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Abstract

This thesis is concerned with the analysis of front propagation in nonnega-
tivity-preserving fourth-order parabolic partial differential equations. Due
to the lack of a comparison principle for higher-order parabolic equations,
nonnegativity-preserving equations are rare within the class of all higher-
order parabolic equations. At the same time important physical phenomena
are described by such equations. The thin-film equation

u = — div(f(u)VAu) (1)

(with f € CO(RY), f(u) > 0, f(0) = 0) describes the evolution of a thin
viscous liquid film on a solid surface driven by surface tension. Different slip
conditions on the fluid-solid interface correspond to different choices of f:
the case of a no-slip condition corresponds to f(u) = w3, while the case of
the Navier slip condition corresponds to f(u) = u? + u®. In order to avoid
unnecessary technical complications, in the present thesis we shall consider
mainly the case

u = —div(u"VAu) , (2)

where n € R*. Note that in order to prevent ill-posedness of the prob-
lem, one needs to prescribe an additional boundary condition on the free
boundary 0 supp u(.,t). Typically one prescribes the contact-angle of the so-
lution, which in most realistic situations depends on the interfacial energies
only. In the present thesis, in the analysis of the thin-film equation we shall
be concerned with the case of complete wetting only, i.e. the case of zero
contact-angle at the free boundary.

The second important fourth-order nonnegativity-preserving parabolic equa-
tion, the so-called Derrida-Lebowitz-Speer-Spohn equation

uy = — div (uv A\)?) , (3)

is used for the description of several quantum phenomena: First, it is the
equation associated with the leading-order operator of the quantum drift-
diffusion equation, a drift-diffusion equation for charge transport in semicon-
ductors augmented by a term describing quantum corrections. Secondly, it is
used to characterize interface fluctuations in the Toom model, a probabilistic
cellular automaton describing the evolution of a spin lattice.

The first part of the thesis is dedicated to a long-standing open problem in the
theory of the thin-film equation. Solutions to degenerate parabolic equations
like the thin-film equation display the finite speed of support propagation
property. Moreover, if certain conditions on the initial data are satisfied — in
the case of the thin-film equation if the initial droplet is “flat enough” at its
boundary — a waiting time phenomenon may occur: the free boundary (i.e.
the boundary of the droplet) locally does not advance for some time before
the support of the solution (i.e. the droplet) starts spreading. In the case



of the thin-film equation, Dal Passo, Giacomelli and Griin [52] have given
sufficient criteria for the occurrence of a waiting time phenomenon in terms
of the initial data; moreover Giacomelli and Griin [26] have derived lower
bounds on waiting times. However, no lower bounds on support propagation
for the thin-film equation have been known; in particular, no upper bounds
on waiting times have been derived. In the case of second-order parabolic
equations — for instance the porous medium equation —, upper bounds on
waiting times and sufficient criteria for the nonexistence of a waiting time
are typically obtained using comparison arguments or Harnack inequalities.
These tools being unavailable for higher-order equations, the question of op-
timality of the conditions by Dal Passo, Giacomelli and Griin and optimality
of the estimates by Giacomelli and Griin has since remained open.

In the first part of this thesis we devise methods for proving upper bounds on
waiting times for strong solutions of the thin-film equation. For n € (2, %)
our upper bounds coincide (up to a constant factor) with the lower bounds by
Giacomelli and Griin. Therefore our bounds are optimal. In the borderline
case n = 2 (essentially the case of Navier slip conditions) we obtain upper
bounds which coincide with the lower bounds up to a logarithmic correction
term. Our results are based on new monotonicity formulas for solutions to

the thin-film equation of the form

d

p /u1+a|x — z0|” dx > c/u1+°‘+"|$ — 0|7 dx

with a € (—1,0] and v < 0. These formulas are valid as long as the support
of u does not touch the point x(; combined with a differential inequality
argument due to Chipot and Sideris [17], they yield the desired upper bounds
on waiting times.

In the second part of the thesis we apply the methods developed in the first
part to obtain lower bounds on asymptotic support propagation rates for
the thin-film equation. We prove that for n € (1.5,32) at time ¢ > 0 the
support of any strong solution to the thin-film eqliation with initial data ug
contains a ball with radius R(t) := ¢(d, n)||u0||z{rﬁt4+ﬁ — diam(supp up);
in particular, R(t) scales like the diameter of the support of the self-similar
solution as t tends to infinity. Our result shows that the upper bounds on
asymptotic support propagation rates due to Bernis [4], Hulshof and Shishkov
[39], Bertsch, Dal Passo, Garcke and Griin [12] and Griin [35] are optimal for
any initial data. This result is another important contribution to the theory
of the thin-film equation: for example, in case d = 1 the previously known
results could not even exclude the possibility that for certain (nonvanishing)
initial data uy with suppuy C Ry the solution u would satisfy supp u(.,t) C
R for all t > 0.

In the third part of this thesis, we show how to prove infinite speed of sup-
port propagation of solutions to the Derrida-Lebowitz-Speer-Spohn equation
using an adaption of our method. This result is also an important new con-
tribution to the theory of the DLSS equation; at the same time it shows
that our method, which we have derived to analyse front propagation in case



of the thin-film equation, also applies to other higher-order nonnegativity-
preserving parabolic equations.

A paper comprising the derivation of the upper bounds on waiting times
for the thin-film equation has been submitted for publication to Archive for
Rational Mechanics and Analysis. A second paper consisting of the derivation
of the optimal lower bounds on asymptotic support propagation rates for the
thin-film equation has been submitted to Journal of Differential Equations,
while a third paper containing the results on infinite speed of propagation for
the DLSS equation has been submitted to Nonlinear Differential Equations
and Applications.



Zusammenfassung

Thema dieser Dissertation ist die Analysis der Frontausbreitung in Losun-
gen nichtnegativitdtserhaltender parabolischer partieller Differentialgleichun-
gen vierter Ordnung. Da fiir parabolische Gleichungen héherer Ordnung im
Allgemeinen kein Vergleichsprinzip gilt, stellen nichtnegativitdtserhaltende
Gleichungen in der Klasse aller parabolischen Gleichungen hoherer Ordnung
eine Ausnahmeerscheinung dar. Gleichzeitig werden jedoch wichtige physi-
kalische Phénomene durch derartige Gleichungen beschrieben. Die Diinne-
Filme-Gleichung

up = —div(f(u)VAu)

(mit f € C°RY), f(u) > 0, f(0) = 0) beschreibt die durch Oberflichen-
spannung getriebene zeitliche Entwicklung der Dicke eines diinnen visko-
sen Fliissigkeitsfilms auf einer festen Oberflache. Unterschiedliche Mobilitéts-
funktionen f entsprechen unterschiedlichen Schlupfbedingungen an der Ober-
fliche zwischen Fluid und Festkorper: Die Funktion f(u) = u? entspricht bei-
spielsweise einer Haftbedingung, hingegen entspricht der Fall f(u) = u? + u3
der Navier-Schlupfbedingung. Um den technischen Aufwand nicht unnétig
zu vergrofern, betrachten wir in dieser Dissertation zumeist den Fall

u = —div(u"VAu) ,

wobei n € RT ein reeller Parameter ist. Um Schlechtgestelltheit des Problems
zu vermeiden, muss eine weitere Randbedingung am freien Rand 0 supp u(., t)
gestellt werden. Zumeist wird dieses Problem geldst, indem am freien Rand
der Kontaktwinkel der Losung (bzw. dquivalent dazu |Vu|) vorgeschrieben
wird. In der vorliegenden Arbeit beschranken wir uns bei der Analysis der
Diinne-Filme-Gleichung auf den Fall der vollstindigen Benetzung, d.h. den
Fall von Losungen mit verschwindendem Kontaktwinkel.

Die zweite wichtige nichtnegativitdtserhaltende parabolische Gleichung vier-
ter Ordnung, die sogenannte Derrida-Lebowitz-Speer-Spohn-Gleichung

w=aiv (w72

wird zur Beschreibung mehrerer Quantenphédnomene herangezogen: Zum Ei-
nen erhélt man die DLSS-Gleichung aus der Quanten-Drift-Diffusions-Glei-
chung durch Vernachlissigung aller Terme niedrigerer Ordnung; die Quanten-
Drift-Diffusions-Gleichung ist dabei eine Drift-Diffusions-Gleichung fiir den
Ladungstransport in Halbleitern, die um Quantenkorrekturen niedrigster Ord-
nung erweitert wurde. Zum Anderen wird die DLSS-Gleichung zur Beschrei-
bung von Grenzflachen-Fluktuationen im Toom-Modell verwendet; das Toom-
Modell ist ein probabilistischer zellularer Automat, der die Zeitentwicklung
eines Spin-Gitters beschreibt.

Der erste Teil der Arbeit ist einem lange Zeit offenen Problem aus der Theorie
der Diinne-Filme-Gleichung gewidmet. Losungen degeneriert parabolischer
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Gleichungen wie der Diinne-Filme-Gleichung weisen das Phénomen der end-
lichen Ausbreitungsgeschwindigkeit des Tragers der Losung auf. Wenn zudem
die Anfangsdaten gewisse Bedingungen erfiillen — genauer gesagt, wenn im
Fall der Diinne-Filme-Gleichung der Fluidtropfen zu Beginn am Rand ,flach
genug" ist — , tritt ein Wartezeitenphédnomen auf: der freie Rand (d.h. der
Rand des Fluidtropfens) bewegt sich zunéchst eine gewisse Zeit lang nicht
vorwérts, bevor der Triager der Losung (also der Tropfen) beginnt, sich aus-
zubreiten. Im Fall der Diinne-Filme-Gleichung haben Dal Passo, Giacomelli
und Griin [52] hinreichende Bedingungen an die Anfangsdaten fiir das Auftre-
ten eines Wartezeitenphdnomens hergeleitet. Zudem haben Giacomelli und
Griin [26] untere Schranken fiir die Wartezeit bewiesen. Jedoch sind bislang
keinerlei untere Schranken fiir die Ausbreitung des Trigers von Lsungen
der Diinne-Filme-Gleichung bekannt; insbesondere gibt es bislang keine obe-
ren Schranken fiir die Wartezeit. Im Fall parabolischer Gleichungen zweiter
Ordnung — wie beispielsweise der Porose-Medien-Gleichung — werden obere
Schranken fiir Wartezeiten und hinreichende Bedingungen fiir das Nichtauf-
treten von Wartezeitenphéanomenen zumeist mit Hilfe von Vergleichsprinzi-
pien oder Harnack-Ungleichungen hergeleitet. Da diese Werkzeuge im Fall
von Gleichungen héherer Ordnungen nicht verfiigbar sind, ist die Frage nach
der Optimalitét der Bedingungen von Dal Passo, Giacomelli und Griin und
der Optimalitdt der Abschatzungen von Giacomelli und Griin bislang offen
geblieben.

Im ersten Teil dieser Dissertation entwickeln wir Methoden, um obere Schran-
ken fiir die Wartezeit starker Losungen der Diinne-Filme-Gleichung zu bewei-
sen. Fiir n € (2, 22) stimmen unsere oberen Schranken bis auf einen konstan-
ten Faktor mit den unteren Schranken von Giacomelli und Griin {iberein.
Unsere Schranken sind somit optimal. Im Grenzfall n = 2 (im Wesentli-
chen der Fall von Navier-Schlupfbedingungen) erhalten wir obere Schranken,
die bis auf einen logarithmischen Korrekturterm mit den unteren Schranken
iibereinstimmen. Unsere Ergebnisse basieren auf neuen Monotonieformeln fiir

Losungen der Diinne-Filme-Gleichung von der Form

d

7 /u1+a|x — xo|” dx > c/u1+o‘+”|ac — 0|7 dx

mit o € (—1,0] und v < 0. Diese Formeln gelten, solange der Tréger von
u den Punkt zg nicht beriihrt; in Kombination mit einem Differentialun-
gleichungsargument von Chipot und Sideris [17] liefern sie die gewiinschten
oberen Schranken fiir die Wartezeit.

