to move the ODEs for ξ̄kin to the global problem. Then

an existing chemical solver can be used without changes but one has to solve a

larger global problem. The second possibility is to solve the ODEs for ξ̄kin in the

local problem. Then the global problem is not enlarged but modifications at the

chemical solver are necessary.



3.8. LINK TO MOREL FORMULATION 93

Now we consider the global problem. The global problem of the reduction

scheme without kinetic reactions reads

∂t(θη) + Lη = 0 (3.111)

∂t(θξ̃sorp) + Lξsorp = 0 (3.112)

∂t(θξ̃min) + Lξmin = 0 (3.113)

ξ̃sorp = ξsorp + ξ̄sorp(η, ξ̃sorp, ξ̃min) (3.114)

ξ̃min = ξmin + ξ̄min(η, ξ̃sorp, ξ̃min) (3.115)

∂t(θη̄) = 0. (3.116)

As

(
ξsorp

ξmin

)

is the mobile part of ξ̃ and η is a linear combination of only mobile

species, it follows from (3.109) for the mobile part of the total concentrations T M








η + (E1 + C1E3)

(
ξsorp

ξmin

)

(E2 + C2E3)

(
ξsorp

ξmin

)








= T M .

Using this and (3.109) it can be seen that the equations of the first block of the

Morel formulation ∂t(θT )+LT M = 0 (see (3.102)) are linear combinations of the

equations (3.111)-(3.113). Furthermore the equations of the second block of the

Morel formulation T = T M + T F (c̄nmin,sec, c̄min) (see (3.103)) are linear combi-

nations of the equations (3.114), (3.115) and the trivial equations η = η. Note

that the number of equations in the block T = T M + T F (c̄nmin,sec, c̄min) is equal

to the number of equations in the blocks (3.114) and (3.115) plus the number

of the variables η. Because of (3.110) we have η̄ = W (for this comparison we

have assumed that there are no kinetic reactions). So the equations (3.104) are

the same as (3.116).

Here one can see clearly the three advantages of the reduction scheme. The

first one is that because of the use of the resolution function ξloc(ξglob) no split-

ting techniques are needed. By plugging in the resolution function one gets the

global system (3.111)-(3.116) which depends only on the variables η, ξ̃sorp, ξ̃min,

ξsorp, ξmin, η̄ while in the equations of the Morel formulation (3.102)-(3.104) the

concentration values c̄nmin,sec, c̄min appear.

The second advantage of the reduction scheme is that the number of equations

is smaller by the number of the variables η because the blocks (3.114), (3.115)

consist of less equations than the block (3.103). The third advantage of the

reduction scheme that the equation of block (3.111) decouple from the rest of the
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system and can be solved independent of the rest of the system. So one gets a

smaller coupled nonlinear system.

3.9 Generalization of the Reduction Scheme

The goal of this section is to derive a more general formulation of the reduction

scheme such that the normal formulation of the reduction scheme and the Morel

formulation are special cases of the new formulation.

To derive a more general formulation the block of the PDEs (3.4) is multiplied

with the matrices S̃
⊥
1

T

and CT
1 instead of

(
S⊥

1

T
B⊥

1

)−1
S⊥

1

T
and (BT

1 S∗
1)

−1
BT

1

(compare Sec. 3.1). The matrices S̃
⊥
1 and C1 must fulfil the following conditions:

(i) The number of rows of both matrices is I

(ii) All columns of S̃
⊥
1 and all columns of C1 are linear independent

(iii) All columns of S̃
⊥
1 are orthogonal to all columns of S∗

1 (but it is not nec-

essary that S̃
⊥
1 is a maximal system of linear independent vectors that are

orthogonal to all columns of S∗
1)

(iv) span
{
C1, S̃

⊥
1

}
= R

I

(v) There is a matrix D1 such that

CT
1 S∗

1 =

(
IJmob

0

0 D1

)

(3.117)

(the block D1 can be rectangular)

The size of the matrix C1 is I × (Jmob + N∗) where Jsorp,li + Jmin + J∗
1,kin ≤

N∗ ≤ I − Jmob (otherwise the conditions (i)-(iv) can not be true), the size of the

block D1 is N∗ × (Jsorp,li + Jmin + J∗
1,kin). The size of the matrix S̃

⊥
1 must be

I × (I − Jmob − N∗) because otherwise it is not possible that the conditions (ii)

and (iv) are fulfilled.

For the choice S̃
⊥
1

T

=
(
S⊥

1

T
B⊥

1

)−1
S⊥

1

T
and CT

1 = (BT
1 S∗

1)
−1

BT
1 all these

conditions are fulfilled. In this case the fourth condition is fulfilled because of

the assumption that B1, S⊥
1 form a basis of the whole space (see Sec. 3.1) and

the block D1 in the fifth condition is the identity matrix. So the transformation

done in the normal formulation of the reduction scheme is a special case of the

transformation done here.
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Multiplication of the block of the PDEs (3.4) with S̃
⊥
1

T

and CT
1 gives with

use of condition (iii)

∂t

(

θS̃
⊥
1

T

c
)

+ LS̃
⊥
1

T

c = 0

∂t

(
θCT

1 c
)

+ LCT
1 c = θCT

1 S∗
1A1

(
req

rkin(c, c̄)

)

.

Using the fifth condition and the structure of A1 (see (3.10)) it follows

∂t

(

θS̃
⊥
1

T

c
)

+ LS̃
⊥
1

T

c = 0

∂t

(
θCT

1 c
)

+ LCT
1 c = θ





rmob + A1,mobrkin(c, c̄)

R

(
rsorp

rmin

)

+ A1,∗rkin(c, c̄)





where

R := D1





IJsorp,li
0 0

0 Ald IJmin

0 0 0



 , A1,∗ := D1





A1,sorp

A1,min

A1,kin



 . (3.118)

The size of R is N∗ × (Jsorp + Jmin) and the size of A1,∗ is N∗ × Jkin.

This motivates the following definition of the transformed variables

η := S̃
⊥
1

T

c , ξ =

(
ξmob

ξ∗

)

:= CT
1 c . (3.119)

The number of the variables η is I − Jmob −N∗, the number of the variables ξmob

is Jmob and the number of the variables ξ∗ is N∗. Using these new variables it

holds

∂t(θη) + Lη = 0

∂t(θξ∗) + Lξ∗ = θR

(
rsorp

rmin

)

+ θA1,∗rkin(c, c̄). (3.120)

Because of the conditions (ii) and (iv) the matrix

(

CT
1

S̃
⊥
1

T

)

is invertible. Hence

the retransformation can be written as

c =

(

CT
1

S̃
⊥
1

T

)−1




ξmob

ξ∗
η



 . (3.121)
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Partitioning the columns of

(

CT
1

S̃
⊥
1

T

)−1

analogously to the entries of the vector





ξmob

ξ∗
η



 gives

(

CT
1

S̃
⊥
1

T

)−1

=
(
X Y Z

)
. (3.122)

The size of the block X is I × Jmob, the size of the block Y is I × N∗ and the

size of the block Z is I × (I − Jmob − N∗). With help of the conditions (iii) and

(v) one gets

(

CT
1 S∗

1

S̃
⊥
1

T

S∗
1

)

=





IJmob
0

0 D1

0 0



 .

Multiplying with

(

CT
1

S̃
⊥
1

T

)−1

from left, using the partitioning of this matrix and

multiplying with A1 from right yields

S∗
1A1 =

(
X Y D1

)
A1.

With (3.9), the block structure of A1 (see (3.10)) and the definitions of the

matrices R and A1,∗ (see (3.118)) it follows

S1 =
(
X Y R Y A1,∗

)
.

Especially it holds (see (2.8), (3.1) for the block structure of S1)

X = S1,mob , Y R =
(
S1,sorp S1,min

)
. (3.123)

With the first relation and the partitioning of

(

CT
1

S̃
⊥
1

T

)−1

the retransformation

can be rewritten as

c = S1,mobξmob + Y ξ∗ + Zη. (3.124)

The transformation of the equations related to the immobile species remain

unchanged (see Sec. 3.1 for this transformation). In this general setting the

additional variables are defined as

ξ̃ := ξ∗ − R

(
ξ̄sorp

ξ̄min

)

. (3.125)
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With these variables the new retransformation is (see Sec. 3.2 how the retrans-

formation is modified in connection with the additional variables)

c = S1,mobξmob + Y ξ̃ + Y R

(
ξ̄sorp

ξ̄min

)

+ Zη

= S1,mobξmob + Y ξ̃ + S1,sorpξ̄sorp + S1,minξ̄min + Zη. (3.126)

Solving the ODEs (3.23)-(3.25) (remember the partitioning of ξ̄sorp (3.16)) for

rsorp and rmin and plugging this in the PDEs (3.120) gives

∂t(θξ∗) + Lξ∗ = R

(
∂t(θξ̄sorp) − θA2,sorprkin(c, c̄)

∂t(θξ̄min)

)

+ θA1,∗rkin(c, c̄).

This can be rewritten as

∂t(θξ̃) + Lξ∗ = θA∗rkin(c, c̄) (3.127)

with

A∗ := A1,∗ − R

(
A2,sorp

0

)

. (3.128)

Altogether one has the equations

∂t(θη) + Lη = 0 (3.129)

ξ̃ = ξ∗ − R

(
ξ̄sorp

ξ̄min

)

(3.130)

∂t(θξ̃) + Lξ∗ = θA∗rkin(c, c̄) (3.131)

∂t(θη̄) = 0 (3.132)

∂t(θξ̄kin) = θA2,kinrkin(c, c̄) (3.133)

φmob(c) = 0 (3.134)

φsorp(c, c̄nmin) = 0 (3.135)

φmin(c, c̄min) = 0 . (3.136)

with

c = S1,mobξmob + Y ξ̃ + S1,sorpξ̄sorp + S1,minξ̄min + Zη

c̄ =

(

S2,sorpξ̄sorp + S∗
2,kinξ̄kin + B̃

⊥
2 η̄

ξ̄min

)

.

The proof for the existence of a resolution function

(ξ̃, ξ̄kin) 7→ (ξmob, ξ̄sorp, ξ̄min)
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can be taken over from the normal formulation of the reduction scheme (see

Sec. 3.2.1) because the local variables ξmob, ξ̄sorp, ξ̄min appear in the retransforma-

tion with the same coefficients as in the normal formulation and so the derivatives
∂c

∂ξloc

are unchanged. Also the proof for the existence of a resolution function

ξ̃ 7→ (ξmob, ξ̄sorp, ξ̄min, ξ̄kin)

is the same as in the normal formulation.

The derivatives Dξ̃ξloc needed to assemble the global Jacobian (compare

Sec. 3.3.2) can be computed by solving a linear system of equation. This sys-

tem has the same structure (3.53) as in the normal formulation of the reduction

scheme because the resolution function is unchanged. The only difference is that

the matrix C now must be chosen as

C =

(
−Y

0

)

because in this generalization the variables ξ̃, the variables the resolution function

depends on, appear in the retransformation with the coefficients Y instead of
(
S1,sorp,li S1,min S∗

1,kin

)
.

Morel formulation as special case of generalized reduction scheme

If there are no kinetic reactions and the stoichiometric matrix has the standard

form (compare Sec. 3.8)

S =










C A D

−IJmob
0 0

0 B̂ 0

0 −IJsorp
0

0 0 −IJmin










it is possible to achieve that

ξ̃ = T , ξ∗ = T M , R

(
ξ̄sorp

ξ̄min

)

= −T F , η̄ = W .

For this purpose one has to choose the transformation matrices (note the choice

of the transformation matrices for the immobile species is the same as in Sec. 3.8)

C1 =

(
0 IN∗

−IJmob
CT

)

(3.137)

B2 =





0 0

IJsorp
0

0 IJmin



 , B⊥
2 =





I Ī−Jsorp−Jmin

0

0



 (3.138)
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with N∗ = I−Jmob. Note that in this case the matrix S̃
⊥
1 consists of zero columns

and so disappears. Then for the variables ξ defined in (3.119) it holds

(
ξmob

ξ∗

)

= CT
1 c =

(
0 −IJmob

IN∗
C

)(
cprim

csec

)

=

(
−csec

cprim + Ccsec

)

.

Especially one has ξ∗ = T M (see (3.99) for the definition of T M). The choice

of B2, B⊥
2 leads to (see Sec. 3.8, note that in this section kinetic reactions are

excluded)

ξ̄sorp = −c̄nmin,sec , ξ̄min = −c̄min , η̄ = W .

As all columns of S1 are linear independent it holds S∗
1 = S1 and A1 = IJeq

. So

by computing the matrix product

CT
1 S∗

1 =

(
0 −IJmob

IN∗
C

) (
C A D

−IJmob
0 0

)

=

(
IJmob

0 0

0 A D

)

ones sees with the definitions of the matrices D1 (3.117) and R (3.118) that

R =
(
A D

)
.

Using this it follows for ξ̃ defined in (3.125)

ξ̃ = ξ∗ − R

(
ξ̄sorp

ξ̄min

)

= ξ∗ −
(
A D

)
(

ξ̄sorp

ξ̄min

)

= cprim + Ccsec + Ac̄nmin,sec + Dc̄min .

Therefore it holds ξ̃ = T and R

(
ξ̄sorp

ξ̄min

)

= −T F (see (3.97) and (3.100) for the

definitions of T and T F , respectively).

With help of the identities for the variables it is easy to see that also the

equations coincide

∂t(θT ) + LT M = 0

T = T M + T F (c̄nmin,sec, c̄min)

∂t(θW ) = 0

φmob(c) = 0

φsorp(c, c̄nmin) = 0

φmin(c, c̄min) = 0 .
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Using the reduction scheme one has a resolution function (ξ̄sorp, ξ̄min)(ξ̃). Using

the identities between the total concentrations and the transformed variables one

gets a resolution function

T F (T ).

Plugging in this resolution function gives

∂t(θT ) + LT M = 0

T = T M + T F (T )

Solving this system is called global-ODE approach (see [dDEK09]). The formula-

tion used here is very similar to the formulation in [AK09]. The only difference is

that the equation T F = ψ(T ), appearing in the formulation of [AK09], is plugged

in the other equations of the formulation.

Normal formulation of the reduction scheme as special case of gener-

alized reduction scheme

To get the normal reduction scheme one has to choose

S̃
⊥
1

T

=
(
S⊥

1

T
B⊥

1

)−1
S⊥

1

T
, CT

1 = (BT
1 S∗

1)
−1

BT
1 . (3.139)

In this case one gets D1 = IN∗
(compare (3.117)) and so it follows using (3.118)

R =





IJsorp,li
0 0

0 Ald IJmin

0 0 0



 . (3.140)

Comparing the definitions of the transformed variables for the generalized for-

mulation (3.119) and the normal formulation (3.14) one gets that

ξ∗ =





ξsorp

ξmin

ξkin



 . (3.141)

Using all this and the definition of A1,∗ (see (3.118)) one sees that the PDEs

(3.120)

∂t(θξ∗) + Lξ∗ = θR

(
rsorp

rmin

)

+ θA1,∗rkin(c, c̄)

are the same as

∂t(θξsorp) + Lξsorp = θ(rsorp,li + A1,sorprkin(c, c̄))

∂t(θξmin) + Lξmin = θ(rmin + Aldrsorp,ld + A1,minrkin(c, c̄))

∂t(θξkin) + Lξkin = θA1,kinrkin(c, c̄) .
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These are exactly the equations (3.19)-(3.21).

In this case it holds (see (3.122) for the definitions of Y and Z)

Y =
(
S1,sorp,li S1,min S∗

1,kin

)
, Z = B⊥

1

because of the relation

(

CT
1

S̃
⊥
1

T

)−1

=

(

(BT
1 S∗

1)
−1

BT
1

(
S⊥

1

T
B⊥

1

)−1
S⊥

1

T

)−1

=
(
S∗

1 B⊥
1

)
.

That the second relation is true can be seen by multiplying from left with
(

(BT
1 S∗

1)
−1

BT
1

(
S⊥

1

T
B⊥

1

)−1
S⊥

1

T

)

.

Plugging R (3.140) and the partitioning of ξ∗ (3.141) in the definition of the

additional variables (3.125) of the generalized reduction scheme gives






ξ̃sorp

ξ̃min

ξ̃kin




 =





ξsorp

ξmin

ξkin



 −





ξ̄sorp,li

Aldξ̄sorp,ld + ξ̄min

0



 .

This is not exactly the same as in the normal formulation of the reduction scheme

(compare (3.39)) where the (trivial) additional variables ξ̃kin do not appear. But

in the generalized formulation it is not possible to assign the variables ξ∗ to the

chemical reactions. So one has to define additional variables ξ̃ for all variables

ξ∗ and it is not possible to do this only for that variables that are related to

equilibrium reactions like it is done in the normal formulation.

With this choice of the transformation matrices one gets the normal formula-

tion of the reduction scheme with the only difference that there are the variables

ξ̃kin that are defined by the trivial equation ξ̃kin = ξkin. These variables do not

appear in the normal formulation of the reduction scheme.



Chapter 4

MoMaS–Benchmark

The research group GdR MoMaS1 set up a numerically extremely challenging

benchmark for reactive-transport problems (see [BBC+], [CKK09]). The posed

problems are in the style of real hydro-geochemical problems. Both the transport

and the chemical reactions are of high complexity. The numerical difficulty arise

from the fact that very high equilibrium constants (the largest is 1035, the smallest

one 10−12) and large stoichiometric coefficients (the largest one is 10) appear and

the order of magnitude of the concentration values differ much. The equilibrium

conditions are chosen in such a way that also the small concentration values are

crucial for the question which of the chemical reactions are effectively running.

This benchmark was solved by several research groups using their own codes.

The codes use different methods (non-iterative operator splitting, iterative oper-

ator splitting, one-step method) and different numerics (Finite Differences, Finite

Volumes, conform Finite Elements, Mixed Finite Elements). For a comparison

of the results see [CHK+10].

4.1 Problem Formulation

There is a 1D and a 2D scenario. In the 1D scenario a thin layer with low

permeability and high reactivity is situated in the middle of the domain (see

Fig. 4.1). In the 2D case the layer with the low permeability is ranged over 90%

of the height of the domain such that a small passage is formed. The water flow

of the 2D scenario is shown in Fig. 4.2.

The parameters of the two media in the convective case are shown in Table 4.1.

In the diffusive case the dispersion is larger by a factor of 1000.

1GdR MoMaS: Groupement de Recherche Modélisations Mathématiques et Simulations

Numériques liées aux problèmes de gestion des déchets nucléaires

102
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Figure 4.1: Partitioning of the domain in the two media in the 1D scenario

Figure 4.2: Water flow of the 2D scenario

Medium A Medium B

Porosity ω 0.25 0.5

Dispersion β 10−2 6 · 10−2

Table 4.1: Parameters of the two media

In the 1D case the water flow is constant with the value q = 5.5 · 10−3. On

the inflow boundary there are Dirichlet boundary conditions and at the outflow

boundary there are homogeneous Neumann boundary conditions. At t = 5000

the values for the Dirichlet boundary conditions change. The end time of the

computation is T = 6000.

There are three different chemical reaction networks, that are named “easy

test case”, “medium test case” and “hard test case”. The “easy test case” contains

only equilibrium reactions in the mobile phase and equilibrium sorption reactions,

the “medium test case” additionally contains a kinetic mineral reaction and the

“hard test case” additionally has mineral reactions in equilibrium and a decay

reaction.
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In the “easy test case” there are nine mobile and three immobile species. The

five equilibrium reactions in the mobile phase and the two equilibrium sorption

reactions are

C1 + X2 ←→ K = 10−12

C2 ←→ X2 + X3 K = 1

C3 + X2 ←→ X4 K = 1

C4 + 4X2 ←→ X3 + 3X4 K = 0.1

C5 ←→ 4X2 + 3X3 + X4 K = 1035

CS1 ←→ 3X2 + X3 + S K = 106

CS2 + 3X2 ←→ X4 + 2S K = 0.1

where Ci denotes the secondary mobile species, Xi the primary mobile species, S

the free sorption sites and CSi the sorbed species.

Applying the reduction scheme to this problem leads to two linear decou-

pled partial differential equations (η-problem), one decoupled ODE (η̄-problem),

seven algebraic equilibrium conditions (local problem) and two coupled nonlinear

partial differential equations (global problem).

In the “medium test case” there are eleven mobile and four immobile species.

Furthermore there are two more equilibrium reactions in the mobile phase and

one kinetic mineral reaction. The additional reactions are

C6 ←→ 10X2 + 3X3 K = 1032

C7 + 8X2 ←→ 2X4 K = 10−4

3C3 ←→ Cc + 2X4

where Cc denotes the kinetic mineral. The reaction rate for the mineral reaction

is

r(C3, X4) =

(

0.2
C3

3

X4
2 − 1

)

k

with

k =

{

10−2 for 0.2C3
3

X4
2 ≥ 1

10 else
.

Applying the reduction scheme we get three more local equations compared to the

“easy test case”: two algebraic equilibrium conditions and one ODE describing

the kinetics of the mineral reaction. The number of the other equations does not

change.
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In the “hard test case” there are twelve mobile and six immobile species.

In addition to the reactions of the “medium test case” there are two mineral

reactions at equilibrium and one decay reaction

CP1 ←→ 3X2 + X4 K = 108

CP2 ←→ X2 + X5 K = 20

X5 −→ 2X2 + X3

with the decay rate

r(X5, CP2) = 0.05X5 + 5CP2

where CPi denotes the equilibrium minerals.

Using the reduction method leads to a system of three coupled nonlinear

partial differential equations, two linear decoupled partial differential equations,

one decoupled ODE and twelve local equations (nine algebraic equations, two

complementarity conditions and one ODE).

4.2 Transformation

In the “easy test case” of this benchmark the stoichiometric matrices and one

possible choice for the orthogonal complement corresponding to mobile species

are

S1,mob =



















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

1 −1 1 4 −4

0 −1 0 −1 −3

0 0 −1 −3 −1



















, S1,sorp =



















0 0

0 0

0 0

0 0

0 0

0 0

−3 3

−1 0

0 −1



















, S⊥
1 =



















1
36

0
2
36

0

− 2
36

0

− 2
36

0
2
36

0

0 1

− 1
36

0
3
36

0

− 3
36

0



















and for the immobile ones

S2,sorp =





−1 −2

1 0

0 1



 , S⊥
2 =

1

6





1

1

2



 .
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The transformation matrices are chosen in the following way

B1 =



















1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 −1



















, B⊥
1 =



















0 0

0 0

0 0

0 0

0 0

0 1

1 0

0 0

0 0



















B2 =





0 0

1 0

0 1



 , B⊥
2 =

1

6





1

0

0



 .

The first five unit vectors in B1 cause that the transformed variables ξmob

correspond to the secondary species Ci (see (3.13) and (3.14) for the definition

of the transformed variables). The choice of the last two columns of B1 bring

about that ξ̃sorp corresponds except for the sign to the total concentrations T3

and T4. Furthermore the unit vectors in B2 cause that ξ̄sorp corresponds to the

secondary immobile species CSi. Altogether we get for the transformed variables

in the “easy test case”

ξmob,i = Ci (i = 1, . . . , 5)

η1 = −C1 − 2C2 + 2C3 + 2C4 − 2C5 + X2 − 3X3 + 3X4

= T2 − 3T3 + 3T4

η2 = X1 = T1

ξ̃sorp,1 = −C2 − C4 − 3C5 − X3 − CS1 = −T3

ξ̃sorp,2 = −C3 − 3C4 − C5 − X4 − CS2 = −T4

η̄ = 6S + 6CS1 + 12CS2 = 6TS

ξ̄sorp,i = CSi (i = 1, 2).

(4.1)

Most of the transformed variables correspond to one of the original variables

the benchmark is formulated with. So comparisons with the results of other

groups are easily possible.

Also in the “medium test case” and in the “hard test case” the matrices Bi

and B⊥
i are chosen in such a way that every column has only one nonzero entry.

Again this has the consequence that most transformed variables coincide with

original variables.
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4.3 Numerical Results

The reduction scheme is implemented in 2D. So the 2D code is used to emulate

the 1D problems by replacing the 1D computational domain by a narrow 2D

computational domain. The width of the domain is chosen such that the width

matches the size of two cells at the coarsest part of the grid (compare Fig. 4.3).

All presented results of the 1D problems are cuts at the middle of the domain

(red line in Fig. 4.3).
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Figure 4.3: Detail of a grid for the 1D problem

For all 1D advective cases we use a preadapted mesh with different step sizes

on the two media: step size h1 on medium A and step size h2 on medium B with

h1 = 4h2 (For an example see Fig. 4.3).

The reason for this is that by doing so oscillations in the elution curve of C5

can be avoided. The oscillations depend only on the step size h2 (see Fig. 4.4).

So it is not necessary to choose a smaller value for h1.

0 400 800 1200 1600 2000 2400 2800 3200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time

C
5 

co
nc

en
tr

at
io

n 
at

 x
=

2.
1

h
1
 = h

2
 = 0.00625

h
1
 = h

2
 = 0.003125

h
1
 = 0.0125, h

2
 = 0.003125

h
1
 = 0.00625, h

2
 = 0.0015625

0 400 800 1200 1600 2000 2400 2800 3200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time

C
5 

co
nc

en
tr

at
io

n 
at

 x
=

2.
1

h
1
 = 0.003125, h

2
 = 0.00078125

Figure 4.4: Elution curve of C5 for different step sizes

It can be observed that the number of oscillations is equal to the number of

cells in the interval (1, 1.1) (see Fig. 4.5).
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Figure 4.5: Elution curve of C5 (top) and a detail of the grid used for this

computation (bottom)

For the 2D “advective test case” we also use a preadapted mesh. Here the

mesh is refined in the high velocity zone (the small passage above the layer with

the low permeability) and near the outflow. It turned out that this is useful

to reduce oscillations in the concentration profile of C5. For all other cases the

computations are carried out with regular grids.

The 2D problem is convection dominated. So it is necessary to use a stabi-

lization. Here the FV stabilization described in Section 3.4.4 with full upwinding

is used. The 1D problem is not convection dominated. So the FV stabilization

is switched off for the 1D cases.

The η-equations reach a steady-state much earlier than the nonlinear system.

For example in the 1D “advective easy test case” this happens at t ≈ 200 and

t ≈ 5200 respectively, whereas the nonlinear system reaches a steady-state not

until t = 3200. So one advantage of the used reduction scheme is that for a large

part of the simulation (here for 200 < t < 3200 and 5200 < t) less equations

(those for η) have to be solved.

We have carried out computations for the 1D and the 2D “advective easy test

case”, the 1D “diffusive easy test case”, all four “medium test cases” and the 1D

and the 2D “advective hard test case”. The normalized CPU time (one unit is

the CPU time for the multiplication of two 1000× 1000 matrices), the number of

cells of the used grid, the number of time steps and the average number of global

Newton steps for all these computations is presented in the Tables 4.2 and 4.3
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(see also [HKK09]). In the 1D cases also the number of nodes in x-direction is

given so that the results can be compared to pure 1D codes.

nodes in

x-direction

cells

2D-grid

CPU

time

time

steps

Newton

steps

advective easy 777 4638 1484.9 10683 2.80

advective easy 1165 6942 3405.0 12494 3.23

diffusive easy 547 2184 1894.9 6873 3.32

diffusive easy 673 2688 3398.6 8235 3.57

advective medium 389 2334 179.9 2361 2.39

advective medium 874 5214 479.5 2353 2.72

diffusive medium 337 1344 187.5 1674 2.13

diffusive medium 505 2016 452.4 1738 2.26

advective hard 777 4638 4102.2 31091 1.602

advective hard 874 5214 4860.9 31758 1.612

Table 4.2: CPU time, time steps, Newton steps of the 1D problems

cells
CPU

time

time

steps

Newton

steps

advective easy 38016 10645.6 13338 2.73

advective easy 107520 45092.6 18990 3.14

advective medium 26880 6991.9 12810 2.07

diffusive medium 26880 7436.0 7880 2.98

advective hard 26880 19212.7 27199 2.17

Table 4.3: CPU time, time steps, Newton steps of the 2D problems

The computations were carried out on a Linux cluster with 18 dual-processor

nodes. Every node has two Intel Xeon processors (NetBurst architecture) with

2.4 GHz and 1GB RAM. On this computer one unit of the normalized CPU time

corresponds to 15.0s. For each simulation only one processor is used to make the

comparison of the CPU time with other groups easier. The implementation of

the reduction scheme used for these simulations is based on the old version of

M++.

2For 2566.6 ≤ t ≤ 5000 (12167 time steps) only one Newton step is required
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4.4 Comparison of the CPU Time with Other

Groups

A detailed comparison of the easy test case results of all participants of the

benchmark will be published in a synthesis article [CHK+10]. So here only a

short comparison will be given.

In the 1D “advective easy test case” the reduction scheme was the fastest

code of six participants despite of the disadvantage that we used a 2D code to

solve a 1D problem. Fig. 4.6 shows the normalized CPU times of the different

participants in dependency of the number of cells. This figure is taken from a

preliminary version of [CHK+10].

Figure 4.6: CPU time in the 1D “advective easy test case”

In the 2D “advective easy test case” two other groups presented results. Vin-

cent Lagneau and Jan van der Lee presented results computed with the code

HYTEC, which uses iterative operator splitting (SIA). K. Ulrich Mayer and Kerry

T. B. MacQuarrie presented results computed with the code MIN3P, which uses

the direct substitution approach (DSA). For a short description of the method

used by the benchmark participants see Section 4.6. In Fig. 4.7 the normalized

CPU times of the three participants in dependency of the number of cells can be

seen. Again this figure is taken from a preliminary version of [CHK+10].

The other groups give only results for coarser grids. By extrapolating the

lines one can see that the reduction scheme is faster by a factor greater than five

compared with the second fastest code.
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Figure 4.7: CPU time in the 2D “advective easy test case”

4.5 Comparison of the CPU Time with Other

Methods

In this section the implementation of the generalization of the reduction scheme

(see Sec. 3.9) is used to compare the CPU times of the reduction scheme with

those of the global–ODE approach and those of iterative operator splitting.

In a first test the variables and equations of the reduction scheme are used

but the η-equations are added to the global problem and so are solved simulta-

neously with the global problem. Here one can see the saving of CPU time by

the decoupling of the η-equations.

To achieve that the η-equations and the global problem is solved in one system

the transformation matrices S̃
⊥
1 , C1 of the generalization of the reduction scheme

must be chosen in the following way. The matrix C1 must be chosen as

C1 =



















1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −1.0

0.0 1.0 0.0 0.0 0.0 −1.0 0.0 0.0 −2.0

0.0 0.0 1.0 0.0 0.0 0.0 −1.0 0.0 2.0

0.0 0.0 0.0 1.0 0.0 −1.0 −3.0 0.0 2.0

0.0 0.0 0.0 0.0 1.0 −3.0 −1.0 0.0 −2.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 −1.0 0.0 0.0 −3.0

0.0 0.0 0.0 0.0 0.0 0.0 −1.0 0.0 3.0


















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and the matrix S̃
⊥
1 must be the empty matrix. The transformed variables are

linear combinations of the concentrations. The columns of the matrix C1 contains

the coefficients of the linear combinations of the variables ξmob, ξsorp, η (see (4.1)

for the transformed variables of the easy test case). In Table 4.4 the results are

named “no decoupling of η-equations”.

To get the global–ODE approach one has to choose C1 analogously to (3.137)

(note that here S1 has a different form as in Sec. 3.9, here the identity block is

on the top and has no minus sign). For the easy test case one gets

C1 =



















1.0 0.0 0.0 0.0 0.0 0.0 −1.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0 −1.0 0.0 1.0

0.0 0.0 0.0 1.0 0.0 0.0 −4.0 1.0 3.0

0.0 0.0 0.0 0.0 1.0 0.0 4.0 3.0 1.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0



















.

To do SIA with the implementation of the generalized reduction scheme one

has to use same matrix C1 as in global–ODE approach but has to do some

modifications in the implementation. The main thing is to comment out the

terms with Dξglob
ξloc in the Jacobi matrix and to plug equation (3.130) in (3.131).

Moreover the stopping criterion (compare (3.95)) of the global Newton, which

is the same as the stopping criterion for the coupling of the transport and the

chemical problem in a pure SIA code, is changed. The reduction Red is enlarged

by a factor of ten and two different values for the absolute criterion Eps =

2 · 10−8, 10−8 are taken. The second value is by a factor of hundred larger than

the value taken in reduction scheme and the global–ODE approach.

Furthermore the terms with Dξglob
ξloc in the update of the concentration

values must be commented out and line search in the global Newton must be

switched off. Additionally it is necessary to adjust the adaption of the time step

size (compare Sec. 3.7) because the number of iteration steps doing SIA is much

larger than the number of Newton steps using the reduction scheme or the global–

ODE approach. Here the time step size is enlarged up to the maximal time step

size ∆tmax = 0.5 when the number of iteration steps in the previous time step

was less than twenty and it is reduced when more than thirty iteration steps were

needed.

All computations presented in this section are done with an implementation

based on the new version of M++ and exponential upwinding is used in the FV
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stabilization. Because of these two points the results of the normal formulation

of the reduction scheme are slightly different to those given in Table 4.3.

In Table 4.4 the CPU time, the number of time steps and the average number

of global Newton steps (iteration steps in the case of SIA) are given.

cells
CPU

time

time

steps

Newton

steps

reduction scheme 26880 6260.5 12921 2.14

reduction scheme 38016 11269.3 14602 2.51

no decoupling of η-equations 26880 10266.0 13123 2.15

no decoupling of η-equations 38016 18498.8 14779 2.52

global–ODE approach 26880 10844.5 13077 2.25

global–ODE approach 38016 19647.9 14986 2.63

SIA (Eps = 2 · 10−8) 9504 12031.0 14979 15.3

SIA (Eps = 10−8) 9504 14404.3 16726 17.1

SIA (Eps = 2 · 10−8) 26880 35437.4 15680 16.6

SIA (Eps = 10−8) 26880 42782.3 17949 18.4

Table 4.4: CPU time, time steps, Newton steps for different methods

Comparing the results of the reduction scheme and the case “no decoupling

of η-equations” one can see that the gain of CPU time by the decoupling of the

η-equations is bit more than one third. Furthermore it can be seen, if one does

not want to use the reduction scheme, then the global–ODE approach is the best

thing one can do.