Im zweiten Teil der Arbeit wenden wir die Methoden, die im ersten Teil
entwickelt wurden, an, um untere Schranken fiir die asymptotische Ausbrei-
tungsrate des Tréagers von Losungen der Diinne-Filme-Gleichung zu erhal-
ten. Wir zeigen, dass fiir n € (1.5, %) der Trager jeder starken Losung der
Diinne-Filme-Gleichung mit Anfangsdnaten up zum Zeitpunkt ¢ > 0 eine Ku-
gel mit Radius R(t) := ¢(d, n)||u0||ﬁﬁtm — diam(supp ug) enthilt; ins-
besondere hat R(t) im Limes ¢ — oo das gleiche asymptotische Verhalten
wie der Durchmesser der selbstdhnlichen Losung. Unser Ergebnis zeigt, dass

5



die oberen Schranken fiir die asymptotische Ausbreitungsrate des Trégers,
die von Bernis [4], Hulshof und Shishkov [39], Bertsch, Dal Passo, Garcke
und Griin [12]| sowie Griin [35] bewiesen wurden, optimal fiir alle Anfangsda-
ten sind. Dieses Ergebnis stellt einen weiteren wichtigen Beitrag zur Theorie
der Diinne-Filme-Gleichung dar: beispielsweise konnten die zuvor bekannten
Resultate im Fall d = 1 nicht ausschlieffen, dass fiir gewisse nichtverschwin-
dende Anfangsdaten ug mit suppug C Ry die Losung u fiir alle ¢t > 0 die
Inklusion suppu(.,t) C Ry erfiillen wiirde.

Im dritten Teil dieser Arbeit beweisen wir mit Hilfe einer nichttrivialen Ad-
aption unserer Methode unendliche Ausbreitungsgeschwindigkeit fiir Losun-
gen der Derrida-Lebowitz-Speer-Spohn-Gleichung. Dieses Resultat ist ebenso
ein wichtiger neuer Beitrag zur Theorie der DLSS-Gleichung; zugleich zeigt
es, dass unsere Methode, die zur Analysis der Frontausbreitung im Fall der
Diinne-Filme-Gleichung entwickelt wurde, auch auf andere nichtnegativitét-
serhaltende parabolische Gleichungen hoherer Ordnung anwendbar ist.

Ein Manuskript, das die Herleitung der oberen Schranken fiir die Wartezeit
von Losungen der Diinne-Filme-Gleichung enthélt, ist bei der Zeitschrift ,,Ar-
chive for Rational Mechanics and Analysis* eingereicht worden. Ein zweites
Manuskript, das aus der Herleitung der optimalen unteren Schranken fiir die
asymptotische Ausbreitungsgeschwindigkeit des Tragers von Losungen der
Diinne-Filme-Gleichung besteht, wurde bei der Zeitschrift , Journal of Diffe-
rential Equations” eingereicht. Ein drittes Manuskript iiber die unendliche
Ausbreitungsgeschwindigkeit von Lésungen der DLSS-Gleichung ist bei der
Zeitschrift | Nonlinear Differential Equations and Applications® eingereicht
worden.
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1 Introduction

1.1 The thin-film equation

The thin-film equation has been the subject of intensive research during the
last two decades. It describes the evolution of a thin liquid film governed by
the force of surface tension for various slip conditions. The thin-film equation
reads

ur = —V - (u"VAu)

where n is a positive real parameter and {2 C R%. More general versions have
also been considered, e.g. with u" replaced by some nonnegative mobility
function f(u) (see e.g. |7], [30]). The thin-film equation is the most promi-
nent example of a higher-order nonnegativity-preserving parabolic equation.

For n = 3, the thin-film equation can formally be derived using a long-
wave approximation of the Navier-Stokes equations with no-slip boundary
conditions on the fluid-solid interface; see e.g. [48]. For Navier slip conditions
(i.e. the effective boundary condition for laminar viscous flow on a rough
surface, see the paper by Jager and Mikelic [40]), the mobility function f(u)
is given (after rescaling) by u® + u? (see e.g. [33]). For n = 1, the thin-film
equation arises as the lubrication approximation of the Hele-Shaw flow; this
has been proven rigorously by Giacomelli and Otto [29].

The thin-film equation may be regarded as a higher-order analogue of the
porous medium equation u; = V - (v 'Vu). Like solutions of the porous
medium equation, solutions of the thin-film equation feature the finite speed
of support propagation property; see the papers by Bernis [4] [5], Hulshof
and Shishkov [39], Bertsch, Dal Passo, Garcke, and Griin [12], Griin [35].

As in the case of the porous medium equation, depending on the initial
data solutions of the thin-film equation may also exhibit a waiting time phe-
nomenon: if a droplet initially is “flat enough” near its boundary, the contact
line of the droplet does not advance for some time before the droplet starts
spreading. The first rigorous proof for the occurrence of such a waiting time
phenomenon is due to Dal Passo, Giacomelli, and Griin [52]; the method used
in their paper has been refined by Giacomelli and Griin [26] to yield quan-
titative lower bounds on waiting times. A formal analysis of the expected
waiting time behaviour of solutions to the thin-film equation has been car-
ried out by Blowey, King and Langdon [14]; it indicates that at least for
n € (2,3), the results by Dal Passo, Giacomelli and Griin should be optimal.

However, up to now only lower bounds on waiting times and upper bounds
on support propagation rates for the thin-film equation have been proven.
Besides being of strong independent interest, the rigorous derivation of upper
bounds on waiting times and lower bounds on support propagation rates is
necessary to decide whether the previously known reverse bounds are optimal
in any situation.

Moreover, a technique for proving upper bounds on waiting times may help in



the analysis of the competition between convection and diffusion in the thin-
film equation with convection due to gravity (see e.g. the paper by Giacomelli
and Shishkov [31]). It may also help in the analysis of the influence of
additional second-order diffusion terms on solutions of the thin-film equation;
such terms are used e.g. to model van der Waals forces (see e.g. the papers
by Bertozzi and Pugh [8, 9, 10]).

A variant of the thin-film equation containing both convection and second-
order diffusion terms is the stochastic thin-film equation

du = — (Ctigee — [ (W)],), dt+ Y (epu?),dW}
k

as derived by Griin, Mecke, and Rauscher [37]; here, the e; denote a set of
mutually orthogonal functions and the W* denote a sequence of independent
Brownian motions. In this equation, the second-order diffusion term models
van der Waals forces; however, the noisy convection term is of different origin,
modeling thermal fluctuations. Griin, Mecke, and Rauscher have shown that
the stochastic thin-film equation can explain the behaviour of microscopic
thin films (i.e. in a regime where thermal noise has to be taken into account)
in a quantitative way. It is an interesting open question whether the presence
of noisy convection in the stochastic thin-film equation has influence on sup-
port propagation behaviour (or, perhaps, influence on the propagation of the
apparent support {u > ¢}). Numerical evidence by Davidovitch, Moro, and
Stone [19] suggests that this might indeed be the case. Note that existence
of solutions for the stochastic thin-film equation is also an open problem.

For second-order equations like the porous medium equation, assertions on
qualitative behaviour of solutions may be derived (directly or indirectly) us-
ing the comparison principle; see e.g. the paper by Choi and Kim [18] for
results on waiting time phenomena in the case of the Hele-Shaw and the Ste-
fan problem or the paper by Alikakos [1] for a criterion for the nonexistence
of a waiting time in the case of the porous medium equation whose proof is
based upon a result by Aronson and Caffarelli [2].

For fourth-order equations, no comparison principle is available and one has
to rely on integral estimates. Integral estimates have been used successfully
to obtain finite speed of propagation results, lower bounds on waiting times,
as well as sufficient conditions for support shrinking for various degenerate
parabolic PDEs; in particular, all results on qualitative behaviour of solutions
of the thin-film equation mentioned above are based on such methods. How-
ever, the only results which use integral estimates to derive upper bounds on
waiting times and lower bounds on support propagation are concerned with
second-order equations; see the papers by Chipot and Sideris [17] and by Djie
[22]. A direct application of the approach by Chipot and Sideris to the case
of the thin-film equation fails due to the structure of the fourth-order oper-
ator: terms with negative sign and terms with indefinite sign appear which
cannot be controlled. Chipot and Sideris proceed by deriving a differential
inequality which forces either the support to spread or some quantity which
is known to stay bounded to blow up. As we shall show below, this general



strategy also applies to the case of the thin-film equation; however, instead of
directly testing the equation with a cutoff (as done by Chipot and Sideris),
we need to work with weighted backward entropy estimates and carefully
choose a singular weight function which admits a small constant in Hardy’s
inequality in order to obtain our differential inequality. In the multidimen-
sional case, we are faced with the additional problem of indefinite Hessians
of the weight functions.

Before stating our results and describing our methods, we shall give an
overview of the mathematical literature on the thin-film equation. This list
is not exhaustive; we restrict ourselves to the case of the thin-film equation
without lower-order terms and omit all results on self-similar or travelling-
wave solutions.

Starting with the work of Bernis and Friedman [7] who constructed nonneg-
ative solutions in the case of one spatial dimension, in the case of complete
wetting (i.e. zero contact angle of the solution at the free boundary) a quite
satisfactory theory of existence of weak solutions of the thin-film equation
has been established. The solutions constructed can be shown to satisfy
different entropy estimates, namely the zeroth-order entropy estimates

1 o+1
ala+1) / dr (4)

e e myane [ o]
>——— [ u*(, T+ c u
ala+1) Jo 0o Jo

for o € (3 —n,2—n)\{—1,0}, which for d = 1 have been derived by Beretta,
Bertsch, and Dal Passo [3] (extending the work by Bernis and Friedman who
discovered these estimates in the special case d = 1, « = 1 — n), and the
first-order energy estimate

1/ |V |* do
/]Vu T)? dx+/ / u"|VAul* dz dt
1 2
>— [ |Vu(.,T)|" dx
2 Ja
T n+2 2
+c/ /)VAUQ +
o Ja

In the one-dimensional case, for n € (%, 3) the second inequality in the previ-
ous formula is a consequence of the famous inequalities by Bernis [6]; in the

n+a+1l 2
2

dr dt

+ ‘DQU

6
dz dt .

u" 2 |V |D2u|2 + ‘VunT+2

multidimensional case, for n € (2 — ,/8%, 3) and d < 3 it is a consequence

of a generalization by Griin [36].

Localized versions of these entropy and energy inequalities are the base of
most studies of the qualitative properties of the thin-film equation; besides
the theorems on finite speed of propagation and waiting times which have
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been mentioned above, one can show that the support of solutions is non-
shrinking for n > 1.5. For d = 1 and n > 3.5, solutions of the thin-film
equation remain strictly positive for all ¢ > 0 if the initial data is strictly
positive.

In multiple space dimensions techniques different from the ones used by Ber-
nis and Friedman are required to construct solutions of the thin-film equation.
Elliot and Garcke [24] and Griin [34] independently developed a method to
construct solutions for degenerate parabolic fourth-order PDEs. Using these
ideas Dal Passo, Garcke and Griin [51] have shown existence of solutions
of the thin-film equation in multiple space dimensions for n € (%,3) and
d < 3. However, the approximation procedure by Dal Passo et al. fails to
yield the dissipation relation for the first-order energy for the solutions con-
structed by it in case d > 1; since for n € [2,3) only “backward” entropy
estimates are available, in this regime it is therefore not known whether the
solutions constructed by Dal Passo, Garcke and Griin satisfy the finite speed
of propagation property.

Dal Passo and Garcke have constructed solutions of the thin-film equation
with weak initial trace [50]. More precisely, they allow for nonnegative Radon
measures with finite total mass as initial data in case n € (%,3); for n €
2,3), the Radon measures are additionally required to have compact support.
Their result also was the first result on solutions of the thin-film equation

with initial data which is not compactly supported.
Finally, Griin [36] has constructed solutions satisfying the first-order energy

dissipation relation for n € (2 — 4 /84%17 3> and d < 3, thus enabling him to
prove finite speed of propagation for these solutions even in the parameter
range n € [2,3) and therefore allowing for the construction of solutions for

the Cauchy problem in case n € [2,3) and d > 1 for the first time.