The SIA approach has two drawbacks. The first one is that the CPU time is

much higher than all the other methods. Compared with the reduction scheme

the CPU time is higher by a factor greater than five. The second drawback of

the SIA approach is that it is not possible to get solutions that are as precise as

the solutions of the other methods because it is not possible to choose the same

stopping criterion.

In these computations it is necessary to enlarge the stopping parameter Eps

by a factor of hundred because otherwise the convergence gets so slow that the

method is practically unusable. How much more CPU time is needed when the

stopping parameter Eps is diminished only by a factor of two can be seen in

Table 4.4.

Analyzing the SIA method one sees that it has a linear convergence behavior

like it is expected. After some iteration steps (about five) in each iteration the

residual is reduced by a approximately constant factor. The reason why a strong
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stopping criteria is practically unusable is that sometimes this factor is only 1.3

depending on the problem and the time step size. So it would take 18 iteration

steps to reduce the residual by a factor of hundred. The much larger numbers of

iteration steps lead to much smaller time step sizes because of the adaptive time

stepping. For example in a test computation with the stopping parameter Eps

reduced by a factor of hundred the time step sizes are one third of the original

ones. This much smaller time step sizes together with the higher number of

iteration steps leads to the very high CPU times of the SIA method in case of

strong stopping criteria.

4.6 The Different Methods Used by the Partic-

ipants

We consider the simple situation that there are no minerals and that all chemical

reactions are equilibrium reactions like it is the case in the “easy test case”. Then

the stoichiometric matrix S has the form

S =

(

S1

S2

)

=

(

S1,mob S1,sorp

0 S2,sorp

)

=








C A

−IJmob
0

0 B

0 −IJsorp








.

Written in terms of logarithmized concentrations of primary/secondary species

and total concentrations the chemical subsystem consisting of equilibrium condi-

tions and mass balance equations is

CT lprim − lsec − kmob = 0

exp(lprim) + C exp(lsec) + A exp(l̄sec) − T = 0

AT lprim + BT l̄prim − l̄sec − ksorp = 0

exp(l̄prim) + B exp(l̄sec) − W = 0

(4.2)

where T denotes the total concentrations and W the total fixed concentrations.

The secondary concentrations lsec and l̄sec can be eliminated from the system

by resolving the equilibrium conditions for lsec and l̄sec, respectively, and plugging

in the other equations. The total fixed concentrations W are always equal to their

initial values. Hence from now on we will handle W as a constant. So we can

write system (4.2) shortly as

Φ(X,T ) = 0

with X :=

(
lprim

l̄prim

)

.
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The mobile part of the total concentrations is named with T M and the im-

mobile part of the total concentrations with T F . It holds

T = T M + T F .

T M and T F can be computed with help of the functions

T M(X) := exp(lprim) + C exp(CT lprim − kmob)

T F (X) := A exp(AT lprim + BT l̄prim − ksorp) .

Let us define the resolution function of the chemical problem Ψ(T ). It is defined

by

Ψ(T ) = T F (X∗)

with X∗ being the solution of Φ(X∗,T ) = 0.

The PDEs describing the transport are

∂tT + LT M = 0

or alternatively they can be written as

∂t(T M + T F ) + LT M = 0 .

First we compare the reduction scheme used in this work with the formula-

tion in terms of primary/secondary species and total concentrations. The global

problem of the reduction scheme is

∂tη + Lη = 0 (4.3)

∂tξ̃sorp + Lξsorp = 0 (4.4)

ξ̃sorp = ξsorp − ξ̄sorp(η, ξ̃sorp) . (4.5)

For a certain choice of the transformation matrices (see Sec. 3.8) one gets the

connection between the variables η, ξsorp, ξ̃sorp, ξ̄sorp and T M , T , T F

(
η

0

)

+ Aξsorp = T M ,

(
η

0

)

+ Aξ̃sorp = T , −Aξ̄sorp = T F .

So in this case the equations ∂tT + LT M = 0 are linear combinations of the

equations (4.3) and (4.4). Furthermore the equations T = T M +Ψ(T ) are linear

combinations of the equations (4.5) and the trivial equations η = η. Remember

that the number of equations in T = T M +Ψ(T ) is equal to the number of equa-

tions in (4.5) plus the number of the variables η. For the spatial discretization
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conform finite elements are used with a finite volume stabilization for convection-

dominated problems. When the stabilization is used the discretization scheme

is equivalent to a cell-centered finite volume scheme. The time discretization is

done with the implicit Euler method.

Now let us have a short look on all the different methods used by the partic-

ipants of the MoMaS–benchmark. The software SPECY (see [Car01], [Car09])

uses the non iterative splitting scheme (SNIA)

T ∗
M − T n

M

∆t
+

T n
F − T n

F

∆t
+ LadvT

n
M + LdispT

∗
M = 0

Φ(X,T ∗
M + T n

F ) = 0

T n+1
M = T M(X)

T n+1
F = T F (X) .

In every time step the transport equations are solved first. So one gets new values

for the mobile part of the total concentrations T ∗
M . Then the immobile part of

the total concentrations from the last time step T n
F are added and with these

values for the total concentrations the chemical subsystem is solved. Subsequently

new values for the mobile and immobile parts of the total concentrations T M ,

T F are computed. For the spatial discretization discontinuous finite elements

time explicit for advection and mixed hybrid finite elements, time implicit for

dispersion are used.

The software HYTEC (see [LvdL09]) uses the iterative splitting scheme (SIA)

T
n+1,2m+1
M − T n

M

∆t
+ αLT

n+1,2m+1
M + (1 − α)LT n

M = −T
n+1,2m
F − T n

F

∆t

Φ(X,T n+1,2m+1
M + T

n+1,2m
F ) = 0

T
n+1,2m+2
M = T M(X)

T
n+1,2m+2
F = T F (X)

where m denotes the number of the iteration step. In every iteration step first

the transport equations are solved and then the chemical system. The code uses

a finite volume scheme based on a Voronoi (nearest-neighbour) spatial discretiza-

tion. The discretization scheme is centered in space. For the time-discretization

the semi-implicit Crank–Nicholson method is used.

In [dD08], [dDEK09] and [dDE09] a method following the DAE approach is

described. The whole system

∂tT + LT M = 0

Φ(X,T ) = 0

T M = T M(X)
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is solved, after it is discretized in space, using a DAE solver. For the space

discretization a cell-centered finite volume scheme is used. For the advective term

a first-order upwind scheme and for the diffusion term a second-order centered

scheme is applied. The DAE system is solved with a BDF–method with variable

order (up to 5).

The software MIN3P (see [MFB02], [May99] and [MM09]) follows the DSA

approach. The resulting system of equations is

∂tT M(X) + ∂tT F (X) + LT M(X) = 0 .

Note that the unknowns are the logarithms of the primary concentrations. If one

formally sets L = 0 and replaces the time derivatives by a difference quotient

one gets the same equations as in the chemical subproblem of a splitting method.

Spatial discretization is performed using a control volume method with half-cells

on the boundary, in which for the advective transport upstream weighting is used.

The code uses implicit time weighting.

In [AK09] a two level global algorithm following the global implicit approach

(GIA) is introduced. The system of equations is

T n+1
M − T n

M

∆t
+ LadvT

n
M + LdiffT

n+1
M =

T n+1
F − T n

F

∆t

T n+1 = T n+1
M + T n+1

F

T n+1
F = Ψ(T n+1)

Like in the reduction scheme a resolution function is used to handle the chemical

problem. Between the resolution functions there is the connection

−Aξ̄sorp(η, ξ̃sorp) = Ψ(T ) .

Here the system of equations consists of more equations than in the case of the

reduction scheme because of three reasons. Firstly in the reduction scheme the

equations T F = Ψ(T ) are plugged into the other equations. Secondly in the

reduction scheme linear combinations of the equations are taken in such a way

that some linear partial differential equations decouple from the system. Thirdly

by taking linear combinations of the equations in the second block some equations

get trivial by use of the reduction scheme (η = η) and can be left out.

A cell-centered finite volume scheme is used for the space discretization. The

diffusive flux is discretized with a centered approximation with harmonic averages

for the diffusion coefficient and for the advective flux an upwind approximation is

used. In the time discretization the diffusive terms are treated implicitly and the

advective terms are handled explicitly. For the advective term a splitting scheme

with sub-time steps is used.
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4.7 Suggestion for a Benchmark 2.0

Up to now in both inflows the same species come in. But it is an interesting case

when in both inflow zones different species come in, because then the mixing of

the species due to transversal dispersion is crucial for the question which reac-

tions proceed. And the effective transversal dispersion depends strongly on the

numerical method used to solve the PDEs (see [BK04]). So large differences in

the results of the different softwares can be expected.

To do so the species X3 is replaced by the two species X3a, X3b. In the chemical

reaction forming C2 the species X3 is replaces by X3a, in the reactions forming

C4 and C5, respectively, X3 is replaced by X3b and in the reaction forming CS1

the species X3 is replaced by X3a + X3b. So the species CS1 can only be formed

in that regions where both species X3a and X3b are present. Altogether there are

the chemical reactions

C1 + X2 ←→ K = 10−12

C2 ←→ X2 + X3a K = 1

C3 + X2 ←→ X4 K = 1

C4 + 4X2 ←→ X3b + 3X4 K = 0.1

C5 ←→ 4X2 + 3X3b + X4 K = 1035

CS1 ←→ 3X2 + X3a + X3b + S K = 106

CS2 + 3X2 ←→ X4 + 2S K = 0.1 .

In the modified scenario the transversal dispersion factor is doubled compared

to the advective test case

βt,A = 0.002 , βt,B = 0.012

so that there is a higher mixing of the species. The layer with the low permeability

is ranged only over 60% of the height of the domain. Otherwise in the high

velocity zone everything gets mixed and the desired effect can not be seen. The

water flow of the modified scenario is plotted in Fig. 4.8.

The main difference to the original formulation is that in the two inflow zones

different species come in. At the inflow 1 (at the top of the domain) the species

X3b comes in but not the species X3a and at the inflow 2 (at the left side) it is vice

versa, the species X3a comes in but not the species X3b. Altogether the boundary
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Figure 4.8: Water flow of the modified scenario

conditions for the primary mobile species are at inflow 1

X1 = 0.3

X2 = 0.2416198487

X3a = 0

X3b = 0.2416198487

X4 = 0

and at inflow 2

X1 = 0.3

X2 = 0.2416198487

X3a = 0.2416198487

X3b = 0

X4 = 0 .

The end time of this modified scenario is T = 2500 and there is no change

in the boundary conditions. All other parameters and the initial conditions are

the same as in the 2D “advective easy test case”. Plots of all concentrations are

given at the times t = 50, t = 750, t = 1300, t = 2500. The computations were

done with the implementation of the reduction scheme based on the new version

of M++ and exponential upwinding is used in the FV stabilization.

In the left column of Fig. 4.9 the concentration profiles of the species CS1,

which can only be formed in that regions where the species X3a and X3b are mixed

due to transversal dispersion, are given at the times t = 750, t = 1300, t = 2500.

The plots are generated out of the results of the computation with 107520 cells.
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The concentration profiles of all species and some transformed variables can be

found in Appendix B.4. The CPU time, the number of time steps and the number

of global Newton steps for the modified scenario can be found in Table 4.5.

Figure 4.9: The species CS1 at the times t = 750, t = 1300, t = 2500 (left column:

exponential upwinding, grid with 107520 cells; right column: full upwinding, grid

with 26880 cells)

To show that there are differences in the results depending on the used numer-

ical method and the number of cells, a simulation with full upwinding (instead
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cells CPU time time steps Newton steps

26880 3115.9 5108 2.17

107520 23539.8 6790 3.32

Table 4.5: CPU time, time steps, Newton steps for the modified scenario

of exponential upwinding) and 26880 cells (instead of 107520 cells) was carried

out. It is known that full upwinding induces more numerical diffusion than ex-

ponential upwinding does and that a coarser grid leads also to more numerical

diffusion. The concentration profiles of the species CS1 at the times t = 750,

t = 1300, t = 2500 can be found in the right column of Fig. 4.9. Comparing the

right and the left column of Fig. 4.9 some differences can clearly be seen. In the

plot at the time t = 750 using exponential upwinding there are two regions where

the species is presented, that are nearly disconnected, while using full upwinding

the two regions are connected. In the plot at t = 2500 the plume is much wider

when full upwinding instead of exponential upwinding is used.



Chapter 5

Kinetic Mineral Reactions

In this section we consider a model problem with two mobile species A, B, one

immobile species C and one kinetic mineral reaction

nA + mB ↔ C .

For the mobile species we get by mass balance the partial differential equations

∂t(θc1) + Lc1 = −nρ∂tc̄

∂t(θc2) + Lc2 = −mρ∂tc̄ .

We assume that the precipitation rate rp is given by law of mass action with

ideal activity coefficients

rp(c1, c2) = kpc
n
1c

m
2

and that the dissolution rate rd is a constant kd if the mineral is present

rd = kd, if c̄ > 0 .

For the equation describing the concentration of the mineral and hence the

reaction kinetics different formulations are used.

Formulation with set-valued rate function

In [KvDH95], [vDK97], [vDKS98], [vDP04] a formulation with a set-valued rate

function is used
ρ∂tc̄ = θ(rp(c1, c2) − kdw)

w ∈ H(c̄)
(5.1)

where H is the set-valued Heaviside “function”

H(u) =







{1} for u > 0

[0, 1] for u = 0

{0} for u < 0 .

122
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Formulation with complementarity condition

Like in the equilibrium case it is also possible to formulate this problem as a

complementarity problem (see [Krä08, chapter 4] for the equilibrium case)

c̄ (ρ∂tc̄ − θ(rp(c1, c2) − kd)) = 0

c̄ ≥ 0, ρ∂tc̄ − θ(rp(c1, c2) − kd) ≥ 0 .
(5.2)

Formulation with discontinuous rate function

Formulations with discontinuous rate functions are used as well. In [FR92] the

following formulation with a case differentiation can be found:

ρ∂tc̄ =

{

θ(rp(c1, c2) − kd) for (c̄ > 0) ∨ (rp(c1, c2) − kd > 0)

0 for (c̄ = 0) ∧ (rp(c1, c2) − kd ≤ 0)
(5.3)

Whereas the formulation in [BEHM07] uses the sign function and the positive

and negative part of the rate F (c1, c2) := rp(c1, c2) − kd, which is valid when

mineral is present. Therefore we define the following notation:

x+ := max{0, x}, x− := (−x)+, sign(x) :=







1 for x > 0

0 for x = 0

−1 for x < 0

It holds x = x+ − x−. With this notation the equation describing the concentra-

tion of the kinetic mineral is

ρ∂tc̄ = θ(F+(c1, c2) − sign+(c̄)F−(c1, c2)) . (5.4)

The two formulations with the discontinuous rates (5.3) and (5.4) are iden-

tical for c̄ ≥ 0. This can be seen in the following way: For t ∈ (0, T ) such

that c̄(t) > 0 we have sign+(c̄(t)) = 1 and so the right hand side of (5.4)

becomes θF (c1(t), c2(t)). This coincides with (5.3). For t ∈ (0, T ) such that

c̄(t) = 0 we have sign+(c̄(t)) = 0 and so the right hand side of (5.4) becomes

θF+(c1(t), c2(t)), i.e., the right hand side is θF (c1(t), c2(t)) for F (c1(t), c2(t)) > 0

and 0 for F (c1(t), c2(t)) ≤ 0. This also coincides with (5.3). For c̄ < 0 (5.3) is

not defined.

5.1 Equivalence of the Different Formulations

States of equilibrium

In the following it is always assumed that rp(c1, c2) is nonnegative.
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The formulation with the set-valued rate function (5.1) is constructed in such

a way that the states of equilibrium are

((rp(c1, c2) = kd) ∧ (c̄ > 0)) ∨ ((rp(c1, c2) ≤ kd) ∧ (c̄ = 0)) (5.5)

(see [KvDH95]). Formally the formulation with the set-valued rate function has

the additional state of equilibrium ((rp(c1, c2) = 0) ∧ (c̄ < 0)).

The formulation with the complementarity condition (5.2) leads to the states

of equilibrium

c̄ (rp(c1, c2) − kd) = 0

c̄ ≥ 0, −(rp(c1, c2) − kd) ≥ 0 .

It is obvious that these states of equilibrium are the same as (5.5).

And the formulation with the discontinuous rate function (5.4) leads to the

states of equilibrium

F+(c1, c2) − sign+(c̄)F−(c1, c2) = 0 .

For c̄ > 0 it holds sign+(c̄) = 1 and so we get F (c1, c2) = 0. With the definition

of F it follows rp(c1, c2) = kd. For c̄ = 0 we have sign+(c̄) = 0. This yields

F+(c1, c2) = 0. That is equivalent to F (c1, c2) ≤ 0. Plugging in the definition of

F leads to rp(c1, c2) ≤ kd. So for nonnegative mineral concentration c̄ the states

of equilibrium are exactly (5.5). For c̄ < 0 there are the states of equilibrium

rp(c1, c2) ≤ kd.

Pointwise considerations

The different formulations for the kinetic mineral problem are not pointwisely

equivalent. As a consequence solutions of the formulation with the set-valued

rate function are not always solutions of the formulation with the discontinuous

rate function. For example, if travelling wave solutions of the formulation with the

set-valued rate function with continuous from the right derivatives are considered,

like it is done in [vDK97], then these solutions are not solutions of the formulation

with the discontinuous rate function.

This can be seen in the following way: A travelling wave solution is a function

of the variable η := x − at with the wave speed a > 0. Let ηd be a point of

discontinuity of ∂tc̄ with c̄(η) = 0 for η ≤ ηd and rp(ηd) < kd. Such points

ηd exist in travelling wave solutions (see [KvDH95, Sec. 3] for travelling wave

solutions). Because of c̄(η) = 0 for η ≤ ηd it holds ∂tc̄(η) = 0 for η < ηd. As ∂tc̄ is

continuous from the right ∂tc̄(ηd) = limηցηd
∂tc̄. This limit is not zero because we
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have assumed that ∂tc̄ is discontinuous at ηd. But (5.3) yields ∂tc̄(ηd) = 0 because

of c̄(ηd) = 0. So the travelling wave solution of the formulations with the set-

valued rate function is not a solution of the formulation with the discontinuous

rate function.

If we consider weak solutions we will see that the three formulations are

equivalent.

Weak solutions

We assume that the concentrations of the mobile species c1 and c2 are given such

that rp(c1, c2) ∈ L∞(0, T ). In this section we study weak solutions of the three

different formulations. A weak solution of the set-valued formulation is a pair of

functions (c̄, w) ∈ H1(0, T ) × L∞(0, T ) which fulfills

∫ T

0

(ρ∂tc̄ − θ(rp(c1, c2) − kdw))φ dt = 0 ∀φ ∈ C∞
0 (0, T ) (5.6)

w ∈ H(c̄) a.e. in (0, T ) (5.7)

c̄(0) = c̄0 . (5.8)

In case of the complementarity formulation c̄ ∈ H1(0, T ) is a weak solution if

c̄ (ρ∂tc̄ − θ(rp(c1, c2) − kd)) = 0 a.e. in (0, T ) (5.9)

c̄ ≥ 0 in (0, T ) (5.10)

ρ∂tc̄ − θ(rp(c1, c2) − kd) ≥ 0 a.e. in (0, T ) (5.11)

c̄(0) = c̄0 . (5.12)

And using the formulation with a discontinuous rate function c̄ ∈ H1(0, T ) is a

weak solution if

∫ T

0

(ρ∂tc̄ − θ(F+(c1, c2) − sign+(c̄)F−(c1, c2)))φ dt = 0 ∀φ ∈ C∞
0 (0, T ) (5.13)

c̄(0) = c̄0 . (5.14)

Lemma 5.1. A weak solution c̄ of the formulation with the set-valued rate func-

tion (5.6)-(5.8) is nonnegative if the initial value c̄0 is nonnegative.

Proof. Using

φ(s) =

{

−c̄−(s) for s ≤ t

0 for s > t
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as test function in (5.6) yields

∫ t

0

ρ∂tc̄(−c̄−) − θ(rp(c1, c2)
︸ ︷︷ ︸

≥0

−kdw)(−c̄−
︸︷︷︸

≤0

) ds = 0 .

Because of
∫ t

0

∂tc̄(−c̄−) ds =
1

2

∫ t

0

∂t(c̄
−)

2
ds =

1

2
(c̄−(t))

2 − 1

2
(c̄−(0))

2

we get the estimate

1

2
ρ(c̄−(t))

2 ≤
∫ t

0

θkdwc̄− ds +
1

2
ρ(c̄−(0))

2
= 0 .

The first term on the right hand side is zero because one of the factors w, c̄− is

zero a.e. due to (5.7) and the second term is zero due to the assumption that c̄0

is nonnegative. That concludes the proof.

The proofs of the next two theorems are adapted from [BEHM07, Proposition

3.4] where the equivalence of the formulation with a discontinuous rate function

to a formulation similar to a complementarity condition is shown.

Theorem 5.2. The formulation with the set-valued rate function (5.6)-(5.8) and

the formulation with the complementarity condition (5.9)-(5.12) are equivalent.

Proof. “⇐”: Let c̄ ∈ H1(0, T ) be a weak solution of the complementarity for-

mulation (5.9)-(5.12). First we define the set A := {t ∈ (0, T )| c̄(t) = 0} and its

complement Ā := {t ∈ (0, T )| c̄(t) > 0}. We set

w =

{
1
kd

rp(c1, c2) on A

1 on Ā .

Because of (5.10) we can split the integral in (5.6) in an integral over A and

an integral over Ā:

∫ T

0

(ρ∂tc̄ − θ(rp(c1, c2) − kdw))φ dt

=

∫

A

(ρ∂tc̄ − θ(rp(c1, c2) − rp(c1, c2)
︸ ︷︷ ︸

=0

))φ dt +

∫

Ā

(ρ∂tc̄ − θ(rp(c1, c2) − kd))φ dt

By Stampacchia’s theorem, on A we have ∂tc̄ = 0 and so the first integral vanishes.

Because of the complementarity condition (5.9) ρ∂tc̄ − θ(kpr(c1, c2) − kd) is zero

a.e. on Ā and so the second integral vanishes, too. That proofs (5.6).
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Using again that ∂tc̄ = 0 on A by Stampacchia’s theorem it follows from (5.11)

that

0 − θ(rp(c1, c2) − kd) ≥ 0 a.e. on A

⇔ 1

kd

rp(c1, c2) ≤ 1 a.e. on A .

That proofs (5.7).

“⇒”: Let (c̄, w) ∈ H1(0, T ) × L∞(0, T ) be a weak solution of the formula-

tion with the set-valued rate function (5.6)-(5.8). According to Lemma 5.1 c̄ is

nonnegative. So the inequality (5.10) is valid. From (5.6) it follows

ρ∂tc̄ − θ(rp(c1, c2) − kdw) = 0 a.e. in (0, T )

⇔ ρ∂tc̄ − θ(rp(c1, c2) − kd) = θkd(1 − w
︸ ︷︷ ︸

≥0

) a.e. in (0, T ) .

1 − w is nonnegative a.e. due to (5.7). That proofs (5.11). Furthermore we get

with the relation above

c̄ (ρ∂tc̄ − θ(rp(c1, c2) − kd)) = c̄ θkd(1 − w) = 0 a.e. in (0, T ) .

The product on the right hand side is zero a.e. because c̄ is nonnegative and so

one of the factors c̄, 1 − w is zero a.e. due to (5.7). This proofs (5.9).

Theorem 5.3. The formulation with the discontinuous rate function (5.13)-

(5.14) and the formulation with the complementarity condition (5.9)-(5.12) are

equivalent.

Proof. “⇐”: Let c̄ ∈ H1(0, T ) be a weak solution of the complementarity for-

mulation (5.9)-(5.12). First we define the set A := {t ∈ (0, T )| c̄(t) = 0} and its

complement Ā := {t ∈ (0, T )| c̄(t) > 0}. It holds

F+(c1, c2) − sign+(c̄)F−(c1, c2) =

{

F+(c1, c2) on A

F (c1, c2) on Ā .

Because of (5.10) we can split the integral in (5.13) in an integral over A and an

integral over Ā:

∫ T

0

(ρ∂tc̄ − θ(F+(c1, c2) − sign+(c̄)F−(c1, c2)))φ dt

=

∫

A

(ρ∂tc̄ − θF+(c1, c2))φ dt +

∫

Ā

(ρ∂tc̄ − θ(rp(c1, c2) − kd))φ dt (5.15)



128 CHAPTER 5. KINETIC MINERAL REACTIONS

Because of the complementarity condition (5.9) ρ∂tc̄ − θ(rp(c1, c2) − kd) is zero

a.e. in Ā and so the second integral vanishes.

By Stampacchia’s theorem, on A we have ∂tc̄ = 0. Using this it follows from

(5.11) that

0 − θF (c1, c2) ≥ 0 a.e. on A

⇔ F (c1, c2) ≤ 0 a.e. on A

⇒ F+(c1, c2) = 0 a.e. on A .

So the first integral in (5.15) vanishes, too. That proofs (5.13).

“⇒”: Let c̄ be a weak solution of the formulation with the discontinuous rate

function (5.13)-(5.14). If for t ∈ (0, T ) it holds c̄(t) ≤ 0 then it follows that a.e.

ρ∂tc̄(t) = θ(F+(c1(t), c2(t)) − sign+(c̄(t))
︸ ︷︷ ︸

=0

F−(c1(t), c2(t)))

= θF+(c1(t), c2(t)) ≥ 0 .

If c̄0 ≥ 0 it follows that c̄ is nonnegative. That proofs (5.10).

Due to (5.13) and the definition of F we have a.e. in (0, T )

ρ∂tc̄ − θ(rp(c1, c2) − kd)

= θ(F+(c1, c2) − sign+(c̄)F−(c1, c2)) − θ(F+(c1, c2) − F−(c1, c2))

= θ(1 − sign+(c̄)
︸ ︷︷ ︸

≥0

) F−(c1, c2)
︸ ︷︷ ︸

≥0

≥ 0 .

That proofs (5.11). Furthermore using this identity we get

∫ T

0

c̄ (ρ∂tc̄ − θ(rp(c1, c2) − kd))φ dt =

∫ T

0

c̄ θ(1 − sign+(c̄))F−(c1, c2)φ dt .

One of the factors c̄, 1 − sign+(c̄) is always zero because for t ∈ (0, T ) such that

c̄(t) > 0 it holds sign+(c̄(t)) = 1. So the integral on the right hand side vanishes.

That proofs (5.9).

5.2 Algorithmic Examination of the Formula-

tions

In this section we discretize the equations (5.2), (5.3), (5.4) with the implicit

Euler method and solve the resulting nonlinear equation with Newton’s method.

Again we assume that the mobile concentrations are given.
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Complementarity formulation

It is well known that a complementarity condition can be replace by a equiv-

alent equation (see e.g. [Kan04]). So the complementarity formulation (5.2) is

equivalent to

min {c̄, ρ∂tc̄ − θ(rp(c1, c2) − kd)} = 0 .

Discretization with the implicit Euler method with constant time step size ∆t

leads to

min

{

c̄(tn+1), ρ
c̄(tn+1) − c̄(tn)

∆t
− θ(rp(c1(t

n+1), c2(t
n+1)) − kd)

}

= 0 .

The upper index denotes the number of the time step. This equation is equivalent

to

min

{

ρ
c̄(tn+1)

∆t
, ρ

c̄(tn+1) − c̄(tn)

∆t
− θ(rp(c1(t

n+1), c2(t
n+1)) − kd)

}

= 0 . (5.16)

If ρ c̄(tn)
∆t

+ θ(rp(c1(t
n+1), c2(t

n+1)) − kd) < 0 the minimum is attained in the first

argument and vice versa. Graphically this means it is not possible that more

mineral is dissolved than it is present. Note the decision if the minimum is

attained in the first or in the second argument is independent of c̄(tn+1). So we

can treat the two cases separately.

Equation (5.16) is solved with Newton’s method. First we treat the case

ρ c̄(tn)
∆t

+ θ(rp(c1(t
n+1), c2(t

n+1))− kd) < 0. In this case we have to solve the linear

equation

ρ
c̄(tn+1)

∆t
= 0 .

So after one Newton step we get the solution c̄(tn+1) = 0. In the case ρ c̄(tn)
∆t

+

θ(rp(c1(t
n+1), c2(t

n+1)) − kd) > 0 we also have to solve a equation which is linear

in c̄(tn+1). This time the equation reads

ρ
c̄(tn+1) − c̄(tn)

∆t
− θ(rp(c1(t

n+1), c2(t
n+1)) − kd) = 0 .

So again after one Newton step we get the solution

c̄(tn+1) = c̄(tn) +
∆t

ρ
θ(rp(c1(t

n+1), c2(t
n+1)) − kd) .

As we are in the case ρ c̄(tn)
∆t

+ θ(rp(c1(t
n+1), c2(t

n+1)) − kd) > 0 it is ensured that

c̄(tn+1) is nonnegative.
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In the very unlikely case that ρ c̄(tn)
∆t

+ θ(rp(c1(t
n+1), c2(t

n+1)) − kd) is exactly

zero it does not matter which one of the two cases is used. Both cases lead to

the solution c̄(tn+1) = 0.

In summary only one Newton step is always needed and it is ensured that the

discrete solution is nonnegative. So the complementarity formulation is a proper

formulation to solve a kinetic mineral problem numerically.

Formulation with discontinuous rate function

A discretization of (5.3) is

ρ
c̄(tn+1) − c̄(tn)

∆t

=

{

θ(rp(c1(t
n+1), c2(t

n+1)) − kd) for (c̄(tn+1) > 0)∨(rp(c1(t
n+1), c2(t

n+1)) > kd)

0 for (c̄(tn+1) ≤ 0)∧(rp(c1(t
n+1), c2(t

n+1)) ≤ kd)

which is again obtained by the implicit Euler method. This equation should be

solved with Newton’s method.

Let c̄n+1
k denote the k-th Newton iterate. If we are in the case (c̄n+1

k ≤
0) ∧ (rp(c1(t

n+1), c2(t
n+1)) ≤ kd) we get the linear system

ρ

∆t
(c̄n+1

k+1 − c̄n+1
k ) = −ρ

c̄n+1
k − c̄n

∆t
.

This leads to

c̄n+1
k+1 = c̄n (5.17)

In the case (c̄n+1
k > 0)∨(rp(c1(t

n+1), c2(t
n+1)) > kd) applying Newton’s method

yields

ρ

∆t
(c̄n+1

k+1 − c̄n+1
k ) = −ρ

c̄n+1
k − c̄n

∆t
+ θ(rp(c1(t

n+1), c2(t
n+1)) − kd) .

So we get

c̄n+1
k+1 = c̄n +

∆t

ρ
θ(rp(c1(t

n+1), c2(t
n+1)) − kd) . (5.18)

It can happen that c̄n+1
k+1 is negative because we are always in this case when c̄n+1

k

is positive independent of the sign of the right hand side in (5.18).

If it happens that the Newton iterate c̄n+1
1 resulting from (5.18) is negative

then the next Newton iterate c̄n+1
2 is computed according to (5.17) and so is equal

to the starting value. This has the consequence that c̄n+1
3 is equal to c̄n+1

1 . So

the Newton’s method is in an infinite loop and will not converge. Hence, this

formulation can not be used for numerical computations.
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One possibility to circumvent the problem with the infinite loop is to re-

place c̄(tn+1) in the case distinction by c̄(tn). Then the decision which case

is used is independent of the Newton iterate. But in the case (c̄(tn) > 0) ∨
(rp(c1(t

n+1), c2(t
n+1)) > kd) it is still possible that the mineral concentration gets

negative.

In [BEHM07] the formulation (5.4) with a discontinuous rate function is used

on the continuous level. But in the discretized form no discretization of the

discontinuous rate function appears. Instead of that the formulation

c̄(tn+1) =

(

c̄(tn) +
∆t

ρ
θ(rp(c1(t

n+1), c2(t
n+1)) − kd)

)+

is used. This formulation is equivalent to the discretization (5.16) of the comple-

mentarity formulation. So all considerations of the complementarity formulation

are applicable.

Formulation with set-valued rate function

In [DPvDC08] for numerical computations on the pore scale a formulation with a

regularized Heaviside function is used. As argument of the regularized Heaviside

function the mineral concentration at the old time level is used. The discrete

formulation reads

ρ
c̄(tn+1) − c̄(tn)

∆t
= rp(c1(t

n+1), c2(t
n+1)) − kdHδ(c̄(t

n))

with

Hδ(v) =







0 for v ≤ 0

v/δ for v ∈ (0, δ)

1 for v ≥ δ .

In the pore scale model the equation for the kinetic mineral is valid on the

moving boundary. So computations on the pore scale are not comparable to

computations with the model of this work.

Applied to our problem this formulation has the disadvantage that in the

undersaturated case (rp(c1, c2) < kd) c̄ ≡ 0 is no solution of the discrete formu-

lation. Furthermore is not secured that the mineral concentration c̄ is always

nonnegative. For our problem the regularization is more useful for theoretical

considerations and will be used in Section 5.4.
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5.3 Implementation with the Reduction Scheme

In the reaction rate we introduce the additional parameter k

k(rp(c1, c2) − kd) .

The objective is to get an implementation with which it is possible to solve the

kinetic mineral problem also for high values of k. For high values of k we expect

that we will get results very similar to the equilibrium case. So for k → ∞ the

implementation of the kinetic mineral problem should be as similar as possible to

the implementation of the equilibrium case (see Chap. 3 for the implementation

of the equilibrium case).