Regarding large-time behaviour of solutions, in the case of the Cauchy prob-
lem there is only a single result available: in case n = 1 and d = 1 Carrillo
and Toscani [16] have shown convergence of solutions to the self-similar so-
lution as ¢ — oco. For bounded domains €2, there are various results proving
exponential decay of solutions to the steady-state.

A newer existence result which is worth mentioning is the existence of smooth
zero contact angle solutions which are a perturbation of the steady state 22 ;
in particular, these solutions have infinite mass. See the paper by Giacomelli,
Kniipfer and Otto [28|. For results derived by related methods see the papers
by Giacomelli and Kniipfer [27] and by Kniipfer [47].

In the case of partial wetting (i.e. nonzero contact angle of the solution at
the free boundary, which we shall not consider in the present thesis) there
are fewer results; however in case d = 1 Otto [49] (for n = 1) and Bertsch,
Giacomelli, and Karali [11] (for general n) have proven existence of weak
solutions.

Having given an overview of the existing literature, we now turn to a descrip-
tion of our results.
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In this thesis, for the parameter range n € (2, %) we provide an answer to a
long-standing open question in the theory of the thin-film equation, namely
the question of optimality of the lower bounds on waiting times derived
in [26]. This is accomplished by deriving corresponding upper bounds on

waiting times for solutions to the thin-film equation.

In the one-dimensional case, we show that in the regime 2 < n < % the
lower bounds on waiting times for the thin-film equation derived by Griin
and Giacomelli [26] are optimal up to a constant factor. In the borderline case
n = 2, we derive bounds which are optimal up to some additional logarithmic
term: a small gap arises between the lower bounds by Giacomelli and Griin
and our upper bounds. For n € (1,2), we still obtain some estimates on
waiting times. However, our estimates deteriorate quickly as n decreases and

presumably are no longer optimal. See Section 3.5 for details.

In the multidimensional case, we obtain similar assertions. For n € (2, %),
we show that for points on & supp g near which 0supp ug is a C* manifold,
the lower bounds on waiting times are sharp up to some constant factor. For
n = 2, we obtain immediate support spreading at any point on 9supp ug
near which the initial data satisfies some growth condition and near which

9 supp g is a C* manifold.

To the best of our knowledge, these are the first upper bounds on waiting
times for nonnegativity-preserving higher-order parabolic equations.

Combining our methods with entropy production estimates, our approach
also yields optimal lower bounds on asymptotic support propagation rates
for the thin-film equation. In particular, for n € (1.5, %) we prove that
in case suppuy C Bgr,(%o) one has Br(wo) C suppu(.,t), where R(t) :=
c||u0||ffmt4+ﬁ — Ry. This is also a significant advance as compared to
the previously known results: for example, in case d = 1 the previous results
could not even exclude the possibility that for some nonvanishing initial data
ug with suppug C Ry the solution u to the Cauchy problem would satisfy
suppu(.,t) C R{ for all t > 0.

We now provide a short description of our method. Our technique relies on
weighted backward entropy estimates. In these estimates, positive and neg-
ative terms on the right-hand side are in competition. Choosing the singular
weight carefully such that the constant in Hardy’s inequality becomes small
enough, we ensure that the positive terms dominate. This yields a differen-
tial inequality for the weighted entropy, forcing the weighted entropy to blow
up after a certain time in case the support does not spread; thus we obtain
a contradiction and therefore an upper bound on the waiting time of the so-
lution. In multiple space dimensions, a naive attempt to generalize the ideas
from the one-dimensional case fails (at least when trying to prove optimal
upper bounds on waiting times). Instead we need to design the weight care-
fully in such a way that the derivatives of the weight in directions tangent
to dsupp uy are much smaller than the derivatives of the weight in direction
perpendicular to 0 supp ug.

12



In the proof of our optimal lower bounds on asymptotic support propagation
rates for the thin film equation, we also first derive a weighted backward
entropy estimate; however, to obtain optimal lower bounds on asymptotic
support propagation rates a different choice of the (singular) weight function
becomes necessary, at least for d > 1. An application of a variant of Hardy’s
inequality yields a differential inequality; using the known upper bounds on
support propagation rates, we deduce that the support of the solution must
reach the singularity of the weight after some time, as otherwise the dif-
ferential inequality would force the weighted entropy to blow up. Finally,
to ensure optimality of the lower bounds on asymptotic support propaga-
tion rates we need to combine our technique with some entropy production
estimates.

1.2 The Derrida-Lebowitz-Speer-Spohn equation

The Derrida-Lebowitz-Speer-Spohn equation

b=~V (uv@@ (5)

is another example of a nonnegativity-preserving fourth-order parabolic equa-
tion. The DLSS equation is of mathematical interest due to three reasons:
first, as shown by Derrida, Lebowitz, Speer, and Spohn [21] it arises in the
study of interfaces in the Toom model, a stochastic cellular automaton de-
scribing the evolution of a spin lattice. Secondly, it is the equation associated
with the leading order operator of quantum drift-diffusion models, i.e. drift-
diffusion models for charge transport in semiconductor devices which include
lowest-order quantum corrections; for a derivation of the quantum drift-
diffusion equation, see the article by Degond, Gallego, Mehats, Ringhofer
[20] and the references therein. Thirdly, it is the equation associated with
the gradient flow of the Fisher information [ |Vy/u|? dz with respect to the
Wasserstein distance as shown by Gianazza, Savare, and Toscani [32].

Regarding existence of weak nonnegative solutions, for d < 3 a satisfactory
theory of existence has been developed independently by Jiingel and Matthes
[43] (for periodic boundary conditions) and by Gianazza, Savare, and Toscani
[32] (for variational boundary conditions); see also [13, 44, 46] for other
existence results. Recently, uniqueness of weak solutions in some class of
sufficiently regular solutions has been shown by the author [25]. Note that
the entropies found by Jiingel and Matthes [41] imply that the solutions of the
DLSS equation constructed by them [43] belong to this class of uniqueness.

To the best of our knowledge, almost all results on qualitative behaviour
of weak solutions to the DLSS equation are concerned with large time be-
haviour or perturbations of a steady state (see e.g. Jiingel and Toscani [45],
Caceres, Carrillo, and Toscani [15], Gualdani, Jiingel, and Toscani 38|, Dol-
beault, Gentil, and Jiingel [23]). Regarding positivity of solutions of the
DLSS equation, only for d = 1 it is known that [ |loguo| dz < oo implies
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[ logu(.,t)| dv < oo for all ¢ > 0. However, to the best of our knowledge
there are in particular no results on the short-time behaviour of the support
in case supp ug # 2.

In the present work, we prove that weak solutions to the DLSS equation with
periodic boundary conditions display infinite speed of support propagation;
more precisely, we prove that for any nontrivial solution supp u necessarily
equals © x [0, c0).

Deriving lower bounds on the support of nonnegativity-preserving higher-
order parabolic equations is a difficult task due to the lack of a comparison
principle; to the best of the author’s knowledge, no lower bounds on support
propagation for higher-order nonnegativity-preserving parabolic equations
are available, apart from the results developed in this thesis.

To prove infinite speed of propagation for solutions of the DLSS equation,
we use a nontrivial adaption of our method developed for proving upper
bounds on waiting times for the thin-film equation. In the case of the one-
dimensional DLSS equation with periodic boundary conditions, we roughly
insert |z|7 (where v < 0) as a test function into the weak formulation of
the equation and apply Hardy’s inequality to deduce a differential inequality
which shows that [u(.,t)|z|" dz grows exponentially with time. The growth
constant of the exponential function is seen to behave like |v|?; thus passing to
the limit v — —oo we obtain a contradiction. In the multidimensional case,
we need the reformulation of the DLSS equation in terms of \/u which the
author has proven to hold for weak solutions within the class of uniqueness
in [25]. We then use |z|” multiplied by a cutoff as a test function and apply
Hardy’s inequality to obtain a differential inequality; letting again v — —o0,
we conclude.

1.3 Notation

In this section, we introduce some notation which will be used throughout
the thesis.

General Notation

N set of positive integers

Ny set of nonnegative integers

A set of integers

R set of real numbers

Rt set of positive real numbers

Ry set of nonnegative real numbers
()4 max(., 0)

() min(.,0)
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I
d
Q
o2
Ac

A
diam(A)

interval [0, c0) (to be interpreted as a time interval)
number of spatial dimensions

domain in R?

boundary of the domain €2

complement of the set A

closure of the set A

diameter of the set A

UccW U is a compact set with U C W and we have

Br(xO)
X/
(a,b)
Ps

supp u

fl.
[*g

dist(U,0W) > 0

open ball with radius r and center xg
dual of Banach space X

duality pairing of b € X with a € X’

standard smoothing kernel with respect to space, gener-
ally assumed to be symmetric

support of the function or distribution u; denotes the
essential support if v is an LP function

f(0) = f(a)

convolution of functions f and g; also used to denote the
convolution of a distribution g with a smooth function

f

Notation for Vectors and Matrices

Id

identity matrix

transpose of the matrix A

i-th vector of the standard basis of R?
length of the vector v

norm />, - [A4;|* of the matrix A
multiplication of scalar and scalar
multiplication of scalar and scalar
multiplication of scalar and vector
multiplication of scalar and vector
scalar product of vectors v and w

matrix-vector multiplication Av
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v-A
A:B

VR wWw

vector-matrix multiplication v’ A
trace of the product matrix AB”

tensor product of vectors v and w

Notation for Derivatives

All notations for derivatives may refer to both the classical derivative and

the weak derivative.

Vu
D%y
Au
A%y
o;u

Ozu
Uy
Uy

div(v)

(spatial) gradient of u

second (spatial) derivative of u (Hessian)
(spatial) Laplacian of u

(spatial) Laplacian of Au

derivative of u with respect to spatial standard basis
vector €;

derivative of u in direction U
derivative of u with respect to time
spatial derivative of u (in case of one spatial dimension)

divergence of the vector field v

Notation for Function Spaces

LP(A)
WP (Q)

H(Q)
LfOC(Q)

WEP(Q)

loc

HY,(©)

W ((0,1)%)

per

ch

per

((0,1)9)

space of all Lebesgue measurable functions f on A with

JAlfIP de < oo

Sobolev space of all LP functions on 2 whose weak

derivatives up to order k belong to L?(12)
Wk,2(Q)

space of all Lebesgue measurable functions f on 2 with

S |fIP dx < oo for all U CC Q

space of all functions f whose restrictions to U belong

to WrP(U) for all U CC Q
wWr2(Q)

loc

periodic Sobolev space W*? i.e. closure in W*?((0,1)%)

of the set of all smooth 1-periodic functions on R?

Wyer ((0,1)9)

per
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LP(I; X)

Lp

loc

(1; X)

LP(I; L, (€2))

loc

p
Lloc loc

LP(I;WE9(9Q))

loc

(75 Lio ()

space of all strongly measurable mappings f : [0, 00) —
X with f[(],oo) | f()][% dt < oo, where X is a Banach
space

space of all strongly measurable mappings f : [0, 00) —
X with f[O,T) [l f()]5 dt < oo forall T >0

space of all strongly measurable mappings f : [0, 00) —
L () with f[o 00) ||f(t)||’£q(U) dt < oo for all U CC (2

loc

space of all strongly measurable mappings f : [0, 00) —
L, () with [ 7 [[f ()[40 dt < oo for all T'> 0 and

loc

all U CcC Q

space of all strongly measurable mappings f : [0, 00) —
Wi (Q) with iy o 1 (0)][fyia, dt < 00 foralll cC Q

loc

Ly (I V[/ll:;’cq space of all' strongly measurable mappings f : [0,00) —
W,29(Q) with f[(],T) ||f(t)“§v’w(U) dt < oo foral T >0
and all U CC Q2

Ck(A) space of all k£ times continuously differentiable functions
on A which are bounded and whose derivatives up to
order k£ are bounded

Ck (A) space of all k& times continuously differentiable functions
on A

Ck(A) space of all compactly supported k times continuously
differentiable functions on A

C>*(A) space of all smooth compactly supported functions on A

CUI; X) space of all bounded continuous mappings f : [0,00) —
X

Cp(I; X) space of all continuous mappings f : [0,00) — X

WhP(T; X) space of all f € LP(I; X) whose weak derivative (with
respect to time) exists and belongs to LP(I; X)

H\(I; X) WL2(I; X)

WLP(I; X) space of all f € LV (I; X) whose weak derivative (with
respect to time) exists and belongs to L} (I; X)

Hjpe(1; X) Wiga (13 X)

Note that the space C2°(€2 x I) also contains functions ¢ which do not vanish
for ¢t = 0, since I = [0, 00). This is in contrast to the space C2°(2 x (0, 00)):
all functions in the latter space have zero trace on t = 0.