Starting point is the formulation with the complementarity condition. For

the implementation we assume that the unit of the mineral concentrations is the

same as the unit of the mobile concentrations (like in Chap. 3). So the system of

equations reads

∂t(θc1) + Lc1 = −n∂t(θc̄)

∂t(θc2) + Lc2 = −m∂t(θc̄)

c̄ (∂t(θc̄) − θk(rp(c1, c2) − kd)) = 0

c̄ ≥ 0, ∂t(θc̄) − θk(rp(c1, c2) − kd) ≥ 0 .

(5.19)

First the complementarity condition is replaced by an equivalent equation with

the minimum function

min {∂t(θc̄) − θk(kpc
n
1c

m
2 − kd), c̄} = 0 .

To apply the reduction scheme we need the matrices

S1 =

(
−n

−m

)

, S⊥
1 =

1

n + m

(
m

−n

)

, B1 = S1, B⊥
1 = S⊥

1 .

With the definitions of the transformed variables (3.13) and (3.39) we get

η =
n + m

n2 + m2
(mc1 − nc2)

ξmin =
1

n2 + m2
(−nc1 − mc2)

ξ̄min = c̄

ξ̃min =
1

n2 + m2
(−nc1 − mc2) − c̄ . (5.20)
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The associated retransformation is

c1 = −n(ξ̃min + ξ̄min) +
m

n + m
η (5.21)

c2 = −m(ξ̃min + ξ̄min) − n

n + m
η (5.22)

c̄ = ξ̄min . (5.23)

Hence, applying the reduction scheme we get the system of equations

∂t(θη) + Lη = 0

ξ̃min = ξmin − ξ̄min

∂t(θξ̃min) + Lξmin = 0

min {∂t(θc̄) − θk(kpc
n
1c

m
2 − kd), c̄} = 0 .

Then we define

kinv := 1/k .

Now the equilibrium case corresponds to kinv = 0. With this definition the time

discrete problem reads

θη − (θη)old

∆t
+ Lη = 0 (5.24)

ξ̃min = ξmin − ξ̄min (5.25)

θξ̃min − (θξ̃min)old

∆t
+ Lξmin = 0 (5.26)

min

{

kinv
θc̄ − (θc̄)old

∆t
− θ(kpc

n
1c

m
2 − kd),

c̄

∆t

}

= 0 . (5.27)

In the next step a resolution function ξ̄min(ξ̃min) defined by (5.27) and the

retransformation (5.21)-(5.23) is needed. To show the existence of such a resolu-

tion function we have to differentiate (5.27) with respect to ξ̃min after plugging

in (5.21)-(5.23). If the minimum in (5.27) is attained in the first argument we

get

θkinv

∆t
ξ̄′min(ξ̃min) − θ

(
nkpc

n−1
1 cm

2 mkpc
n
1c

m−1
2

)
S1,min(1 + ξ̄′min(ξ̃min)) = 0

⇔
(

θkinv

∆t
+ θn2kpc

n−1
1 cm

2 + θm2kpc
n
1c

m−1
2

)

ξ̄′min(ξ̃min)

+θn2kpc
n−1
1 cm

2 + θm2kpc
n
1c

m−1
2 = 0 .

The factor in front of ξ̄′min(ξ̃min) is always positive. So with the implicit function

theorem the resolution function exists. If the minimum in (5.27) is attained in
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the second argument we get

1

∆t
ξ̄′min(ξ̃min) = 0 .

Again the factor in front of ξ̄′min(ξ̃min) is always positive and so also in this case

the resolution function exists.

Using the resolution function ξ̄min(ξ̃min) we have to solve the global problem

ξ̃min − ξmin + ξ̄min(ξ̃min) = 0

θξ̃min − (θξ̃min)old

∆t
+ Lξmin = 0 .

To solve the local problem the concentrations are used as variables instead of

ξ̄min and the defining equations of ξ̃min and η are added as additional equations.

This is the same approach as in the equilibrium case (see Sec. 3.4.1). Then the

local problem reads

η − n + m

n2 + m2
(mc1 − nc2) = 0

ξ̃min − 1

n2 + m2
(−nc1 − mc2) + c̄ = 0

min

{

kinv
θc̄ − (θc̄)old

∆t
− θ(kpc

n
1c

m
2 − kd),

c̄

∆t

}

= 0 .

Contrary to the equilibrium case it is not possible to calculate the mineral

concentration c̄ a posteriori because the mineral concentration appears not only in

the defining equation of ξ̃min and the second argument of the minimum function

but also in the first argument of the minimum function. Furthermore it is not

possible to take the logarithm of the first argument of the minimum function

because of the additional summand with the different quotient of c̄.

But like in the equilibrium case one can use the logarithms of the mobile

concentrations l1, l2 as unknowns instead of the concentrations c1, c2:

η − n + m

n2 + m2
(m exp(l1) − n exp(l2)) = 0 (5.28)

ξ̃min − 1

n2 + m2
(−n exp(l1) − m exp(l2)) + c̄ = 0 (5.29)

min

{

kinv
θc̄ − (θc̄)old

∆t
− θ(kp(exp(l1))

n(exp(l2))
m − kd),

c̄

∆t

}

= 0 (5.30)

To keep the method as similar as possible to the equilibrium case the following

algorithm is used to compute the local defect (compare Sec. 3.4.1 for solving the

local problem in the equilibrium case and the notation used in the following

structured chart):



5.3. IMPLEMENTATION WITH THE REDUCTION SCHEME 135

Exact algorithm for calculating the local defect
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

¡
¡

¡
¡

¡¡

AI

1 0

c̄ = −ξ̃min + 1
n2+m2 (−n exp(l1) − m exp(l2)) ∅

@
@

@
@

@
@@

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

kinv
θc̄−(θc̄)old

∆t
− θ(kp(exp(l1))

n(exp(l2))
m − kd) > c̄

∆t

TRUE FALSE

AI = 0

c̄ = 0

hhhhhhhhhhhhhhhhhhhhhhhhhhhh

¡
¡

¡
¡¡

AI

0 1

c̄ = −ξ̃min + 1
n2+m2 (−n exp(l1) − m exp(l2)) ∅

AI = 1
∅

Assemble local defect (5.28)-(5.29) and set defect3 = 0
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

¡
¡

¡
¡

¡¡

AI

1 0

defect2 = θ(kp(exp(l1))
n(exp(l2))

m−kd)−kinv
θc̄−(θc̄)old

∆t

defect3 = defect of (5.29)
∅

To assemble the Jacobian matrix of the global problem we need the derivative

ξ̄′min(ξ̃min). If the minimum of (5.27) is attained in the first argument we can

compute this derivative by plugging (5.21)-(5.23) in (5.27) and differentiating

with respect to ξ̃min. This results in the linear system

θkinv

∆t
ξ̄′min(ξ̃min) − θ

(
nkpc

n−1
1 cm

2 mkdc
n
1c

m−1
2

)
S1,min(1 + ξ̄′min(ξ̃min)) = 0 .

Alternatively we can write (5.27) in the form kinv
θc̄−(θc̄)old

∆t
+ θkd = θkpc

n
1c

m
2 , take

the logarithm on both sides and then differentiate. This leads to the linear system

1

kinv
θc̄−(θc̄)old

∆t
+θkd

θkinv

∆t
ξ̄′min(ξ̃min)+ST

1,min

(
1/c1 0

0 1/c2

)

S1,min(1+ξ̄′min(ξ̃min)) = 0.

For kinv = 0 this linear system is the same as in the equilibrium case while the

first linear system results in a different one.

A problem which only occurs in the kinetic case is that the local problem do

not have a nonnegative solution for all ξ̃min ≤ 0. This can be seen in the following
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way. With the equation for the kinetic mineral (5.27) we get

kinv
θc̄ − (θc̄)old

∆t
= θ(kpc

n
1c

m
2 − kd) ≥ −θkd

⇔ c̄ ≥ − ∆t

kinv

kd +
(θc̄)old

θ
. (5.31)

Using the retransformation (5.21) and the fact that c1 is nonnegative we get

m

n(n + m)
η ≥ (ξ̃min + ξmin) .

Plugging this in the retransformation (5.22) leads to

c2 ≥ − m2

n(n + m)
η − n

n + m
η

≥ − m2 + n2

n(n + m)
η

⇒ c2 ≥
m2 + n2

n(n + m)
η− . (5.32)

The last conclusion is true because c2 is nonnegative.

Analogously we can calculate that

c1 ≥
n2 + m2

m(n + m)
η+ . (5.33)

With the definition of ξ̃min (5.20) and the previous estimates (5.31), (5.32),

(5.33) and c̄ ≥ 0 we get

ξ̃min =
1

n2 + m2
(−nc1 − mc2) − c̄

≤ − n

m(n + m)
η+ − m

n(n + m)
η− + min

{
∆t

kinv

kd −
(θc̄)old

θ
, 0

}

.

So if ξ̃min exceeds this bound we have to cut ξ̃min because otherwise there is

no solution with nonnegative mobile concentrations of the local problem. This

bound is strict. It is easy to see that for ξ̃min equal to this bound c1 = n2+m2

m(n+m)
η+,

c2 = m2+n2

n(n+m)
η− and c̄ = max

{
− ∆t

kinv
kd +

(θc̄)old

θ
, 0

}
is a nonnegative solution of

the local problem.

To check the implementation computations with an easy example are carried

out. The example is taken from [BEHM07, Sec. 7.1]. It is a 1D problem on the

domain Ω = (0, 1). The needed parameters are kp = 100, kd = 1, n = m = 1, D =

1, q = 0, θ = 1 and the initial values are c1,0 = c2,0 = 0.1, c̄0 = 5. The boundary
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conditions are Dirichlet boundary conditions at x = 0 with the boundary values

c1,D = c2,D = 0 and homogeneous Neumann boundary conditions at x = 1.

For the equilibrium case (kinv = 0) the exact solution is known. It is

c1(x, t) = c2(x, t) =







√
kd

kp
erf(x/(2

√
t))(erf(ζ0/2))−1 for 0 < x < ζ0

√
t

√
kd

kp
for ζ0

√
t < x

c̄(x, t) =

{

0 for 0 < x < ζ0

√
t

c̄0 for ζ0

√
t < x

with ζ0 the positive solution of
√

kd

kp

= ζ0c̄0 exp(ζ2
0/4)

√
π

2
erf(ζ0/2)

(erf(x) = 2√
π

∫ x

0
exp(−t2) dt). One can compute numerically that ζ0 ≈ 0.1993.

In Fig. 5.1 the mineral concentration c̄ is plotted as a function of time and space

for different values of kinv. For the smallest value kinv = 10−4 the solution looks

like the exact solution of the equilibrium case. That is the expected behavior.

Travelling Waves

As a second test of the implementation computations of travelling waves in one

space dimension are conducted. A travelling wave solution can be written as

a function of one variable η := x − at with the wave speed a. So the partial

differential equations in (5.19) become ordinary differential equations

−a(θc1)
′ − Dc′′1 + qc′1 = na(θc̄)′

−a(θc2)
′ − Dc′′2 + qc′2 = ma(θc̄)′ .

The travelling wave solutions for an unbounded spatial domain represent the

long time behavior of an initial-boundary-value problem. So for a sufficiently

large computational domain and a sufficiently long simulation time the travelling

waves can be taken as a reference solution for the initial-boundary-value problem.

This is done in this section. On the one hand the solution is computed with

help of the ordinary differential equations and on the other hand the solution of

the initial-boundary-value problem is computed with the implementation of the

kinetic mineral problem. Then the two results are compared.

As test problem the so called “reference case” out of [KvDH95, Sec. 3] is

used. For the initial-boundary-value problem the domain Ω = (0, 40) is used.

The parameters of the problem are kp = 1, kd = 3.86884 · 10−7, kinv = 10,
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Figure 5.1: Mineral concentration for kinv = 100, 1, 10−2, 10−4

n = m = 1, D = 6.25 · 10−4, q = 0.3 · 10−3, θ = 0.32. For the initial-boundary-

value problem the initial values are c1,0 = c2,0 = 6.22 · 10−4, c̄0 = 2.7562 · 10−4,

the boundary conditions are Dirichlet boundary conditions at x = 0 with the

boundary values c1,D = c2,D = 2 · 10−5 and homogeneous Neumann boundary

conditions at x = 40. For the system of ordinary differential equations the values

ci,0, c̄0 are the boundary conditions at ∞ and the values ci,D together with c̄ = 0

are the boundary conditions at −∞.

To write down the solution strategy, which uses the ordinary differential equa-

tions, we define the new variables

u := c1

v :=
n

θ
c̄

c := mc1 − nc2 .

For c being constant and having the value mc1,D − nc1,D the wave speed a is

constant and has the value a = u0−uD

u0−uD+v0

(see [KvDH95]). According to [KvDH95]
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the travelling wave can be calculated by finding a number uL such that the

solution of

u′ =
q
θ
− a

D
(u − uD) − a

D
v for η > L

v′ =
nkp

kinva

(
kd

kp

− un

(
mu − c

n

)m)

for η > L

u(L) = uL

v(L) = 0

(5.34)

fulfills

u(∞) = u0, v(∞) = v0, v(η) > 0 for η > L .

This solution can be extended to the desired solution by solving

u′ =
q
θ
− a

D
(u − uD) for η < L

u(L) = uL .

The explicit solution is

u(η) = (uL − uD) exp

( q
θ
− a

D
η

)

+ uD for η ≤ L .

We define the following three cases which can happen during the computation of

u, v according to (5.34):