If no confusion may arise, we use fOT fQ f as a shorthand notation for the
integral fOT Jo f da dt.
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Throughout the thesis, if an integral of the form fQ fg dx involves a function
g which is only defined a.e. on {f # 0}, we use [, fg dx as a shorthand
notation for fm{#o} fg dz. In particular, expressions like [, u ?|Vu|* dz
(note that Vu = 0 a.e. on {u = 0}) or [, u*’|D*u|* dz (if we have only
ult? € H? and thus D?u is only defined on {u # 0}) are to be understood
in this way. More generally, by convention we define f - g = 0 on the set

{f =0} N {g undefined}.

We also use the convention from measure theory 0 - oo = 0. Moreover, we
use the conventions 0° = 1 and % = 00 as well as (9) = 0.
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2 Main results

2.1 Upper bounds on waiting times for the thin-film
equation

We now recall the definition of strong solutions of the thin-film equation
which we shall work with and state our main results concerning the waiting-
time behaviour of solutions to the thin-film equation.

The strongest concept of solution for which global existence for fairly general
initial data is known is characterized by the dissipation of both the first-order
energy and the zeroth-order entropies. Existence of such strong energy solu-
tions (the author decided to use this name in order to distinguish this notion
of solution from the weaker notion of strong solution in [51]) of the thin-
film equation has been shown by Bernis for the case of the one-dimensional
Cauchy problem [5]. In case d = 2 or d = 3, proving existence of these
solutions is much more demanding. In this case the proof has been carried
out by Griin [36].

Assume d < 3. Let Q C R? be a bounded convex domain, a bounded domain
with boundary of class C1'!, or let Q = RY. Let ug € H'(Q2) be nonnegative
and have bounded support.

Definition 1. Set I := [0,00). We call u € L*>(I; H'(Q) N L'(Q)), u > 0,
a strong energy solution to the thin-film equation if the following conditions
are satisfied:

a) we have Vu'c € L5(Q x I), X{u>0}unT_2Vu ® D*u € L*Q x I),
u2VAu € L*(Q x I)

14+n+a
2

b) for some a € (max{—1,3 —n},2 —n)\ {0}, we have D*u
L2 (I: L*(Q)) and Vu 1 € LE (I; L))

loc loc

S

¢) it holds that uw € H}, (I; (W'?(Q))") for all p > 572

2d+n(2—d)

d) for any & € L*(I; WH>(Q)) and any T > 0 it holds that

T T
/ (ug, &) dt = / / u"VAu-VE dr dt
0 o Jan{u>0}

e) u attains its initial data uy in the sense that imy o u(.,t) = ug(.) in
LY(Q)

Note that the solutions constructed by Griin [36] satisfy the « entropy esti-
mate (4) for any o € (max{—1, 1 —n},2—n)\{0}, not just for a particular a.
Besides d < 3 and n € (2 — ,/Si—d, 3), the existence result of [36] required

either that 2 be bounded and convex with smooth boundary or that 2 = R?.
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Thus, for such Q and any nonnegative initial data uy € H'(Q) with bounded
support there exists a strong energy solution u of the thin-film equation which
satisfies all o entropy estimates for o € (max{—1,3 —n},2 —n), a # 0.

The notion of “waiting time” refers to the phenomenon that depending on
the initial data, it may happen that the free boundary of a solution of a
degenerate parabolic equation does not advance in the neighbourhood of
some point zy € dsupp ug for some time 7. More precisely, we define:

Definition 2. Let uw € L*(I; HY(Q)) N H}

L (L; (WEP(Q))) be a solution of
the thin-film equation and let xo € Osuppug be some point. We then define

the waiting time T™ of u at xq¢ as

T = lir% inf{t > 0 : suppu(.,t) N B(zo) ¢ suppup N Be(xo)} -
e—

Note that the regularity uw € L>(I; HY(Q)) N HL (I; [W'P(Q)]') implies u €

CP (I; L*(V)) for any bounded open set V' C Q with smooth boundary; see

loc

e.g. Corollary 4 in [53|. Thus the essential support supp u(., t) is well-defined
for all ¢ > 0.

In the one-dimensional case, our main result reads as follows:

Theorem 3. Let d = 1 and o € R. Let u be a strong energy solution
of the Cauchy problem for the thin-film equation with compactly supported
nonnegative initial data uy € H'(R?).

a) Suppose n € (2, %) Assume supp ug N (—o0, xg) = (. Then there exist
constants o € (—1, —%) with « +n < 2 and C > 0 which depend only
on n such that the following holds: If u satisfies the o entropy estimate,
then T :=inf{t > 0 : (—o0, xo) Nsuppu(.,t) # 0} is bounded by

—__n
14+«
e>0

T < C(n)inf €~ T {/ ugt|w — zo + €| da
R

b) Suppose n € (2, %) Assume supp ug N (xg — d,29) = O for some § > 0
and xo € Osuppug. Then there exist constants o € (—1,—%) and
C > 0 which depend only on n and satisfy a« +n < 2 such that the
following holds: If u satisfies the o entropy estimate, then the waiting

time T™ of u at xqy is bounded by

1 1+o - 147—La
lim sup ][ {Tuo} dx .
e—0 (zo,zo+e) LE™

c) Assume that n = 2. Suppose furthermore that u satisfies the a entropy

T < C(n)

estimate for o = —1. Assume that xy € Osupp ug and that (xo—9, x9)N
2
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supp ug = 0 holds for some & > 0. Then the waiting time T* of u at x
15 bounded by

1 —4
1 3
T < C |lim sup][ — 1y dx
=0 J(@o,zot+e) | €2]loge|2

Assertion (b) gives an upper bound on the waiting time at some point zy €
0 supp g in terms of the growth of ug near z¢; in contrast, assertion (a) also
applies to points xy away from supp ug, giving an upper bound on the time
at which supp u spreads beyond z.

As a corollary, one obtains easily:

Corollary 4. Suppose d = 1. Let u be a strong energy solution of the
Cauchy problem for the thin-film equation with compactly supported nonneg-
ative initial data ug € HY(R). Let a point xo € Osuppug be given such that
supp ug N (zg — 9, 20) = O for some 6 > 0.
a) Let n € (2,2). Then there exists o« € (—1,—3) depending only on n
with n + « < 2 such that the following assertion holds if u satisfies the
a entropy estimate: If

uo(x) > S+ (2 — 20)

is satisfied for all x € B.(x¢) for some € > 0 and some S > 0, then the
waiting time T of u at xq is bounded from above by

T* < C(n)S™ .

b) Let n = 2. Assume that u satisfies the « entropy estimate for a = —=.
Then the following assertion holds: If

N |

up(x) > S - |log |z — || (x — o)}

is satisfied for all x € B.(xq) for some € > 0 and some S > 0, then the
waiting time T of u at xg is bounded from above by

T < CS™?.

Of course, analogous assertions hold in the mirrored case xq € 0 supp uo,
supp o N (o, To +6) = 0.

In the case of several spatial dimensions, we obtain the following result:

Theorem 5. Let u be a strong energy solution of the thin-film equation on
some domain Q C R, d < 3, with nonnegative initial data ug € H'(2).
Assume that supp ug is bounded. Let M denote the closure of some domain
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with boundary of class C*. Suppose that suppug C M. Let oy € OM N
dsupp ug N €2 be some point.

Define H to be the tangent plane of OM at x¢ and let P denote the orthogonal
projection onto H. Abbreviate diste(x, zg) := max(|Px — x|, dist(z, H)).

a) Let n € (2, %) Then there exists a constant o € (—1, —%) depending
only on n with n + o < 2 such that the following holds: Provided that
u satisfies the a entropy estimate and provided that we have

1 1+a
W .= limsup lim sup][ [—4u0] de >0,
r—0 h—0 {z:disto (z,z0)<r,dist(z,0M)<h} hn

the waiting time T™ of u at xq¢ is bounded from above by

T* < C(d,n)W T |

b) Let n =2. Suppose that u satisfies the o entropy estimate for o = —
If

N |#—=

1

lim sup ][ [—uo
14+2d 2
h—0 {z:distc (z,20)< m,dist(x,aM)<h} | log h| 2h

2
] dx >0,

then u has no waiting time at xg.

The following corollary follows easily:

Corollary 6. Let u be a strong energy solution of the thin-film equation
on a domain Q C RY, d < 3, with nonnegative initial data ug € H(Q).
Assume that supp ug is bounded. Let xoy € Osuppug N2 be some point with
the property that in some neighbourhood of xy the set O supp ug is a manifold
of class C*.

a) Supposen € (2, %) Then there ezists a constant o € (—1, —%) depend-
ing only on n with n + o < 2 such that the following holds: Provided
that u satisfies the o entropy estimate and provided that there exist
constants R > 0, S > 0 such that for any x € Br(xo) N suppuy we

have

BIES

up(z) > S - dist(z, dsupp ug)»
the waiting time T™ of u at xqy is bounded from above by

T < C(d,n)S™ .
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b) Let n =2. Suppose that u satisfies the o entropy estimate for o = —%.

Provided that there exist constants R > 0, S > 0 such that for any
x € Bgr(zo) Nsuppuy we have

uo(z) > S - |log dist(z, dsupp ug) "2 - dist(x, O supp ug)? ,
u has no waiting time at x.

Remark 7. Note that for n = 2, the growth condition on uy known to
be sufficient for the nonexistence of a waiting time is a bit stricter in the
multidimensional case than in the one-dimensional case. This is likely due
to a limitation of our technique. The author is not sure whether the one-
dimensional result represents the optimal growth condition either. However,
the condition is of course optimal up to some logarithmic factor.

The proof for the multidimensional case also applies to the one-dimensional
situation, thereby providing upper bounds on waiting times for solutions of
the thin-film equation on domains €2 # R. However, as the proof is much
more technical, we prefer to give the proof in the case of the one-dimensional
Cauchy problem separately.

In the regime of strong slippage n € (1,2), we obtain:

Theorem 8. Let d = 1, n € (1,2) and let uy € L'(R) be nonnegative
and compactly supported. Let u be a solution of the Cauchy problem for
the thin-film equation with weak initial trace ug constructed as in [50] as
the limit of a certain approximating sequence us. Suppose additionally that
this approzimating sequence satisfies us(.,0) — ug strongly in L'(R). Let
xg € dsuppug be the point with (—oo, xg) N suppug = 0.

—3,0] and B € (0,2) depending only on n

such that the following assertion holds: if there exists T > 0 with

Then there exist constants « € (

e—0

lim sup][ [uo(z)eP+7] e dr >0,
(zo,z0+e€)

then u has no waiting time at o, i.e. inf{t > 0 : suppu(.,t) N (—o0,zg) #

0} = 0.

As n approaches 2, the constant o tends to —% and the constant [ tends to
2. For n approaching 1, both o and [ tend to 0.

See Chapter 6 for a discussion of our results.

2.2 Optimal lower bounds on asymptotic support prop-
agation rates for the thin-film equation

In this section, we shall state our results on lower bounds on asymptotic
support propagation rates for the thin-film equation. Existence of strong
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energy solutions as constructed in [36] (see Definition 1) is only known for

n e <2 — ,/%, 3>; however, our results on asymptotic support propagation

apply ton € (1, %) We therefore also need to work with the notion of strong

solutions to the thin-film equation as introduced by Bertsch, Dal Passo, Gar-
cke and Griin [12], since existence of such strong solutions is guaranteed for
ne(z2).

The definition of strong solutions to the thin-film equation from [12] reads
as follows:

Definition 9. Let ug € H'(R?), 1 < d < 3, be nonnegative and compactly
supported and let n € (3,2). A nonnegative function u € L>(I; H'(R?)) is
called a strong solution of the Cauchy problem for the thin-film equation if
the following conditions are satisfied:

a) u € H}

loc

(I; [Wl,p(Rd)]’) for all p > —2d+2‘(dz_d)

14n+ao

b) for some a € (max{—1,3 —n},2 —n)\ {0}, we have D*u" 2 €
L2 (I; LA(RY)) and Vu 7 € LL (I; L*(R%))

loc loc

c) for any & € C°(R? x I) we have

/ Clung) di

T T
:/ / u"Vu - VAE dx dt +n/ / u"Wu - D% - Vu do dt
0 {u>0} 0 {u>0}

n (T
+ —/ / u" | VulPAE da dt
2Jo Jiusoy
n(n —1) ’ 2 2
+ —/ / u" | Vul|*Vu - V¢ dz dt
2 0 Jius0}

for all T > 0.

d) u attains the initial data in the sense that u(.,t) — wuy in L'Y(R?) as
t—0

Note that the solutions constructed by Bertsch, Dal Passo, Garcke and Griin
[12] satisfy the o entropy estimate (4) for any a € (max{-1,5 —n},2 —
n) \ {0}, not just for a particular «; thus for any nonnegative initial data
ug € H'(R?) with compact support, in case n € (%, 2) there exists a strong
solution satisfying all a entropy estimates for v € (max{—1, 3 — n},2 — n),
a # 0.

The following upper bounds on asymptotic support propagation have been

obtained by Bernis [4] for n € (0,2) and d = 1, by Hulshof and Shishkov
[39] for n € [2,3) and d = 1, by Bertsch, Dal Passo, Garcke and Griin [12]

for d € {2,3} and n € (3,2), and by Griin [35] for n € (2 — ,/&f—d,i’)) and
de {23}
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Theorem 10. Let ug € HY(R?), 1 < d < 3, be nonnegative and compactly
supported. Let u be a strong solution of the Cauchy problem for the thin-film
equation obtained by the procedure in [12] and n € (%, 2) or let u be a strong
energy solution of the Cauchy problem for the thin-film equation and n €

<2 — ,/%p 3>. Assume that supp ug C Bg, (o) for some Ry > 0 and some

zog € RY. Then for any t > 0 we have the estimate supp u(.,t) C Bp) (o)
with

R(t) := Ry + C(n, d)||u0||}jd" tirm

Our main result provides more or less the reverse estimate. It reads:

Theorem 11. Let ug € H'(R?) be nonnegative and compactly supported.

Assume d < 3 and n € (1,32). Let

enc (22— %l, % and let u be a strong energy solution of the Cauchy
problem for the thin-film equation satisfying all o entropy estimates for
a>—1, or

o let n € (1,2) and let u be a strong solution of the Cauchy problem
constructed as in [12].

Let x9 € R? be a point. Set

T* :=inf {T >0: inf dlst(xo,supp u(.,t)) = O} .

0<t<

Then there exists a constant C(d,n) depending only on d and n such that the
following estimate holds:

T* < C(d, n) [dist(xo, supp o) + diam (supp uo)] ™" ||uo|| 1

Recall that the regularity u € L>(I; HY(R?)) N HL (I; [W'P(R%)]’) implies
€ CP (I; L*(V)) for any bounded open set V C R? with smooth boundary
(See e.g. Corollary 4 in [53]). Thus the essential support supp u(., ) is well-

defined for all ¢ > 0.

Note that in the special case n = 1 and d = 1, a similar estimate could be
inferred from the much stronger assertion by Carrillo and Toscani [16] who
prove asymptotic decay of the solution to the self-similar solution in this case.
However, to the best of our knowledge up to now no generalization of their
result to d > 1 or n # 1 is available; moreover, for d > 1 such a convergence
result would not imply our theorem.

For n > 1.5 the support of solutions to the thin-film equation is nondecreasing
with respect to time, i.e. we have suppu(.,t;) C suppu(.,ts) for all t1,t, € [
with t; < t5. This has been proven for strong solutions constructed by the
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usual approximation procedure in case d = 1 in [3]; for strong solutions
constructed as in [12] and d < 3 it follows by the considerations in [12]
(though only the weaker assertion supp ug C supp u(.,t) for t > 0 is explicitly
stated in this paper). For strong energy solutions constructed as in [36]
and d < 3, the estimate suppu(.,t;) C suppu(.,ts) for 0 < t; < ty is a
consequence of the entropy estimates in [36] (though it is not stated explicitly
in this paper). Given a solution with nondecreasing support, our previous
theorem implies:

Corollary 12. Let uy € HY(R?) be nonnegative and compactly supported.
Assume 1 <d <3 and1.5<n < % Let

e ncE (1.5, %) and let u be a strong energy solution of the Cauchy problem

for the thin-film equation satisfying all o entropy estimates for a > —1,
or

o let n € (1.5,2) and let u be a strong solution of the Cauchy problem
constructed as in [12].

Suppose that supp u(.,t;) C supp u(., ty) holds for all 0 < t; < ts.

Let x5 € suppug be some point. Then there ezists a constant c¢(d,n) depend-
ing only on n and d such that for any t > 0 with R(t) > 0 we have

BR(t)(xs) C Suppu('at) ’
where

R(t) := c(d, n)HuoHﬁdﬁ{;)tm — diam(supp uy) .
2.3 Infinite speed of propagation of solutions to the
Derrida-Lebowitz-Speer-Spohn equation

We now recall the definition of weak solutions to the DLSS equation and state
our results concerning infinite speed of propagation for the DLSS equation.

Jingel and Matthes [43] have introduced the following definition of weak
solutions of the DLSS equation with periodic boundary conditions:

Definition 13. Let 1 < d < 3 and Q = (0,1)%. Let ug € L'(Q) be given
with ug > 0. We call a nonnegative function u € L®(I; LY(Q)) with u €
whi(r; [H2.,.(Q))') and Ju € Li, (I; H},.(Q)) a weak solution to the DLSS
equation with initial data ug and periodic boundary conditions if for all ¢ €
L=(I; H2,.(R2) and all T > 0 we have

per

/0 (Ou, ) dt—i—/o /Q(\/ED2\/_— VvVu® Vyu): D*) dx dt =0 (6)
and if in addition u(.,0) = ug(.) in [HZ,(Q)].

per
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The weak formulation of the DLSS equation (6) is formally derived from (5)
using the the usual rules for differentiation and integration by parts.

Existence of weak solutions for nonnegative measurable initial data uy with
uglogug € L'(€) has been shown in [43].

Our first result deals with the one-dimensional case. It reads as follows:

Theorem 14. Let u be a weak solution of the DLSS equation on Q = (0, 1)
with periodic boundary conditions. Suppose that ||ug||r1@) > 0. We then
have suppu = € x [0, 00).

In the case of several spatial dimensions, we need to impose an additional reg-
ularity assumption on the solution, namely ui € L2 (I; H.,.(Q)). However,
this regularity is implied by the entropy estimates for the DLSS equation and
thus the assumption is satisfied for the solutions constructed by Jiingel and
Matthes [43]. Moreover, note that this additional regularity is precisely the
additional regularity required of a solution in order to belong to the class of

uniqueness; see [25].

Our result in the multidimensional case reads:

Theorem 15. Let d =2 ord =3 and Q = (0,1)%. Let u be a weak solution
to the DLSS equation with periodic boundary conditions; suppose that u has
the additional regularity ui € L2 (I H?..(Q)). Assume that |[u||p1(q) > 0.

Then we have suppu = € x [0, 00).
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3 Proof of the upper bounds on waiting times
for the thin-film equation

3.1 Derivation of entropy estimates with explicit con-
stants

Our technique strongly relies on “backward” entropy estimates, i.e. entropy
estimates for —1 < o < 0. However, for our approach to work we need
explicit constants in the entropy estimates which cannot be found in the lit-
erature. Therefore we now derive these estimates, starting with the weak
formulation of the thin-film equation and using the additional regularity in-
ferred from entropy estimates.

This section is devoted to the proof of the following two lemmas:

Lemma 16. Let Q C R? be a domain and d < 3. Let u be a strong energy
solution of the thin-film equation which satisfies the a entropy estimate. Sup-
pose that supp ug s bounded. Assume —1 < a <0 and 1 <n < 3. Defining
b:=n+ «, the formula

/H% e ¢ )gb()dx—/ﬁul“‘( t)y(.) dx
:(b——n)/ / = Vu)? Aw+b/t / =1V - D% - Vu
_m/tl /Qub“AQ@/z—l—(n—b) /:/Qub‘llD%I% (7)
b— g) (b—1)(2—b) / /Q u’ = Vul*y

to
+(2n —3b)(b—1) / / w2 Vu - D*u - Vu
t1 Q

holds for any i € CX(Q) and a.e. to > t; > 0 as well as a.e. to > 0 in case
t1 =0.

Lemma 17. Let Q2 C ]Rd be a domain and d<3. Let 1 <b< 2. For any
nonnegative u with u's € H2(Q) and vt € W(Q), we have

/ u N D*u*) + (b—1) / w2V - D*u - Vu 1 + / u’'Vu - D*) - Vu
Q Q Q
:/ubllAqu—i-(b— 1)/ub2|Vu|2Au w—i-/ubl]Vu]QAz/;

Q Q 0

for any ¢ € C°(Q2).
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The latter lemma allows replacing [, u’~*|D?u|*y by [, u*~*|Aul*y, which
will become important in the multidimensional case.

For the reader’s convenience, we first give a formal derivation of the formula
in Lemma 16. Formally inserting ¢ := u®y with ¢ € CX(Q) as a test
function in the thin-film equation, we obtain by repeated formal integrations
by parts

to

Ly
— uttey d
/S; 1 + Oéu Q/} ! t1
to to
:/ /ubVAu-Vl/}—i—a/ /ub_IVAu~Vu1/J
t1 Q t1 Q
t2
:—b/ /ub_1Vu-D2u-V¢
t1 Q
to
— / / u’D*u : D%
t1 Q

to
+(n—b)/ /ub_1|D2u|2w
t1 Q

to
+(n—b)(b—1)/ /ub_QVu-Dgu-Vugb
t1 Q
to
+ (n — D) / / u’'Vu - D*u- Ve
t1 Q
1 t2
LT 1)/ / VUV - Vi
2 t1 Q
I
+—b/ /ub_1|Vu|2A¢
2 t1 Q
to
+b/ /ub—lvu - D% - Vu
t1 Q
to
+/ / u’Vu - VAY
t1 Q

to
+ (n — b)/ / u’H D2l
t1 Q

+(n—b)(b—1)/:2/Qub_2Vu-D2u~Vu¢

1 f2
——(n— b)/ / u’ ™Vl A
2 t1 Q

—%(n—b)(b—l) /tth/QubQWu]QVu-Vz/J
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which yields

1 1+a
/ 1+ a 4 d:c
( (n—b)——b) (b—1)(b—2 / / N
+ (—lb—l——(n—b)) (b—l)(2/ /ubQVu-D2u-Vuz/1

2 2 t1 Q

to
+/ / u’ | Vul? Au w)
t1 Q
to
s [ [ wriptupy
t1 Q

to
+ (b—ln)/ /ub_1]Vu]2Aw
2 t1 Q
to
+b/ /ub1Vu-D21/1-Vu
b1 A2
i) [
+(n—b)(b—1)/ /ub_QVu-DQU-VUQ/J
, Ja
1 f2 t
=(b—=n / /ubl|Vu\2A1p
2 t1 Q
to
+b/ /ublvu-D2¢-vu
b1 A2
i) [
+(n—b)/ /ub_1|D2u|2"gZJ
t1 Q
n b2
- — —1)(2 — b—3 4
t(o-5)e-ne-b [ [ vt

to
+ (2n — 3b)(b — 1)/ / u TV - D*u - Vu ¢
t1 Q

+(z-0)0-1) / ! /Q”I"QIVuPAu v

We now make this calculation rigorous for strong energy solutions.

to

remainder of the proof of Lemma 16 is purely technical and may be skipped

on first reading.