• Case A: There is a η̄ such that v(η̄) = u(η̄)−uD

u0−uD
v0, u(η̄) < u0

• Case B: There is a η̄ such that u(η̄) = u0, v(η̄) < u(η̄)−uD

u0−uD
v0

• Case C: Neither case A nor case B happen

Therewith the solution of the travelling wave problem can be computed with the

following shooting algorithm

Shooting algorithm

Choose uD < uL, uL < u0 such that for uL = uL case A occurs

and for uL = uL case B occurs

|uL − uL| not small enough

Compute u, v according to (5.34) with uL = 1
2
(uL + uL)

`````````````````````````````````````̀

Check which case occurs

For case A

uL := 1
2
(uL + uL)

For case B

uL := 1
2
(uL + uL)

For case C
STOP
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The end time for the numerical computations is chosen in such a way that

at the end time the mineral is completely dissolved in the interval (0, 25) and

the mineral is present in the interval (25, 40). For the “reference case” this is

the case at T = 42400. The results of the shooting algorithm and of the initial-

boundary-value problem can be seen in Fig. 5.2. The two results of the two

different methods are in good agreement.

0 10 20 30 40
0

2

4

6

8
x 10

−4

u computed with shooting algorithm
u computed with intial−boundary−value problem

0 10 20 30 40
0

1

2

3

x 10
−4

v computed with shooting algorithm
v computed with intial−boundary−value problem

Figure 5.2: Results of the travelling wave problem

Then computations with smaller values of kinv are carried out. These com-

putations are closer to the equilibrium case than the problem above. Again

the computations are done with the shooting algorithm and with the initial-

boundary-value problem and then the results are compared. The results for the

values kinv = 1, 0.1, 0.01 are presented in Fig. 5.3. For all these values of kinv the

results of the two methods are in good agreement.
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Figure 5.3: Results of the travelling wave problem for kinv = 1, 0.1, 0.01
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5.4 Existence

The goal is to prove the existence of a global solution for the more general problem

∂tc + Lc = S1,kinrkin(c) + S1,min∂tc̄min on QT

∂tc̄min ∈ rmin(c, c̄min) on QT

c(·, 0) = c0 on Ω

c̄min(·, 0) = c̄min,0 on Ω

d∂νc = β(c − c∗) on ST

under certain assumptions. In the problem formulation we have the linear trans-

port operator Lu := −∇ · (d∇u) + q · ∇u, Ω domain in R
n, QT := Ω × (0, T ),

ST := ∂Ω × (0, T ) and the reaction rates rkin according to law of mass action

(compare (2.4)). It is assumed that only mobile species take part in the kinetic

reactions. Furthermore there are the mineral reaction rates rmin(It is assumed

that the stoichiometric coefficient of the mineral is positive) that are of the form

rmin,j(c, c̄min) = kp,j

I∏

i=1
S1,min,ij<0

c
−S1,min,ij

i − kd,j

I∏

i=1
S1,min,ij>0

c
S1,min,ij

i H(c̄min,j)

with the set-valued Heaviside “function”

H(s) :=







{1} for s > 0

[0, 1] for s = 0

{0} for s < 0

.

This problem is denoted by (P ). The boundary conditions include the cases (i)

flux boundary conditions (β = q · ν) and (ii) homogeneous Neumann boundary

conditions (β = 0) (compare [Kna86, (2.10)]).

To prove an a priori estimate with help of the maximum principle the following

assumption is needed:

Assumptions 5.4. There is a vector s⊥ with only strictly positive entries which

is perpendicular to all columns of S1 =
(
S1,kin S1,min

)
except of those columns

of S1 that have only nonpositive entries.

When no species are neglected in the kinetic reactions with only mobile species

there is always a vector s⊥ which is perpendicular to all columns of S1,kin. In this

case the number of atoms in one molecule of the i-th species is a possible choice

for the components of s⊥ because the number of atoms is a conserved quantity
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regarding the chemical reactions. When additionally all entries of S1,min are

nonpositive, i.e., in the reaction equation of each mineral reaction no mobile

species are on the same side as the mineral, the assumption is always fulfilled.

Note that it is not necessary that no species are neglected in the reactions with

only mobile species and that is also not necessary that all entries of S1,min are

nonpositive. For example the reaction OH− + H3O
+ ↔ (2H2O) neglecting the

concentration of H2O is also allowed. And mineral reactions with mobile species

in the reaction equation on the same side as the mineral are allowed when there

is a vector s⊥ which is also perpendicular to the associated column of S1,min.

In [Krä08, Sec. 3.2] the existence of a solution for the batch problem is shown

with help of a vector s⊥ which must be perpendicular to all columns of the

stoichiometric matrix. Here we handle a much more complex problem (with

transport and with mineral reactions) and we need only a weaker assumption,

it is not necessary that the vector s⊥ is perpendicular to all columns of the

stoichiometric matrix.

Furthermore the following assumptions on the data of the problem are needed

(compare [Kna86, Assumption 2.2]):

Assumptions 5.5.

(i) d > δ = const > 0

(ii) d, ∂xk
d ∈ Cα,α/2(QT ) (k = 1, . . . , n), q ∈ Cα,α/2(QT )

n
for some α ∈ (0, 1)

(iii) c0,i ∈ W
2−2/p
p (Ω) for some p > (n + 2)/2, p ≥ 2, q 6= n + 2; c0,i is continu-

ously differentiable in a neighborhood of ∂Ω (i = 1, . . . , I)

(iv) c̄min,0,j ∈ Cα(Ω) (j = 1, . . . , Jmin)

(v) c∗i ∈ W 1−1/p,(1−1/p)/2(ST ) ∩ C(ST ) (i = 1, . . . , I)

(vi) β ∈ C1−1/p+ǫ,(1−1/p+ǫ)/2(ST ) for some ǫ > 0

(vii) If p > 3: ∂νc0,i = β(·, 0)(c0,i − c∗i (·, 0)) on ∂Ω (i = 1, . . . , I)

(viii) ∂Ω ∈ C2+α

(ix) c0, c̄min,0, c
∗ ≥ 0

Let us consider the modified problem (P +) where the rate functions rkin(c)

are replaced by rkin(c+) and the rates rmin(c, c̄) are replaced by rmin(c+, c̄).



144 CHAPTER 5. KINETIC MINERAL REACTIONS

Additionally we define the regularized problem

∂tc + Lc = S1,kinrkin(c+) + S1,minrε,min(c+, c̄min) on QT (5.35)

∂tc̄min = rε,min(c+, c̄min) on QT (5.36)

c(·, 0) = c0 on Ω (5.37)

c̄min(·, 0) = c̄min,0 on Ω (5.38)

d∂νc = β(c − c∗) on ST (5.39)

with the regularized rate functions

rε,min,j(c
+, c̄min) = kp,j

I∏

i=1
S1,min,ij<0

(c+
i )

−S1,min,ij − kd,j

I∏

i=1
S1,min,ij>0

(c+
i )

S1,min,ijHε(c̄min,j)

(5.40)

where Hε is the regularized Heaviside function

Hε(s) :=







1 for s ≥ ε

s/ε for 0 < s < ε

0 for s ≤ 0

.

with ε > 0. This problem is denoted by (P +
ε

).

Nonnegativity

Lemma 5.6. Let (c, c̄min) be a solution of problem (P +
ε

). Then c is nonnegative.

Proof. The proof of this lemma is adapted from [Krä08, Lemma 3.2]. Let Ω−
i =

Ω−
i (t) be the support of c−i (·, t). Testing the i-th PDE with −c−i yields

1

2
∂t

∫

Ω−

i

|c−i |2 dx +

∫

Ω−

i

(d|∇c−i |2 + q · ∇c−i c−i ) dx

= −
Jkin∑

j=1

S1,kin,ij

∫

Ω−

i

(

kf,j

I∏

k=1
S1,kin,kj<0

(c+
k )

−S1,kin,kj − kb,j

I∏

k=1
S1,kin,kj>0

(c+
k )

S1,kin,kj

)

c−i dx

−
Jmin∑

j=1

S1,min,ij

∫

Ω−

i

(

kp,j

I∏

k=1
S1,min,kj<0

(c+
k )

−S1,min,kj−kd,j

I∏

k=1
S1,min,kj>0

(c+
k )

S1,min,kjHε(c̄min,j)

)

c−i dx.
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We know that c+
i ≡ 0 on the domain of integration Ω−

i . Using this we get in the

case S1,kin,ij > 0 (Note that in this case c+
i is a factor of the second product)

−S1,kin,ij

∫

Ω−

i

(

kf,j

I∏

k=1
S1,kin,kj<0

(c+
k )

−S1,kin,kj − kb,j

I∏

k=1
S1,kin,kj>0

(c+
k )

S1,kin,kj

)

c−i dx

= −S1,kin,ij

∫

Ω−

i

(

kf,j

I∏

k=1
S1,kin,kj<0

(c+
k )

−S1,kin,kj

)

c−i dx ≤ 0 .

Analogously one gets that the term is also nonpositive in the case S1,kin,ij < 0.

In the same way one can show that the term with the mineral reaction rate is

nonpositive, too. So we get

1

2
∂t

∫

Ω−

i

|c−i |2 dx +

∫

Ω−

i

(d|∇c−i |2 + q · ∇c−i c−i ) dx ≤ 0 .

Using Young’s inequality it follows

1

2
∂t

∫

Ω−

i

|c−i |2 dx +

∫

Ω−

i

d|∇c−i |2 dx ≤ Q2

2δ

∫

Ω−

i

|c−i |2 dx +
δ

2

∫

Ω−

i

|∇c−i |2 dx

with Q := ‖q‖L∞(QT )n . Absorbing the term with δ/2 on the left hand side gives

(Note that d > δ, see Assumptions 5.5 (i))

∂t

∫

Ω−

i

|c−i |2 dx +

∫

Ω−

i

d|∇c−i |2 dx ≤ Q2

δ

∫

Ω−

i

|c−i |2 dx .

Especially it holds

∂t

∫

Ω−

i

|c−i |2 dx ≤ Q2

δ

∫

Ω−

i

|c−i |2 dx .

Because of the assumption that the initial values are nonnegative (Assump-

tions 5.5 (ix)) it follows that
∫

Ω−

i

|c−i |2 dx ≡ 0 for all t ≥ 0 and hence it holds

ci ≥ 0 a.e. in QT .

Lemma 5.7. Let (c, c̄min) be a solution of problem (P +
ε

). Then c̄min is nonneg-

ative.

Proof. Using

φj(s) =

{

−c̄−min,j(·, s) for s ≤ t

0 for s > t
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as test function in the j-th ODE yields
∫ t

0

∂tc̄min,j(−c̄−min,j) ds =

∫ t

0

(

kp,j

I∏

i=1
S1,min,ij<0

(c+
i )

−S1,min,ij

︸ ︷︷ ︸

≥0

−kd,j

I∏

i=1
S1,min,ij>0

(c+
i )

S1,min,ijHε(c̄min,j)

)

(−c̄−min,j
︸ ︷︷ ︸

≤0

) ds .

Because of
∫ t

0

∂tc̄min,j(−c̄−min,j) ds =
1

2

∫ t

0

∂t|c̄−min,j|
2

ds =
1

2
|c̄−min,j(·, t)|

2 − 1

2
|c̄−min,j(·, 0)|2

we get the estimate

1

2
|c̄−min,j(·, t)|

2 ≤
∫ t

0

kd,j

I∏

i=1
S1,min,ij>0

(c+
i )

S1,min,ijHε(c̄min,j)c̄
−
min,j ds +

1

2
|c̄−min,j(·, 0)|2 = 0.

The first summand on the right hand side is zero because one of the factors

Hε(c̄min,j), c̄−min,j is zero a.e. due to the definition of Hε and the second one is

zero due to the assumption that the initial value c̄min,0,j is nonnegative (Assump-

tions 5.5 (ix)).

Remark 5.8. The assertions of the last two lemmas are also true for the problem

(P +).

We want to prove the existence of a global solution of the modified and reg-

ularized problem with help of Schaefer’s fixed point theorem (e.g. [Eva98]).

The Fixed Point Operator

We define the fixed point operator Z:

Z : W 2,1
p (QT )

I −→ W 2,1
p (QT )

I

ĉ 7−→ c = Z(ĉ)

with p > (n + 2)/2 and c being the solution of the problem:

∂tc + Lc = S1,kinrkin(ĉ+) + S1,minrε,min(ĉ+, c̄min) on QT

∂tc̄min = rε,min(ĉ+, c̄min) on QT

c(·, 0) = c0 on Ω

c̄min(·, 0) = c̄min,0 on Ω

d∂νc = β(c − c∗) on ST
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Lemma 5.9. The fixed point operator Z is well-posed.

Proof. Some ideas of this proof are taken from the argumentation in [Krä08, page

104]. First we will show that a solution c̄min of the ODE subsystem exists and

that this solution is in C(QT )
Jmin

. From the embedding theorem W 2,1
p (QT ) →֒

Cα,α/2(QT ) with 0 < α ≤ 2 − (n + 2)/p for p > (n + 2)/2 (e.g. [WYW06,

Thm. 1.4.1]) the continuity of ĉ follows. So for fixed x ∈ Ω the right hand

side rε,min(ĉ+(x, t), c̄min) (see (5.40) for the definition of rε,min) as a function

of t and c̄min is continuous in t. The Lipschitz continuity of Hε yields that

rε,min(ĉ+(x, t), c̄min) is Lipschitz continuous in c̄min with a Lipschitz constant

independent of x and t:

|rε,min,j(ĉ
+(x, t), y) − rε,min,j(ĉ

+(x, t), ỹ)|

=

∣
∣
∣
∣
∣
kd,j

I∏

i=1
S1,min,ij>0

(ĉ+
i (x, t))

S1,min,ij

∣
∣
∣
∣
∣
|Hε(y) − Hε(ỹ)|

≤ C(M)Lε|y − ỹ|

with M a bound for the C(QT )
I
-norm of ĉ and Lε the Lipschitz constant of

Hε. Such a bound M < ∞ exists because of ĉ ∈ Cα,α/2(QT )
I
. So the theo-

rem of Picard-Lindelöf proves that c̄min exists on the whole interval [0, T ], i.e.,

c̄min(x, ·) ∈ C([0, T ])Jmin for fixed x ∈ Ω.

To complete the proof that c̄min ∈ C(QT )
Jmin

we will show that c̄min is Hölder

continuous in x, uniformly in QT . Let y ∈ C1([0, T ]) be the solution of

y′ = rε,min,j(ĉ
+(x, ·), y)

y(0) = c̄min,0,j(x)

and ỹ ∈ C1([0, T ]) be the solution of

ỹ′ = rε,min,j(ĉ
+(x̃, ·), ỹ)

ỹ(0) = c̄min,0,j(x̃) .

As c̄min,0,j is Hölder continuous (see Assumptions 5.5 (iv)) we know that

|c̄min,0,j(x) − c̄min,0,j(x̃)| ≤ K1|x − x̃|α .

Because of the Hölder continuity of ĉ we know that (Note that the product of two

functions that are Hölder continuous with exponent α is also Hölder continuous

with exponent α.)

|rε,min,j(ĉ
+(x, t), y) − rε,min,j(ĉ

+(x̃, t), y)| ≤ K2|x − x̃|α ∀t ∈ [0, T ] .
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With [Heu89, Chap. 3, Satz 13.1] we get

|y(t) − ỹ(t)| ≤ max{K1, K2}
(

eLT +
1

L
(eLT − 1)

)

|x − x̃|α ∀t ∈ [0, T ]

with L = C(M)Lε the Lipschitz constant of rε,min(ĉ+(x, t), ·) and so c̄min is

Hölder continuous in x, uniformly in QT :

|c̄min,j(x, t)−c̄min,j(x̃, t)| ≤ max{K1, K2}
(

eLT +
1

L
(eLT−1)

)

|x − x̃|α ∀t ∈ [0, T ]

The right hand side of the ODE subsystem rε,min(ĉ+, c̄min) is an element of

C(QT )
Jmin

. So we get

c̄min ∈ C(QT )
Jmin

with C(QT ) :=
{
v ∈ C(QT )|∂tv ∈ C(QT )

}
.

Now we consider the PDEs. The right hand side of the PDE subsystem

S1,kinrkin(ĉ+) + S1,minrε,min(ĉ+, c̄min) is an element of C(QT )
I
. It follows that

the right hand side is an element of Lq(QT )I for all 1 ≤ q ≤ ∞. Using the

linear parabolic theory (compare [LSU68, IV, 9]), we get a solution of the PDE

subsystem c ∈ W 2,1
p (QT )

I
.

A Priori Estimates

We have to construct a bound holding for arbitrary solutions c ∈ W 2,1
p (QT )

I
of

the equation

c = λZ(c)

with λ ∈ [0, 1]. So we have to find a bound for the solutions of

∂tc + Lc = λ
(
S1,kinrkin(c+) + S1,minrε,min(c+, c̄min)

)
on QT

∂tc̄min = rε,min(c+, c̄min) on QT

c(·, 0) = λc0 on Ω

c̄min(·, 0) = c̄min,0 on Ω

d∂νc = β(c − λc∗) on ST

(5.41)

To derive the needed a priori estimate we want to use the maximum principle

(e.g. [LSU68, I, Thm. 2.2/2.3]), which is also used in [Kna86, Sec. 3]. Here we

will construct an upper bound η̃ for the mobile concentrations ci with help of

the maximum principle. η̃ will be the solution of a PDE and again using the

maximum principle one can show that there is a bound for the C(QT )-norm of

η̃ which is independent of the solution. As η̃ is an upper bound for every ci we

have found a bound for the C(QT )
I
-norm of c. Then it follows from the linear
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parabolic theory that there is also a bound for the W 2,1
p (QT )

I
-norm for arbitrary

solutions. For applying the maximum principle it is needed that the solution of

the PDE is a classical solution. To show this the existence theorem [Fri64, Chap.

5, p. 147, Cor. 2] will be used.

Let η̃ be the solution of

∂tη̃ + Lη̃ = λ
(
s⊥ · (S−

1,kin(−k−
b )) + s⊥ · (S−

1,min(−k−
d ))

)
on QT

η̃(·, 0) = λs⊥ · c0 on Ω

d∂νη̃ = β(η̃ − λs⊥ · c∗) on ST

(5.42)

where S−
1,kin and S−

1,min are the submatrices of S1,kin and S1,min, respectively,

that contain all columns with only nonpositive entries. The vectors k−
b and k−

d

contain all reaction constants kb,j and kd,j, respectively, that correspond to a

column of S1 with only nonpositive entries. η̃ is the solution of a parabolic PDE

with constant right hand side. According to [Fri64, Chap. 5, p. 147, Cor. 2] a

classical solution exists.

To apply the existence theorem to the PDE subsystem of (5.41) we have

to show that the right hand side is Hölder continuous in x, uniformly in QT .

From the embedding W 2,1
p (QT ) →֒ Cα,α/2(QT ) with 0 < α ≤ 2 − (n + 2)/p for

p > (n + 2)/2 (e.g. [WYW06, Thm. 1.4.1]) we know that c is Hölder continuous.

In the proof of Lemma 5.9 we have already shown that c̄min is Hölder continuous

in x, uniformly in QT . Hence the requirements of the existence theorem [Fri64,

Chap. 5, p. 147, Cor. 2] are fulfilled. So we get that c is a classical solution of

the PDE subsystem.

As next step we examine the function

u := s⊥ · c − η̃ .

By taking linear combinations of the PDEs in (5.41) and using the PDE in (5.42)

one can see that u is a solution of (Remember that s⊥ is perpendicular to all

columns of S1 except of those with only nonpositive entries)

∂tu + Lu = λs⊥ ·
(
S−

1,kin(r−
kin(c+) + k−

b )

+ S−
1,min(r−

ε,min(c+, c̄min) + k−
d )

) on QT

u(·, 0) = 0 on Ω

d∂νu = βu on ST

(5.43)

where r−
kin and r−

ε,min contain all reaction rates rkin,j and rε,min,j, respectively,

that correspond to a column of S1 with only nonpositive entries. Because of this
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all components of r−
kin have the form

r−kin,j(c
+) = kf,j

I∏

i=1
S−

1,kin,ij
<0

(c+
i )

−S−

1,kin,ij − kb,j

and one sees immediately that all components of the vector (r−
kin(c+) + k−

b )

are nonnegative. Regarding the components of r−
ε,min one knows that the second

product in (5.40) is empty. So one component of the vector (r−
ε,min(c+, c̄min)+k−

d )

is of the form

kp,j

I∏

i=1
S−

1,min,ij<0

(c+
i )

−S−

1,min,ij + kd,j(1 − Hε(c̄min,j)) .

Because of Hε ≤ 1 it follows that all components of (r−
ε,min(c+, c̄min) + k−

d ) are

nonnegative. Furthermore by definition all components of s⊥ are positive and

all entries of S−
1,kin and S−

1,min are nonpositive. Altogether we get that the right

hand side of the PDE for u is nonpositive. So applying the maximum principle1

(compare [LSU68, I, Thm. 2.2/2.3]) yields

sup
QT

u ≤ 0 .

As all components of s⊥ are positive and all mobile concentrations are nonnega-

tive (see Lemma 5.6) it follows

ci ≤
1

s⊥i
η̃ ∀i = 1, . . . , I

So maxi
1

s⊥i
η̃ is an upper bound for the mobile concentrations.

η̃ is the solution of (5.42). Applying the maximum principle [LSU68, I, Thm.

2.3] to it gives

sup
QT

|η̃| ≤ K1

with a constant K1 only depending on β, c∗, c0, s⊥, S−
1,kink−

b , S−
1,mink−

d , ‖d‖C(QT ),

‖q‖C(QT )
n and the boundary of Ω. So we have found an bound for the C(QT )

I
-

norm of c for an arbitrary solution of (5.41).

It follows that the C(QT )
I
-norm of the right hand side of the PDE in (5.41) is

bounded by a constant K2 only depending on K1, S1 and the reaction constants

kf,j, kb,j, kp,j, kd,j. In particular, every Lq(QT )I-norm (1 ≤ q ≤ ∞) of the right

1see Appendix A.2 for a detailed description of the application of the maximum principle
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hand side is bounded independent of the solution (c, c̄min). Then with the linear

parabolic theory (compare [Sol64, Thm. 17], [LSU68, IV, 9]) it follows

‖c‖
W 2,1

p (QT )
I ≤ K3 . (5.44)

with a constant K3 independent of the solution (c, c̄min).

Compactness

Theorem 5.10. The operator Z is continuous and compact.

Proof. The proof of this theorem is adapted from the proof of [Krä08, Theorem

3.17]. Let (ĉn) be a sequence bounded in W 2,1
p (QT )

I
. Due to the compact em-

bedding W 2,1
p (QT ) →֒→֒ C(QT ) for p > (n + 2)/2 there is a subsequence, again

denoted by (ĉn), which is convergent in C(QT )
I
. First we consider the ODE

subproblem

∂tc̄
n
min = rε,min((ĉn)+, c̄n

min) on QT

c̄n
min(·, 0) = c̄min,0 on Ω .

Let y ∈ C1([0, T ]) be the solution of

y′ = rε,min,j((ĉ
l)+(x, ·), y)

y(0) = c̄min,0,j

and ỹ be the solution of

ỹ′ = rε,min,j((ĉ
m)+(x, ·), ỹ)

ỹ(0) = c̄min,0,j .

Let us define

r1,j(c
+) = kp,j

I∏

i=1
S1,min,ij<0

(c+
i )

−S1,min,ij , r2,j(c
+) = kd,j

I∏

i=1
S1,min,ij>0

(c+
i )

S1,min,ij .

As both functions r1,j and r2,j are uniformly continuous it holds

|rε,min,j((ĉ
l)+(x, t), y) − rε,min,j((ĉ

m)+(x, t), y)|
≤ |r1,j((ĉ

l)+(x, t)) − r1,j((ĉ
m)+(x, t))|

+ |r2,j((ĉ
l)+(x, t)) − r2,j((ĉ

m)+(x, t))| |Hε(y)|
︸ ︷︷ ︸

≤1

≤ ω(r1,j, |ĉl(x, t) − ĉm(x, t)|) + ω(r2,j, |ĉl(x, t) − ĉm(x, t)|)
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with ω the modulus of continuity.

The Lipschitz constant L of rε,min,j((ĉ
n)+(x, t), ·) is C(M)Lε with M < ∞ a

bound for the C(QT )
I
-norm of c and Lε the Lipschitz constant of Hε (see proof

of Lemma 5.9). Such a bound M exists because the sequence (cn) is convergent

in C(QT )
I
. So we get with [Heu89, Chap. 3, Satz 13.1] for all t ∈ [0, T ]

|y(t)− ỹ(t)| ≤ ω(r1,j, |ĉl(x, t) − ĉm(x, t)|) + ω(r2,j, |ĉl(x, t) − ĉm(x, t)|)
L

(eLT −1) .

It follows that

|c̄l
min,j(x, t) − c̄m

min,j(x, t)| ≤ ω(r1,j, h) + ω(r2,j, h)

L
(eLT − 1) ∀t ∈ [0, T ] , ∀x ∈ Ω

with h := ‖ĉl − ĉm‖
C(QT )

I . So (c̄n
min) converges in C(QT )

Jmin
.

Now the right hand sides of the PDE system

∂tc
n + Lcn = S1,kinrkin((ĉn)+) + S1,minrε,min((ĉn)+, c̄n

min)

converges in C(QT )
I
. In particular, the right hand side converges in Lq(QT )I for

all 1 ≤ q ≤ ∞. From the linear parabolic theory we know that the sequence of

solutions (cn) then converges in W 2,1
p (QT )

I
, (n + 2)/2 < p < ∞.

Theorem 5.11. The problem (P +
ε

) has a solution.

Proof. We apply Schaefer’s fixed point theorem to the operator Z, using the a

priori estimate (5.44) and Theorem 5.10, to obtain a solution of (P +
ε

).

Passing to the Limit

It remains to show that a solution of (P +
ε

) converge to a solution of (P +) for

ε ց 0. Then it follows with remark 5.8 that it is also a solution of problem (P ).

Thereto we show that the tuple (cε, c̄ε,min,wε) with wε := Hε(c̄ε,min) converges

for ε ց 0 to the tuple (c, c̄min,w) ∈ W 2,1
p (QT )

I ×L(QT )Jmin ×L∞(QT )Jmin with

L(QT ) := {v ∈ L∞(QT )|∂tv ∈ L∞(QT )} which fulfills

∂tc + Lc = S1,kinrkin(c+) + S1,minr̃min(c+,w) on QT (5.45)

∂tc̄min = r̃min(c+,w) on QT (5.46)

w ∈ H(c̄min) on QT (5.47)

c(·, 0) = c0 on Ω (5.48)

c̄min(·, 0) = c̄min,0 on Ω (5.49)

d∂νc = β(c − c∗) on ST (5.50)
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with

r̃min,j(c
+,w) = kp,j

I∏

i=1
S1,min,ij<0

(c+
i )

−S1,min,ij − kd,j

I∏

i=1
S1,min,ij>0

(c+
i )

S1,min,ijwj

From the a priori estimate (5.44) we know that the W 2,1
p (QT )

I
-norm of cε

is bounded with a bound independent of ε. From the embedding W 2,1
p (QT ) →֒

C(QT ) we get that cε is also bounded in the C(QT )
I
-norm.

With

∂tc̄ε,min,j = rε,min,j(c
+, c̄ε,min)







≤ kp,j

I∏

i=1
S1,min,ij<0

(c+
i )

−S1,min,ij

≥ −kd,j

I∏

i=1
S1,min,ij>0

(c+
i )

S1,min,ij

we get that ∂tc̄ε,min,j is bounded in the L∞(QT )-norm. As c̄min,0 ∈ Cα(Ω)
Jmin

also c̄ε,min,j is bounded in the L∞(QT )-norm. Because of the definition of wε we

have 0 ≤ wǫ,j ≤ 1.

By passing to a subsequence if necessary we see that:

cε −→ c weakly in W 2,1
p (QT )

I

cε −→ c strongly in C(QT )
I

c̄ε,min,j −→ c̄min,j weakly-star in L∞(QT ) (j = 1, . . . , Jmin)

∂tc̄ε,min,j −→ ∂tc̄min,j weakly-star in L∞(QT ) (j = 1, . . . , Jmin)

wε,j −→ wj weakly-star in L∞(QT ) (j = 1, . . . , Jmin)

For the equations (5.45)-(5.50) except of (5.47) it is obvious that the limits fulfill

these equations. To show (5.47) we adapt some ideas of the proof of [vDP04,

Thm. 2.21]. First we introduce

c̄min,j(x, t) := lim inf
εց0

c̄ε,min,j(x, t) ≥ 0 a.e. in QT

and decompose QT = Sj,1 ∪ Sj,2, where (in the almost everywhere sense)

Sj,1 = {c̄min,j > 0} and Sj,2 = {c̄min,j = 0} .

We will show that c̄min,j > 0 and wj = 1 in Sj,1, while c̄min,j = 0 and wj ∈ [0, 1]

in Sj,2.
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Because of c̄min,j ≥ c̄min,j it follows that c̄min,j > 0 in Sj,1. Then we choose

(x, t) ∈ Sj,1 such that c̄min,j(x, t) > 2µ > 0 for µ sufficiently small. So we

have c̄ε,min,j(x, t) > µ and wε(x, t) = 1 for all ε small enough. Hence it holds

w(x, t) = 1.

Now we exclude that c̄min,j > 0 in Sj,2. As c is bounded in L∞(QT )I we have

∫ t

0

I∏

i=1
S1,min,ij>0

(c+
i )

S1,min,ijwε,j ds →
∫ t

0

I∏

i=1
S1,min,ij>0

(c+
i )

S1,min,ijwj ds

weakly-star in L∞(QT ), It follows

lim inf
εց0

∫ t

0

I∏

i=1
S1,min,ij>0

(c+
i )

S1,min,ijwε,j ds ≤
∫ t

0

I∏

i=1
S1,min,ij>0

(c+
i )

S1,min,ijwj ds a.e. in QT .

Using (5.36) and (5.46), that are valid a.e. in QT , and integrating in time gives

a.e. in QT

c̄ε,min,j = c̄min,0,j +

∫ t

0

r̃min,j(c
+
ε ,wε) ds

= c̄min,j +

∫ t

0

r̃min,j(c
+
ε ,wε) ds −

∫ t

0

r̃min,j(c
+,w) ds

= c̄min,j +

∫ t

0

kp,j

(
I∏

i=1
S1,min,ij<0

(c+
ε,i)

−S1,min,ij −
I∏

i=1
S1,min,ij<0

(c+
i )

−S1,min,ij

)

ds

−
∫ t

0

kd,j

(
I∏

i=1
S1,min,ij>0

(c+
ε,i)

S1,min,ijwε,j −
I∏

i=1
S1,min,ij>0

(c+
i )

S1,min,ijwε,j

)

ds

−
∫ t

0

kd,j

(
I∏

i=1
S1,min,ij>0

(c+
i )

S1,min,ijwε,j −
I∏

i=1
S1,min,ij>0

(c+
i )

S1,min,ijwj

)

ds .

We consider this identity on Sj,2. First we take the lim infεց0 of this relation. As

cε converges pointwisely and wε.j is bounded in L∞(QT ) it holds

0 = c̄min,j − kd,j lim inf
εց0

∫ t

0

(
I∏

i=1
S1,min,ij>0

(c+
i )

S1,min,ijwε,j −
I∏

i=1
S1,min,ij>0

(c+
i )

S1,min,ijwj

)

ds

≥ c̄min,j a.e. in S2 .

Therefore c̄min,j = 0 in Sj,2. 0 ≤ w ≤ 1 is valid because 0 ≤ wε ≤ 1 for all ε.



Appendix A

A.1 Link between the variables of the Morel for-

mulation and the reduction scheme in the

case no kinetic reactions

Without kinetic reactions the standard form of the stoichiometric matrix S is

S =






S1,mob S1,sorp S1,min

0 S2,sorp 0

0 0 IJmin






∼










C A D

−IJmob
0 0

0 B̂ 0

0 −IJsorp
0

0 0 −IJmin










=












C1 A1 D1

C2 A2 D2

−IJmob
0 0

0 B̂ 0

0 −IJsorp
0

0 0 −IJmin












where the blocks Ai have the substructure (with Ald out of (3.2))

(
A1

A2

)

=

(
A1,li D1Ald

A2,li D2Ald

)

and with
(
A2,li D2

)
invertible.

Using the transformed stoichiometric matrix the matrix S∗
1 and S∗

2, consisting

of the linear independent columns of S1 and S2, respectively, are of the form

S∗
1 =





C1 E1

C2 E2

−IJmob
0



 , S∗
2 =





B̂ 0

−IJsorp
0

0 −IJmin





155
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with the abbreviations E1 :=
(
A1,li D1

)
and E2 :=

(
A2,li D2

)
. The entries

of the concentrations vectors c and c̄ are partitioned analogously to the rows of

S∗
1 and S∗

2, respectively,

c =





cprim,1

cprim,2

csec



 , c̄ =





c̄nmin,prim

c̄nmin,sec

c̄min



 .

It is useful to choose as matrix S⊥
1 , consisting of a maximal system of linear

independent vectors that are orthogonal to all columns of S∗
1, the following one

S⊥
1 =





II−Jmob−Jsorp,li−Jmin

−E2
−T E1

T

CT
1 − CT

2 E2
−T E1

T



 .

Calculating (S∗
1)

T
S⊥

1 one can see easily that the columns of S⊥
1 are orthogonal

to those of S∗
1. Furthermore it is useful to choose the following transformation

matrices B1 and B⊥
1

B1 =





0 0

0 IJsorp,li+Jmin

IJmob
0



 , B⊥
1 =





II−Jmob−Jsorp,li−Jmin

0

0



 .

The condition that the columns of B1, S⊥
1 form a basis of the whole space is

fulfilled. The standard form of the stoichiometric matrix is constructed in such

a way that E2 is invertible. Hence also the inverse of BT
1 S∗

1 =

(
−IJmob

0

C2 E2

)

exists.

For the inverse we get

(BT
1 S∗

1)
−1

=

(
−I 0

E−1
2 C2 E−1

2

)

.

Using this we get for the transformed variables ξ (compare (3.13), (3.14))





ξmob(
ξsorp

ξmin

)



 = (BT
1 S∗

1)
−1

BT
1 c =

(
−csec

E−1
2 cprim,2 + E−1

2 C2csec

)

. (A.1)

And for the transformed variables η we have (compare (3.13))

η =
(
(S⊥

1 )
T
B⊥

1

)−1
(S⊥

1 )
T
c

= cprim,1 − E1E
−1
2 cprim,2 +

(
C1 − E1E

−1
2 C2

)
csec .
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Now we consider the immobile species. As a basis of the orthogonal comple-

ment of S∗
2 we choose

S⊥
2 =






I Ī−Jsorp−Jmin

B̂
T

0




 .

Like in the case of mobile species it is easy to see that this matrix is orthogonal

to S∗
2. Here it is useful to choose as transformation matrices

B2 =





0 0

IJsorp
0

0 IJmin



 , B⊥
2 =





I Ī−Jsorp−Jmin

0

0



 .

Like in the case of mobile species it is obvious that B2 and S⊥
2 form a basis of the

whole space and due to the construction of the standard form of the stoichiometric

matrix the inverse of (BT
2 S∗

2)
−1

exists.

One can compute that

(BT
2 S∗

2)
−1

=

(
−IJsorp

0

0 −IJmin

)

.

Using this we get for the transformed variables ξ̄ (compare (3.13), (3.14))

(
ξ̄sorp

ξ̄min

)

= (BT
2 S∗

2)
−1BT

2 c̄ =

(
−c̄nmin,sec

−c̄min

)

. (A.2)

Moreover we get for the transformed variables η̄ (compare (3.13))

η̄ =
(
(S⊥

2 )
T
B⊥

2

)−1
(S⊥

2 )
T
c̄ = c̄nmin,prim + B̂c̄nmin,sec .

Now we define the additional variables ξ̃ (compare (3.39))

ξ̃ =

(

ξ̃sorp

ξ̃min

)

:=

(
ξsorp − ξ̄sorp,li

ξmin − ξ̄min − Aldξ̄sorp,ld

)

.

Then we take the linear combinations η + E1ξ̃ and E2ξ̃. Thereto we have to

compute (i = 1, 2):

Eiξ̃ = Ei

(
ξsorp

ξmin

)

− Ei

(
ξ̄sorp,li

ξ̄min + Aldξ̄sorp,ld

)

First we consider the second summand. Using the definitions of the matrices

Ei =
(
Ai,li Di

)
we see that the second summand is

Ai,liξ̄sorp,li + Diξ̄min + DiAldξ̄sorp,ld .
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With help of the substructure of Ai =
(
Ai,li DiAld

)
we get

= Aiξ̄sorp + Diξ̄min.

Plugging in the definitions of the variables ξ̄ gives

= −Aic̄nmin,sec − Dic̄min .

Using this and the definition of ξ we get in summary

E2ξ̃ = cprim,2 + C2csec + D2c̄min + A2c̄nmin,sec

E1ξ̃ = E1E
−1
2 (cprim,2 + C2csec) + D1c̄min + A1c̄nmin,sec .

Adding the definition of η to the last one of the two equations leads to

η + E1ξ̃ = cprim,1 + C1csec + D1c̄min + A1c̄nmin,sec .

Comparing with the definition of the total concentrations T (3.97) and the

total fixed concentrations W (3.98) one sees that

(

η + E1ξ̃

E2ξ̃

)

= T (A.3)

η̄ = W . (A.4)

A.2 Applying the Maximum Principle

In [LSU68, I, Thm. 2.2/2.3] the boundary conditions are of the form

( n∑

i=1

bi(x, t)∂iu + b(x, t)u
)∣
∣
∣
ST

= ψ(s, t) .

Using the boundary conditions of Section 5.4 we have

bi = dνi , b = −β .

One assumption of [LSU68, I, Thm. 2.2] is b|ST
> 0, which is not fulfilled

for β = 0. In [LSU68, I, Thm. 2.3] there is the assumption b|ST
≥ −b0 with

b0 = const ≥ 0, which is fulfilled for β = 0. But in [LSU68, I, Thm. 2.3]

the assertion is simplified and depends on |f | while in [LSU68, I, Thm. 2.2]

the assertion depends only on max f . The problem is that we only know that

f ≤ 0 but we do not know a lower bound for f . So we have to look inside

the proof of [LSU68, I, Thm. 2.3]. The proof of [LSU68, I, Thm. 2.3] is done
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by applying [LSU68, I, Thm. 2.2] to the function w(x, t) := u(x, t)ϕ(x) with

ϕ ∈ O2(Ω) (O2(Ω) is the set of all continuous functions in Ω having continuous

derivatives in Ω up to order 1, with the derivatives of order 1 having a first

differential at each point of Ω and the derivatives of order 2 being bounded in Ω)

a function that satisfies

min
Ω

ϕ(x) ≥ 1

2
, ϕ|∂Ω = 1 , −∂νϕ|∂Ω = m

where m = const > b0/δ with δ out of Assumptions 5.5 (i). So we get for any

t1 ∈ [0, T ]

w(x, t1) ≤ inf
λ>a0

max

{

0; max
St1

ψϕeλ(t1−t)

b − bi
∂iϕ
ϕ

; eλt1 max
Ω

w(x, 0);
1

λ − a0

max
Qt1

feλ(t1−t)

}

with a0 = maxQT
(−a(x, t)) where a is the 0th order coefficient of the PDE.

Now let u be the solution of (5.43). Because of the boundary condition

d∂νu = βu on ST it holds ψ ≡ 0, because of the initial condition u(·, 0) = 0 on Ω

it holds w(x, 0) = 0 for all x ∈ Ω and as there is no 0th order term in the PDE

we have a0 = 0. This yields

w(x, t1) ≤ inf
λ>0

max

{

0;
1

λ
max
Qt1

feλ(t1−t)

}

.

As the right hand side f of the PDE for u is nonpositive it follows w(x, t1) ≤ 0.

Because of ϕ ≥ 1/2 this yields

u(x, t) ≤ 0 .

This is the assertion needed to derive the a priori estimate.
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Results MoMaS–Benchmark

B.1 Easy Test Cases

B.1.1 Advective Easy 1D

Elution curves
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Concentration profile at t = 10