Proof of Lemma 16. By conservation of mass and the finite speed of support

propagation property (see e.g. [35]), the « entropy estimate implies that

14+n+a

(I;W'(Q)) and u™ 2 € L?

1+n+ta
4

L4

loc

(13 H?(9)).

loc
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Define Qs := {x € Q : dist(z,0Q) > 6} (in case = R? this choice implies
Qs = Q). Denoting a standard mollifier with respect to space by ps, we notice
that (ps *u) € H} (I; C?()): for any £ € C°(Qs x (0,00)) we have

/] Iz 1)) (@) e, 1) da

= [ oot = vty ety dy
// xt(pg*—g(.,t)>(x)dxdt
/ / (a1) pg*ﬁ)(a:t)dxdt

——/0 <dt< t), 5*§>

:_/000 <p5*%u(:c,t),§> dt ,

where we have used the symmetry of ps twice and where we have extended
€ to R? x (0,00) by zero. This shows that the weak derivative of ps * u
with respect to time exists and belongs to L} (I; C*(€2s)) (since we have u €
HL (I; (WP(2))") and since the mollification of a distribution is smooth);
moreover, for all £, > t; > 0 we have the representation f:f((p(; k), &) dt =

ff (ug, ps * §) dt which holds for any £ € C®(€Qs x (0,00)) and for any
§ € L (1; L*(2)) with dist(U,=qsupp (., ), 99) > 6 by approximation.

Thus for § > 0 small enough (depending on ; recall that suppy CC Q)
and € > 0, the function ps * [(ps * v+ €)*?)] is an admissible test function
in the weak formulation of the thin-film equation (see Definition 1). Taking
€ CX(Q), we can therefore compute for § > 0 small enough

t2

1
1+«

- / (o * w)es (o5 # u + %) dt

t1

= [ g+ (s a9y at

t1

/(p5 *u+ €)Y dr
0

t1

—/ 2/ u'VAu-V (ps* [(ps xu+¢€)]) dx dt . (8)
QN{u>0}

We now pass to the limit 6 — 0. Convergence of the left-hand side for a.e.
t1, ts and a.e. ty in case t; = 0 is immediate.

Recall that by our definition of strong energy solutions (Definition 1) we
have Vu's® € LS(I; L5(Q)) and u?VAu € L2(I;L2(2)). By the Sobolev
embedding and conservation of mass, we have u"s € LY (I, L%(K)) for
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any compact set K CC (). Note that therefore Vu = HLHU%TRVunT+2 €

3n

I n nt2\ nt2
L1 L"T(K)) since ™2 + (4 — n) - + = 1. Moreover, u? = (u"ﬁ ) c
2(n+2) 2(n+2)

L ([; L= (K)).

We calculate V(ps * u + €)* = a(ps * u + €)1 - (ps * Vu) and notice that
(ps *u + €)1 < 17 since @ < 0. Putting these results together and

loc

rewriting the term on the right-hand side of (8) as

t2
/ / us - u2VAu- (ps* [a(ps *u+e) 4 (ps* Vau)]) dx dt
tq QN{u>0}

to
I
t1 JON{u>0}

we obtain convergence of the right-hand side of (8) since m + % + n+r2 =1,

0|3

UV AU (ps * [(ps +u+ € - Vi) de dt

since the convergence

H(Pé *[(ps xu—+ €)1 (ps x Vu)]) — (u+ 6)7Havu| ‘L”+2([0,T};L"+2(K))
<|lps * [(ps  w+ €)™ (ps  Vuu) = (u+ €)™~V || oo o iy
I HP(S N [(u + e)_H—aVU} — (u+ e)—1+ocvu| ‘Lnﬁ([O’T};LnH(K))
<||(ps xu+ )7 (ps x Vu) = (ut )7V | g

+ ||ps = [(u+ €)7Vu] — (u+ €)' Vu|

0,T];L"t2(K"))

Ln+2([0,T];L"+2(K))
_)
6—0
holds for every 7" > 0 and every K CC € (here in the second step we have
used the fact that mollification does not increase the LP norms; K’ CC €

denotes a domain with K CC K’; both inequalities are only valid for small
enough § > 0), and since the convergence

|[ps * [(ps * u+ €)% - V] — (u+€)* - VwHL"H([O,T];L"Jr?(K))
<|lps * [(ps *u+€)* - Vip — (u+¢€) - vw]HLn“([O,T};L"”(K))

+ lps * [(u+ €)% - VY] = (u+ €)% - VO[| s o 19, 104210
<I|(ps *u+€)* - Vb = (u+€)* - V| puro(o. 110207y

+ lps * [(u+€)* - VY] = (w+€)" - VO[| v o 17, 10+2 (10

—0
6—0

holds for every 7" > 0 and every K CC  (again using the fact that molli-
fication does not increase LP norms; K’ CC €2 again denotes a domain with
K CC K’, and again both inequalities only hold for small enough ¢ > 0).

Therefore the formula

1
/(u + ) do
0

1+«

to to
= / / u"VAu -V [(u+ €)™Y dvdt (9)
t1 t1 QN{u>0}
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is valid for a.e. t{,ty € I with t; <t and a.e. t5 € I in case t; = 0.

By expressions like [(u+€)®]" we denote the derivative with respect to u of the
function in brackets evaluated at u, i.e. in the this case a(u + €)*~1. Given
an arbitrary smooth strictly positive function u and a smooth compactly
supported function ¢ € C2°(£2), we compute

/ u"VAu -V ((u+e€)*y) dx

Q

= / (u+€)*u"VAu - Vi) de + « / (u+)* 'u"VAu - Vu ¢ dx
Q

0

=— /Q[(u + €)*u")'Vu - D*u - Vb do — /Q(u + €)*u" D*u : D*) dx
-« /Q(u +€)* " | D2l dr — o /Q[(u + ) "'V - D*u - Vu ¢ do
—« /Q(u +6)* "Vu - D*u -V do

:% /Q[(u + €)*u""|Vul*Vu - Vi dx + %/Q[(u + €)*u"'|Vu|* Ay dx

+ /Q[(u +€)*u")'Vu - D* - Vu dx + /Q(u +€)*u"Vu - VAY dx

-« /Q(u + €)M D*ul*y dx — o /Q[(u + ) u"Vu - D*u - Vu ¢ dx

+ g/(u +€)* " | VuP Ay do + % / [(u+ ) '™ |Vu|*Vu - Vi do
Q

2 0
=— %/Q [[(w+ e)*u"" + af(u+ e)* "] [Vul[*y do
1

=5 [+ 0ra) - aftus 0] [VulAu b do

- /Q [(u+e)*u"]" +2af(u+e)* "] Vu- D*u- Vu ¢ do

—a | (u+e)* " D*ul*y dx

S~

+ %/ [[(u+€)*u" + a(u+e)* "] |[Vu*?Ay dzx
Q

*u")'Vu - D* - Vu dv — ' " dv A% da .
—l—/g[(u—i-e)u]u V- Vu dx /Q/O<U+€)U v A% da

Considering ps * u and passing to the limit 6 — 0, one can prove that for any
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ue H3

loc

(Q) with infgu > 0 and any ¢ € C2°(£2) we have

/QU”VAu -V ((u+€)*) dx

=— %/ﬂ [[(u+ €)*u™" + af(u+ e)* u"]"] |Vul*y do

B % /Q [[(u 4 e)*u™)" + af(u+ e)* u"]] [Vul? Au ¢ da

— /Q [[(w+ e)*u™" + 2a[(u + €)* "] Vu- D*u- Vu ¢ dz (10)

— a/(u + ) | D*ul*y dx
Q

- % /Q [[(u+e)*u") + a(u+e)* "] |[Vu*?A¢ dz

+/[(u+e)o‘u”]’Vu‘D2w‘Vu d:c—// (v+ €)™ dv A% dx
Q aJo
= I+ 11+ 11T+ 1IV+V+VI+VII.

Suppose now that u € L!(Q) satisfies u > 0 and Vu'"s € LS(Q) and
usVAu € L2(Q) as well as u"z Vu ® D*u € L*(Q); moreover, assume
that Va4 N

€ LA(Q), D25 € 12(Q).

In this case, due to d < 3 and the Sobolev embedding we see that u's (and
therefore also ) is continuous, so the sets A5 := {z € Q : u(x) > 34} are open
and we have VAu € L*(A;NK), Vu® D*u € L*(AsNK), Vu € L°(AsNK)
for any 6 > 0 and any domain K CC (). Take a smooth monotonous function
vwithO0<v<l,v=0forxr<0andv=1forx>1. Let

f5(v) ::/Ovy(sg‘s) ds+6 .

Using the fact that fs(u(.)) = § in some neighbourhood of 2\ As, we infer
that VAfs(u) = 0 in some neighbourhood of 2\ As. Using the regularity
VAu € L*(As N K) for any K CC €, by elliptic regularity we obtain u €
H} (As) and therefore

=fi(w)VAu + £ (u)(Vulu + 2D*u - Vu) + £ (w)|Vu|*Vu

in As. Thus, recalling that all derivatives of f5 are bounded and taking into
account that Vu ® D*u € L*(4; N K) and Vu € L°(A; N K), we see that
VAfs(u) € L*(K) for any domain K CC  and therefore fs(u) € Hp ().
As f5(u) € H} () and fs(u) > 4, formula (10) applies to fs(u). We now

pass to the limit 6 — 0.
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It is easy to check that (fs(u) —u) — 0 in L®(Q): we have |fs(v) —v| <
0+ fov |V (%5) — 1‘ ds < 3. Moreover, we obtain by dominated convergence

fi(u )u T V2T N

VL =V
6 6 —
n+2 n—|—2u Y Y

V fs(u) = f5(u)Vu =

strongly in L""?(K) for any K CC Q as f{(u) is bounded uniformly and
converges pointwise to 1 a.e. on {Vu # 0}. Since n > 1, this establishes
convergence of the terms V', VI, and VII.

Convergence of term [ is shown similarly: denoting expressions like the
derivative of (v+€)* o™ evaluated at fs5(u) by [(fs(u)+€)* L fs(u)"], we see
that

I = _1 / H(fé(u) -+ e)afg(u)”]”’ -+ O‘[(fé(u) + E)a—1f5<u>n]//]
2 Q

f(s(u)n+a73

s (W)Y fs ()M da

(11)

Note that an estimate of the form

[0+ "] + af( + 1"
Ua+n—3

"
' < o) (12)
can be shown to hold: recalling that o < 0, by the Leibniz formula we have

H(U—FE) }/”—i-Oé[(U—'—E)a 1vn]//’
3
_ ZCi(Oé,n)(’U + E)afivn+i73 < C’(a,n)v‘”"{)’ )
=0

By dominated convergence we get

n+a 3 n+a 3 4 3—n—« n+l4+a
[fs(w)] Vfs(uw) = [fs(u)] f5(u )m“ Vu (13)
4 n+l+a n a 3
—- ——Vu = u + Vu
n+1+«

n+l4+a

strongly in L*(Q) (note that Vu~ « = 0 a.e. on {u = 0}); to obtain the
dominating function we have made use of the estimate 7 ( ) < 2 which holds
since fs(v) > 6 + (v — 2d)4 and of the fact that @ < 0, n < 3. Combining
this convergence property with formula (11) and estimate (12) as well as

pointwise convergence a.e. of fs(u), we deduce convergence of term I (note
that V f5(u) =0 = Vu a.e. on {u =0}).

We now turn our attention to the terms /1, 111 and I'V which involve second
derivatives. We calculate

[fs(u)] D? f5(u) = [f5(u)]

a+n 1 a+n 1

at+n—1
2

S(u)Vu® Vu .
(14)

fi(w) D*u + [ fs(u)]
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The second term on the right-hand side equals

16 at+n—1 6—2n—2« n+l4+a n+l4a

Tl T T Ve o v

By the definition of fs(v), it holds that fJ(v) = 0 for any v < ¢ and any
v > 26; moreover |f{(v)| < Co~' and v < f5(v). We thus see that fJ(u) -
atn—3 6—2n—2«

fs(u) < C671-26 < C and that fs(u) 2 -u 1 < C (since @ < 0 and
n < 3). As the second term on the right-hand side in (14) converges to zero

pointwise a.e., by dominated convergence we therefore see that it converges
to zero strongly in L?(2) as § — 0.

Convergence of the first term on the right-hand side of (14) to the func-
tion X{u¢0}u7l+371D2u is immediate by dominated convergence: we have

+a—1

Xuzoyt 2 D*u € L*(Q) and

BT o a0
w2

since f{(v) =0 for v < 4, | f§(v)| < 1 for any v, and 2v < f5(v) <6+ v for
any v.

In case n + a > 1, we have (by our convention of setting f-g = 0 if f =
0 and ¢ is undefined) X{uio}uwg_lDQu = "% D%. In case n+a =
n+a—1 n+a—1

1 we also see that yquzoyu 2 D%y = X{#O}Dzu = D>y = uw =2 D%u

a.e. as otherwise we would obtain the inequality lims o |[|D?fs(u)||3, @ =
Jo Xquzoy | D*ul® dz < [, |D?*ul* dx = ||D*u||12(q) which clearly contradicts
the lower semicontinuity of the L? norm with respect to convergence in the
sense of distributions. Thus we have proven

at+n—1

[fs(w)] 2" D*fs(u) = u

at

2 D%u (15)

strongly in L*(Q) as § — 0.

Using the strong convergence (15) in connection with the convergence result
regarding the first derivative (13), the convergence of (fs(u) — u) in L*(K)
for any K CC €2, and the estimates

(o9 +alw+ W] o, o (16)
and U
v+ )"+ 200+ "] ¢ g, g a7
as well as
o+t Cln,a), (18)

Un+a71
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we establish convergence of the terms 1, I11, IV by rewriting these terms
analogous to the rearrangement (11) of term I.

[t remains to prove convergence of the left-hand side in (10). It is easily seen
that (fs(u) +¢€)®* = (u + ¢€)® in WHO(K) for any K CC Q. We calculate

[f5(w)]2 VA fs(u) = [fs(u)]? A[f5(u) V]
[fs(w)]2V - [f5 (u)Vu @ Vu+ f5(u) D] (19)
[£5(w)]) 2 [ ()| Vu|*Vu + 2f) (u) D*u - Vu + f{(u) AuVu + fi(u)VAu)] .

S

Using the regularity Vu's € L5(92), u"TVu ® D?u € L*(Q), u2VAu €
L*(Q), the fact that f{(v) = 0 and f{"(v) = 0 for v ¢ (6,20), and the
estimates |f{| < C(d,n)d !, |f{| < C(d,n)d72, |f} — 1] < 1, we see that
the convergence [f5(u)]2 VA fs(u) — u? VAu strongly in L?*(Q) holds by the
dominated convergence theorem: estimating the first term on the right-hand
side of (19), we get

n 1" n 4-n " nt2
fs(w)]? - f5" ()] - [Vul® < [fs(w)]2u= - |f5"(w)] - [Vus |?
SC(CL n)X{UE(é,QLs)}(S%é%Tnéiz’vunTH|3 = C(d, n)X{ue(&Q(S)HVU/%H ’3

which implies pointwise convergence to 0 a.e. and yields the dominating
function C(d, n)|Vu"s" |3. The second term and the third term on the right-
hand side of (19) can be treated similarly. Regarding the fourth term, we
immediately obtain convergence a.e. to the desired limit; moreover, we notice
that the fourth term is bounded from above by C(d, n)uz |V Au| since f5(v) <
20 for any v > ¢ and since f;(v) =0 for v < 4.

This finishes the proof of (10) under the weakened regularity assumptions.
Note that by our convention of setting f-g = 0if f = 0 and g is undefined, the
domain of integration in the integrals of (10) is now effectively QN {u > 0}.

Now assume that u is a strong energy solution of the thin-film equation
satisfying the a entropy estimate. We may then rewrite (9) using (10): for
n+

a.c. t € I wehave Vu's € L(Q), utVAu € L2(Q), u"z Vu®D?u € L*(),
Vu 1T € LAQ), D2u 5 € LA(Q); thus, for a.e. ¢ € I formula (10) can

37



be applied. We obtain

[

:_%/ /Q [[(u+e)*u™" + af(u+ e)*  u"])"] |Vul[*y dx dt
_%/ /Q [[(u+€e)*u")" + al(u+e)* "] [Vul?Au ¢ dx dt
_/ /QW““)Q ")+ 2a[(u+ )* "] Vu - D2u- Vau ¢ dx dt

€)* tu"| D*ul* dx dt

+

a/ /u—l—

Q

1

5/ / [[(u+e)*u™ + a(u+ e)* "] |[Vu|?Av dz dt
Q

+ / /[(u + €)*u")'Vu - D* - Vu dx dt
t1 Q

to u
- / / / (v +€)*v"™ dv A*) dx dt .
t1 QJ0o

Passing to the limit ¢ — 0, by dominated convergence the desired result is
shown: we just need to use the inequalities (12), (16), (17), (18) in connection
with pointwise convergence a.e. (recall that {Vu = 0} a.e. on {u = 0}) and
the regularity Vu & € Li (I;L*(Q)), D*u 5~ € L2 (I; L*(2)) to deal
with the first four terms on the right-hand side. Using additionally the

inequalities
(v + "] + afv + €)* 10"
potn—1 < C(Oé, n)
and
|[(v 4 €)*0"]'|
R p— <C(a,n),

we can prove convergence of the fifth and the sixth term. The last term is
immediately seen to converge to the desired limit.

]

Proof of Lemma 17. Using the fact that suppy CC 2, for smooth strictly
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positive u we calculate

/ w7 D?u*p + (b — 1) / w2 Vu - D*u - Vu 1 + / wVu - D*) - Vu
Q Q

Q

=— / uWTIVAY - YV 1p — / W'V - D - Ve + / u’'Vu - D% - Vu
Q Q Q
:/ w7 Au*) + (b —1) / w7 Vul?Au o + / u’ ' AuVu - Vi
Q Q Q
— / w W - D*u - Vi + / uIVu - D%y - Vu
Q Q
:/ w7 AuPp + (b —1) / u’ 2| Vul?Au 1
Q Q
—2/ub—1vu-D2u-v¢— (b — 1)/ub—2|vu|2v¢-vu
9) Q
:/ APy + (b —1) / u’ | Vul*Au 1 + / V2 Ay
Q Q Q

For strictly positive u with u € H?(Q2), the formula is seen to hold by approx-
imation (note that by the Sobolev embedding u € H?(f2) implies u € L®(K)
and Vu € L%(K) for any K CC 2 as we have d < 3).

The formula carries over to the case of nonnegative u with 'z € H2(Q)
and u'T € W(Q) by considering f5(u) (for the definition see the proof of
the previous lemma) and passing to the limit 6 — 0: u't (and therefore u)
is continuous, thus the set A is open (As being defined as in the proof of
the previous lemma). We have fs(u) = 0 on some neighbourhood of Q \ Aj
and we have u € H*(AsNK)NW'(As N K) for any K CC  which implies
fs(u) € H*(As N K) for any K CC . Thus, we have fs(u) € H*(K) for
any K CC Q; moreover, fs(u) > §. Therefore the formula holds with f5(u)
in place of u.

We then pass to the limit 6 — 0; the limit is calculated using the convergence
properties (13) and (15), whose proof only required the regularity u't €
H2(Q), 't € WH4(Q), and the convergence property ||u — f5(u)|| () —
0. [

3.2 Derivation of a simplified entropy estimate

The idea of the proof of our main results is to use Lemma 16 and Lemma
17 to derive a differential inequality for the quantity [, u'"*¢ dz. As a first
step, we would like to show nonnegativity of (roughly) the sum of the last
four terms in formula (7) using Young’s inequality. To do so, we make use
of Lemma 17 to partly replace [, u’~*|D?ul*y by [, u"~|Au|?.

We set b :=n + a and introduce the following conditions:

(H1) Assume that 1 <b < 2.
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(H2) Suppose that § < b < n.
(H3) Assume that n —1 <.

(H4) Suppose that the inequality

(n=b) (b 1) (b—l)(z—b)zﬂ<5§—4b) (b—1>}2

is satified.

The set of (b,n) € R x R for which (H1) to (H4) are satisfied is depicted in
Section 3.5.

Lemma 18. Letn € [1,3), a € (—1,0), and let u be a strong energy solution
of the thin-film equation on a domain Q C R?, d < 3, with nonnegative initial
data ug € H(Q). Assume that supp ug is bounded. Suppose that u satisfies
the « entropy estimate. Set b := n + «a and assume that (H1) to (H4) are
satisfied.

Let ¢ € CY(Q); assume that 1 > 0. Then for a.e. t1,ty € [0,00) with ty > t;
and for a.e. ty € [0,00) in case t; = 0 we have

[ do - [ ot

( b——n>/ / = Vul)? Aw+( )/ / =1y - D% - Vu
s [

Recall that the regularity of solutions u € L>(I; H'(Q)) N HL (I; [WP(Q)]')
implies u € CP (I; L*(V)) for any bounded open set V' C € with smooth

loc

boundary (see e.g. Corollary 4 in [53]). Thus by approximation, the formula
in our lemma holds for all ¢t > t; > 0, not just a.e..

Proof. Assume for the moment that ¢ € C°(Q2), ©» > 0. Recall that by
Lemma 17 we have

/ub1\D2u|2w+(b—1)/ubQVU-D2u~Vuw—|—/ub1Vu-D2w-Vu
Q Q Q
:/ub_1|Au|2¢+(b—1)/ub_2|Vu|2Au¢+/ub_1|Vu|2A@/)

Q Q Q

for a.e. t > 0. Since by (H2) and (H3) it holds that —1 < o < 0, formula (7)
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states that

:(b——n)/ / “ywympm/t / u"'Vu - D*) - Vu
[ o[ e
( )b—l 2—b/ / W3 V4

+ (2n — 3b)(b — 1)/ / u’ " Vu - D*u - Vu v
t Jo

+ <g — b) (b—1) /t2 /QubQ\VuFAu P .

We now multiply the formula from Lemma 17 by %(n —b) and add it to this
equation, resulting in

/ Lau< V() do = [ o n)e) da

E )/ e
+(b—”;b)/tl /Q W DX - V“_b+—1/ / WA
4 (n—b/tt/ WY D22+ S n—b/ / oY Al

to

t1 Q

We now see that the expressions

n—b/ / Wb D2l + 2 (b——)b—l —b/ / w3 |Vt
t1
—I—(gn—gb) b—1) / / =2Vu - D*u - Vu

and
n—b/ / Wb A2+ = <b——> (b— 1)( 2—b/ / P3|V
(Gn——b) b—l/ / w2 Vul? Au 1
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are nonnegative: Young’s inequality implies nonnegativity of these terms if
n—>b>0, 1§b§2,b2gand

(n—5) (b-12) (b—l)(2—b)2%(gn—4b)2(b—1)2

are satisfied. These conditions however were precisely part of our assump-
tions. This proves the lemma for ¢ € C°(Q) with ¢ > 0.