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Concentration profile at t = 1000
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Concentration profile at t = 2000

0 0.5 1 1.1 1.6 2.1
0

0.01

0.02

0.03

0.04

0.05

0.06

Space

C
on

ce
nt

ra
tio

n

C2
C3
C5

0 0.5 1 1.1 1.6 2.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Space

C
on

ce
nt

ra
tio

n

X1
X2
X3
X4

0 0.5 1 1.1 1.6 2.1
0

1

2

3

4

5

6

7

8

9

10

Space

C
on

ce
nt

ra
tio

n

S
CS1
CS2

Concentration profile at t = 5010
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Concentration profile at t = 5050
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Concentration profile at t = 5100
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B.1.2 Diffusive Easy 1D

Concentration profile at t = 10
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Concentration profile at t = 50
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Concentration profile at t = 100
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Concentration profile at t = 5010
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Concentration profile at t = 5050
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Concentration profile at t = 5100
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B.1.3 Advective Easy 2D

Concentration profile at t = 10
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ξsorp,1 ξsorp,2

Concentration profile at t = 5100
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B.2 Medium Test Cases

B.2.1 Advective Medium 1D

Concentration profile at t = 10
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Concentration profile at t = 5050
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Concentration profile at t = 5100
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B.2.2 Diffusive Medium 1D

Concentration profile at t = 10

0 0.5 1 1.1 1.6 2.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Space

C
on

ce
nt

ra
tio

n

C2
C3
C5
C6
C7

0 0.5 1 1.1 1.6 2.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Space

C
on

ce
nt

ra
tio

n

X1
X2
X3
X4

0 0.5 1 1.1 1.6 2.1
0

1

2

3

4

5

6

Space

C
on

ce
nt

ra
tio

n

S
CS1
CS2
Cc

Concentration profile at t = 50
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Concentration profile at t = 100
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Concentration profile at t = 5010
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Concentration profile at t = 5050

0 0.5 1 1.1 1.6 2.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Space

C
on

ce
nt

ra
tio

n

C2
C3
C5
C6
C7

0 0.5 1 1.1 1.6 2.1
0

0.05

0.1

0.15

0.2

0.25

Space

C
on

ce
nt

ra
tio

n

X1
X2
X3
X4

0 0.5 1 1.1 1.6 2.1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Space

C
on

ce
nt

ra
tio

n

S
CS1
CS2
Cc

Concentration profile at t = 5100
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B.2.3 Advective Medium 2D

Concentration profile at t = 10
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Concentration profile at t = 1000
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Concentration profile at t = 2000
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Concentration profile at t = 5010
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Concentration profile at t = 5050
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Concentration profile at t = 10
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Concentration profile at t = 50
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Concentration profile at t = 100
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Concentration profile at t = 5050
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B.3 Hard Test Cases

B.3.1 Advective Hard 1D

Concentration profile at t = 10
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Concentration profile at t = 1000
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Concentration profile at t = 2000
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Concentration profile at t = 5010
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Concentration profile at t = 5050
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Concentration profile at t = 5100
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B.3.2 Advective Hard 2D

Concentration profile at t = 10
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C1 C2

C3

 

 

−1 −0.5 0 0.5 1

C4



B.3. HARD TEST CASES 203

C5 C6

C7 X1

X2 X3

X4 S

CS1 CS2



204 APPENDIX B. RESULTS MOMAS–BENCHMARK

CP1

 

 

−1 −0.5 0 0.5 1

CP2

Cc η1

ξsorp,1 ξmin,2

Concentration profile at t = 5010

C1 C2

C3

 

 

−1 −0.5 0 0.5 1

C4



B.3. HARD TEST CASES 205

C5 C6

C7 X1

X2 X3

X4 S

CS1 CS2



206 APPENDIX B. RESULTS MOMAS–BENCHMARK

CP1

 

 

−1 −0.5 0 0.5 1

CP2

Cc η1

ξsorp,1 ξmin,2

Concentration profile at t = 5050

C1 C2

C3

 

 

−1 −0.5 0 0.5 1

C4



B.3. HARD TEST CASES 207

C5 C6

C7 X1

X2 X3

X4 S

CS1 CS2



208 APPENDIX B. RESULTS MOMAS–BENCHMARK

CP1

 

 

−1 −0.5 0 0.5 1

CP2

Cc η1

ξsorp,1 ξmin,2

Concentration profile at t = 5100

C1

 

 

−1 −0.5 0 0.5 1

C2

C3

 

 

−1 −0.5 0 0.5 1

C4



B.3. HARD TEST CASES 209

C5 C6

C7 X1

X2 X3

X4 S

CS1 CS2



210 APPENDIX B. RESULTS MOMAS–BENCHMARK

CP1

 

 

−1 −0.5 0 0.5 1

CP2

Cc η1

ξsorp,1 ξmin,2

B.4 Modified Scenario

Concentration profile at t = 50
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Concentration profile at t = 1300
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size: Ī × (Jsorp + Jmin + J∗
2,kin),

23

B⊥
2 matrix with max. system orthogo-

nal to B2, size: Ī × (Ī − Jsorp −
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S2,kin Ī × Jkin-submatrix of Skin with

entries of immobile species, 19

S∗
2,kin Īnmin×J∗
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Summary

The work in hand deals with the efficient numerical solving of multi-species re-

active transport problems in porous media. The goal was that in doing so a

existing reduction scheme is enhanced such that it is applicable to realistic, nu-

merical challenging scenarios and to participate with it successfully in interna-

tional benchmark computations. In the process the gain in CPU time should be

carried out without any loss of accuracy.

The essential step of the advancement of the reduction scheme is the intro-

duction of additional variables that are reaction invariant regarding equilibrium

reactions. These additional variables are mandatory to get a well conditioned

global problem. In addition a new solver for the local problem and a start-

ing value search to avoid negative concentrations were developed. Likewise the

cutting-off of the Newton iterate conduces to the avoiding of negative concen-

trations. For convection dominated problems a Finite Volume stabilization was

integrated. To handle anisotropic dispersion tensors the mesh is adapted to the

tensor because the standard method leads to negative concentrations.

All nonlinear systems of equations are solved with Newton’s method. The

space discretization is carried out with conformal Finite Elements using mass

lumping, the time discretization with the implicit Euler method using adaptive

time stepping, where the time step size depends on the number of Newton steps

in the last time step. The global linear system is solved by an iterative solver

(e.g. BiCGStab, QMRCGStab) with SSOR preconditioner.

It was shown that there is a connection between the reduction scheme and

the widely used Morel formulation. That way the global problem is a kind of

transport problem and the local problem a kind of chemical problem. Further-

more a generalized formulation of the reduction scheme was developed, such that

the normal formulation of the reduction scheme and the Morel formulation are

special cases of the generalized formulation. Hence comparative computations

with the same source code are possible. Also a method between the reduction

scheme and the Morel formulation, where only a part of the equations decouple,

is possible.
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Nine test cases of the numerically challenging MoMaS–benchmark were com-

puted successfully with the new reduction scheme. In the 2D “easy advective

test case” of the MoMaS–benchmark the reduction scheme is more than five

times faster than the software of the second fastest group, which operates with

iterative splitting. Comparative computations done with the help of the gener-

alized formulation provide the same speed advantage for the reduction scheme,

in doing so a weaker stopping criteria had to be used for the iterative splitting.

Also with the help of the generalized formulation it was shown that the “global

ODE approach”, which was used by no one of the participants of the benchmark,

requires double CPU time compared to the reduction scheme. Thus this method

is the fasted one after the reduction scheme.

A suggestion for an additional test case was given, in which the transversal

dispersion is crucial for the results and hence the numerical diffusion of the used

method has a large influence on the numerical solution. For two methods with

different numerical diffusion numerical results are given, which are clearly visibly

different as it is expected.

For the kinetic mineral problem the different formulations (set-valued rate

function, complementarity condition, discontinuous rate function) were com-

pared. It turned out that for weak solutions all three formulations are equivalent.

Afterwards the existence of a global solution was proven with the help of a regu-

larization of the set-valued rate function and application of the fix point theorem

of Schaefer.



Deutscher Titel und

Zusammenfassung

Reaktiver Transport und Minerallösung/-fällung in porö-

sen Medien: Effiziente Lösungsalgorithmen, Benchmark-

rechnungen und Existenz einer globalen Lösung

Die vorliegende Arbeit beschäftigt sich mit dem effizienten numerischen Lösen von

reaktiven Mehrkomponenten-Transportproblemen in porösen Medien. Ziel war es

dabei, ein vorhandenes Reduktionsverfahren so weiterzuentwickeln, dass es auf

realistische, numerisch herausfordernde Szenarien anwendbar ist und damit an

einer internationalen Benchmark-Rechung erfolgreich teilzunehmen. Dabei sollte

die Reduzierung der Rechenzeit ohne Einbußen bei der Genauigkeit erfolgen.

Der wesentliche Schritt bei der Weiterentwicklung des Reduktionsverfahrens

ist die Einführung von zusätzlichen Variablen, die reaktionsinvariant bezüglich

Gleichgewichtsreaktionen sind. Diese zusätzlichen Variablen sind zwingend not-

wendig, um ein gut konditioniertes globales Problem zu erhalten. Zusätzlich

wurden ein neuer Löser für das lokale Problem und eine Startwertsuche zur Ver-

meidung negativer Konzentrationen entwickelt. Ebenfalls zur Vermeidung neg-

ativer Konzentrationen dient das Abschneiden der Newton–Iterierten. Für kon-

vektionsdominate Probleme wurde eine Finite Volumen Stabilisierung eingebaut.

Zur Handhabung von anisotropen Dispersionstensoren wird das Gitter an den

Tensor angepasst, da die Standardmethode zu negativen Konzentrationen führt.

Zum Lösen aller nichtlinearen Gleichungssysteme wird das Newton–Verfahren

eingesetzt. Die Ortsdiskretisierung erfolgt durch konforme Finite Elemente mit

Mass Lumping, die Zeitdiskretisierung durch das implizite Euler Verfahren mit

adaptiver Zeitschrittweite, wobei die Zeitschrittweite von der Anzahl der Newton–

Schritte im letzten Zeitschritt abhängig ist. Zur Lösung des globalen linearen

Gleichungssystems wird ein iterativer Löser (z.B. BiCGStab, QMRCGStab) mit
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SSOR Vorkonditionierer verwendet.

Es wurde gezeigt, dass eine Beziehung zwischen dem Reduktionsverfahren und

der meist verwendeten Morel–Formulierung besteht. So ist das globale Prob-

lem eine Art Transportproblem und das lokale Problem eine Art chemisches

Problem. Weiter wurde eine verallgemeinerte Formulierung des Reduktionsver-

fahrens entwickelt, so dass das ursprüngliche Reduktionsverfahren und die Morel–

Formulierung Spezialfälle der verallgemeinerten Formulierung sind. Somit sind

Vergleichsrechnungen mit dem selben Programmcode möglich. Auch ein Meth-

ode zwischen dem Reduktionsverfahren und der Morel–Formulierung, bei der nur

ein Teil der Gleichungen entkoppelt ist möglich.

Mit dem neuen Reduktionsverfahren wurden erfolgreich 9 Testfälle des nu-

merisch herausfordernden MoMaS–Benchmarks gerechnet. Beim 2D “easy ad-

vective test case” des MoMaS–Benchmarks ist das Reduktionsverfahren mehr als

fünfmal schneller als die Software der nächstplazierten Gruppe, die mit itera-

tiven Splitting arbeitet. Vergleichsrechnungen mit Hilfe der verallgemeinerten

Formulierung liefern den selben Geschwindigkeitsvorteil für das Reduktionsver-

fahren, wobei beim iterativen Splitting ein schwächeres Abbruchkriterium ver-

wendet werden musste. Ebenfalls durch Vergleichsrechnungen mit Hilfe der ver-

allgemeinerten Formulierung wurde gezeigt, dass der “global ODE approach”, der

von keinem Teilnehmer des Benchmarks verwendet wurde, die doppelte Rechen-

zeit wie das Reduktionsverfahren benötigt. Somit ist dieser Ansatz die schnellste

Methode nach dem Reduktionsverfahren.

Es wurde ein Vorschlag für einen zusätzlichen Testfall gegeben, bei dem die

Querdispersion für das Ergebnis entscheidend ist und somit die numerische Diffu-

sion des verwendeten Verfahrens einen großen Einfluss auf die numerische Lösung

hat. Für zwei unterschiedlich diffusive Verfahren werden numerische Ergebnisse

angegeben, die sich wie erwartet deutlich sichtbar unterscheiden.

Für das kinetisches Mineralproblem wurden die unterschiedlichen Formulie-

rungen (mengenwertige Ratenfunktion, Komplementaritätsbedingung, unstetige

Ratenfunktion) verglichen. Es stellte sich heraus, dass für schwache Lösungen

alle drei Formulierungen äquivalent sind. Anschließend wurde die Existenz einer

globalen Lösung mit Hilfe einer Regularisierung der mengenwertigen Ratenfunk-

tion und durch Anwendung des Fixpunktsatzes von Schaefer bewiesen.
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[KK07] S. Kräutle and P. Knabner. A new numerical reduction scheme

for coupled multicomponent transport-reaction problems in porous

media: Generalization to problems with heterogeneous equilib-

rium reactions. Water Resources Research, 43:W03429, 2007. doi:

10.1029/2005WR004465.

[Kna86] P. Knabner. A free boundary problem arising from the leaching of

saine soils. SIAM Journal on Mathematical Analysis, 17(3):610–

625, 1986.

[Kna02] P. Knabner. Numerische Mathematik I. http://www.am.uni-

erlangen.de/am1/de/scripts/knabner/num1 2002.ps, 2002. Vor-

lesungsskript.

[Koh05] C. Kohlhepp. Gemischte Finite-Elemente-Methoden für ellip-

tische und parabolische Differentialgleichungen mit Lösungen

geringer Regularität: Konvergenzordnung und parallele Implemen-

tierung. Diplomarbeit, Friedrich-Alexander-Universität Erlangen-

Nürnberg, Lehrstuhl für Angewandte Mathematik I, Deutschland,

2005.
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S. Kräutle, P. Knabner, and J. Hoffmann. Efficient and accurate simulation of

large general reactive multicomponent transport processes in porous media by

model-preserving a priori decoupling techniques. In Proceedings of the Interna-

tional Conference on Computational Methods in Water Resources (CMWR) XVI,

Copenhagen, 2006.
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