For v € C4(Q) with ¢ > 0, we consider the mollifications ps*1) which belong
to C°(§2) (at least if § > 0 is small enough); passing to the limit 6 — 0,
we obtain ps * ¢ — 1 in C*(Q). Using the regularity of u and dominated
convergence, this is sufficient for passing to the limit in all expressions of our
inequality. O]

3.3 The case of one spatial dimension

An application of Hardy’s inequality to the right-hand side of the integral
estimate obtained in the previous lemma and a careful choice of the weight
function ¢ will enable us to derive upper bounds on waiting times for the
thin-film equation for n € (2, 32).

Lemma 19 (Hardy’s inequality). For v € H'(R) with suppv CC R\ {0}
and any v € C? (R \ {0}) with ¥, >0 on R\ {0} the inequality

[ rsa ] ﬁ"””'z

holds.

Proof. We calculate

/RUme dox = —Q/RU’wam doe < 2 (/R ‘%'2%—25 dm)% (/R V2 dgn)é )

The desired inequality follows. O

Lemma 20. Letd =1, n € (1,3), a € (—1,0) and let u be a strong energy
solution of the Cauchy problem (i.e. Q =R) for the thin-film equation with
compactly supported nonnegative initial data uy € H*(R). Set b := n + .
Assume that conditions (H1), (H2), (H3), (H4) (preceding Lemma 18) are
satisfied. Suppose that u satisfies the a entropy estimate. Given v < —1,
suppose furthermore that

(H5) The condition

1 N3 1
<2b )(b+1) =2 br1-"

1s satisfied for some T > 0.
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Let x1 ¢ suppug, € > 0, T' > 0. Define K := Ute[O,T] suppu(.,t). Then in
case

n_

1 o 14+a
T {/ |z — 901|7+41% dx]
nt K\(z1—€,21+¢€)

n

~Tra
: {/ uy ™ — xy|” da:]
R

we have dist(21, Uo7 supp u(., ) <e.

Proof. By our assumptions, Lemma 18 is applicable.

We argue by contradiction. Suppose that B.(x;) Nsuppu(.,t) = () holds for
all 0 <t <T. Hardy’s inequality (Lemma 19) applied with ¢ = %\x —x|7
reads

Ay — 2
v|r — a7 dr < =2 v 2|z — 21|, dx .
TrTT -3 T
R v R

We now use ¢ := |z — x1|” as a test function in Lemma 18; this is possible

since 1 is C'™ on some neighborhood of the compact set Ute[o 7] SUPP u(.,t).
4 b+1

Rewriting [ u®™uy|? ¢y, do = w07 Jr [(@ 2 )al*ue dr and using the pre-

vious inequality we therefore obtain

1 1+« ¥ / 1
/Rl—l—au (,to)|x — a1|" dx i
1 v—3 1 oy
>( (26— = — o — o dr dt
—(< 2”) b2y —2) b+1)/h Lt P
1 v =3 1
—((26== -
(( 2n>(b+1)2(v—2) b+1>

to
A= 06-20-3) [ [ de et drar
t1 R

to
27’/ /ub+1|x — "t da dt
t1 R

where in the last step we have used condition (H5) and v < —1. Now notice
that due to Hélder’s inequality one can estimate

/ 't — 1|7 dw
R

14a e
- b+1 lie b+1
< (/ ut e — dm) (/ |z — 2,7t dx)
R supp u

where we have used the definition b = a+n. Putting these estimates together,

u ()| — 1|7 do
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using (H3) which implies o > —1 we arrive at the differential inequality

/u”o‘(., to)|x — x1|" dx — / u ()| — 2|7 do
R R
. ~Tta
>(14a)7 l/ |z — 2y HE d:c]
KN(R\Be(z1))

. 1+b

2 1+a

/ </ |z — | dx) dt
t1 R

where we have used the assumption supp Be(z1) Nsuppu(.,t) = for t < T.
The solution of the differential equation 4z(t) = ¢ [2(t)]™ is given by z(t) =
[z(O)F™ —(m —1)-q- t]ﬁ. Using the comparison principle, we therefore
obtain blow-up of the quantity [, u'*t*(.,t)|z — 21|” dz by no later than

_n_

N 1 a 1+a
T=— {/ |z — T d:c]
T L) KO(R\Be(21))

Tra
: {/ ug™ |z — x| dx} :
R

As [pu(,t) de = [pup dv < oo and « € (—1,0) as well as v < —1,
by Holder’s inequality we see that fR\ Be(a1) u't|z — 2|7 dxr must remain
bounded. Therefore we have obtained the desired contradiction. O

We are now in position to prove the main theorem in the one-dimensional
case.

Proof of Theorem 3. Assertion a) is an easy consequence of the previous
lemma: We choose b := %n + %, ie. a = —%n + %, and v = —2.
Condition (H3) is then equivalent to 1n < 32 ie. n < 2. Condition (H1)
is seen to be satisfied for any n € [1,3). Condition (H2) is satisfied for
n € (£,12). Condition (H5) is also satisfied for some 7 = 7(n) since for
v = —2 it is equivalent to 2(2b— 3n) — (b+1) > 0 which in turn is equivalent
to 5(En+2) —4(Zn+ ) > 0, i.e. 40n+ 120 — 36n — 128 > 0. The latter
condition reduces to 4n > 8, i.e. n > 2. It remains to check condition (H4).

This condition now reads
11 12 1 12 9 8 28 9
@) (5 5) ) (%)
(9 (- 2)
—4 [\ 20 20 20 20

Using a computer algebra program (or doing the calculations by hand), one
can check that (H5) is therefore equivalent to

3(n —2)(9n — 8)(n(188 — 57n) — 48) _
80 000 -
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Calculating the roots of the third polynomial factor in this expression, Con-
dition (H3) is therefore satisfied as long as n € [2, 2(4”5—?/671)), i.e. especially
for n € [2,3).

Now that we have checked the assumptions of Lemma 20, to finish the proof of
assertion a) we apply this Lemma with x; := zo — €, where € is the parameter
of the lemma. Evaluating the first integral in the estimate from Lemma 20,
we obtain that

inf{t > 0 : suppu(.,t) N (—o0,xq) # 0}
<inf{t >0 :suppu(.,t) N (r; —€, 21 +¢€) # 0}

n n
1 e e ~Ta
<— |z — 2,7 da ug™ e — x| dw
nr R\(z1—€,z1+¢€) R

<C(n) V 7 — g d@"} U 'l =" dz]
R\ (z1—€,21+€) R

=C(n) {—;IGPHHI?] e {/ us | — o + € da:] S
1+ + 4 R ’
where we have used the fact that o < —%, v = —2, n > 2, which implies

v+ 41+TO‘ < —1. This proves assertion a) since ¢ > 0 was arbitrary.

Note that one could prove the theorem for the slightly larger range n €
(2, %(IO—I—\/ 10)) using e.g. a computer algebra system to solve the inequalities
(H1) to (H5). See Section 3.5 below for a plot of the set of admissible pairs
(n,b).

Assertion b) is shown just as assertion a), the only difference being that
we estimate [, uj™|z — zo + €| dz > 12 ) — ug™™ dr and pass to
the limit ¢ — 0. Note that the waiting time 7™ of u at xy is bounded
by T* < limsup,,,inf{t > 0 : suppu(.,t) N (zg — 2¢,79) # 0} and that
(xo — 2€,20) = (1 — €, 21 + €).

Assertion c¢) is also a consequence of the previous lemma: for n = 2 and o =

—3, conditions (H1) to (H4) (see Lemma 18) are readily verified. Inserting
n =2 and o = —1% into (H5) and multiplying the resulting inequality by

(b+ 1)?, we see that for v < 0 the condition (H5) is equivalent to

25
v =3) =50y =)= 57(v-2).
Thus, for v > —2 the condition (H5) is satisfied for sure if

—2—~v < =507

This implies that we can choose 7 := 2;—07. Fix some T' > 0. By the finite

speed of support propagation property which holds for strong energy solu-
tions [39], for ¢ < T we have suppu(.,t) C Bg,(x¢) for some R; depending

45



on up and T. Set a1 := ¢ — € with € < min(Ry, g) Lemma 20 now asserts
that (zo — 2€,20) Nsuppu(.,t) # 0 for some ¢t € (0,T), where

4 4
1 1
T<— / |z — 21" do </u§\x—:€1|7 dx) ,
27 | Byg, (@1)\Be(21) R

if the expression on the right-hand side does not exceed T' (for t > T the
assumption supp u(.,t) C Bg, (xo) which we used may be invalid). Using the
estimate [, u§|x — 1| dx > }le”’f( ué dx (since —2 < v < —1) and
the fact that

/ |z — 21" dr < (2R1)2+7/ |z — 2|7 da |
Bapg, (z1)\Be(z1) Bap, (#1)\Be(z1)

we obtain (xg — 2€, ) Nsuppu(.,t) # 0 for some t € (0,7, where

1 2R 1% (1 1o\
T<— [(21%1)2” log —11 (—e’y/ ud da;') :
27— € 4 (Z07z0+6)

if the expression on the right-hand side does not exceed 7. We now set 7 :
-2 — % which implies 7 = —@ and obtain (zg — 2¢,xo) Nsupp u(.,t) #

for some t € (0,7"), where

Z0,T0+€)

= |l

—g_ 80 ) —4
T < C(2R)*™ S 5 / i de)
| log(2Ry)| - [log e[« + [log€[1 J(wo,0+e)

if the expression on the right again does not exceed 7.

Noting that ¢ ge = ¢ 50 and letting € — 0, we obtain using 8 + 4y =

200

pge — Uand [log Ry| < |loge| for € small enough

e? 1 -
T* < C'liminf - / ug dx
=0\ |loge| J(zo,zote)

if the expression on the right-hand side does not exceed T. As T > 0 was

arbitrary, by choosing T large enough the assertion c¢) of the theorem is
obtained. n

3.4 The case of several spatial dimensions

We now derive upper bounds on waiting times for the thin-film equation
in the case of several spatial dimensions. If d > 1, an additional difficulty
arises: The attempt to use |z|” as a weight function fails as the constant
in front of the positive terms in the weighted entropy estimate is no longer
large enough to ensure that the positive terms dominate the negative term,
at least for those v which would allow for the derivation of optimal upper
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Figure 1: A sketch of the situation of Lemma 21. The deep blue area corre-
sponds to supp ug; the union of the grey and deep blue areas represents the
set M. The boundary of the grey area corresponds to the graph of &.

The three boxes represent the sets Zs,., Zs,., Z,. The red dot denotes the
point 0. The green line marks the tangent plane H to OM in 0 (i.e. RZ1).
The blue curve corresponds to the graph of . It is clearly visible that the
graph of € coincides with OM (i.e. the graph of £) in Z,, but moves away
from OM as one moves away from 0; in Z3, \ Za, the graph of € lies at least
K7r? below the set M.

47



bounds on waiting times. This problem is resolved using a localized test
function adapted to the shape of the initial support, which approximately
reduces the situation to the one-dimensional one.

For the next lemma, we assume that we are given a point xy € 9suppug
such that there exists a C* domain, whose closure we denote by M, with the
property that in some neighbourhood of zy the set suppug is contained in
M ; moreover, we require xo € OM. The tangent plane of the manifold OM
in 2y will be denoted by H. Without loss of generality, we may assume that
79 =0and H = {z € R?: 25 = 0}. In this case, M is locally given as the
graph of a function £ : H — R. We define another function 5 to be equal to
¢ in some (cylindric) neighbourhood Z, of xq, but require the graph of ¢ to
move away from M as one moves away from .

Our test function v takes the form |xy — {(z1,...,24-1) + d|7 - @, where ¢
is some cutoff. The singularities of our test function ¢ lie on a curve which
corresponds to the graph of ¢ shifted downwards by 4.

As é is nonconstant, we shall see that additional terms involving derivatives
of € arise during the derivation of our differential inequality. If 7~ is large
enough (in comparison to these derivatives of §~ ), our lemma gives an upper
bound on the waiting time in the neighbourhood Z3, of xy3. By decreasing r
one can always enforce this condition; however, by decreasing r the additional
condition (22) becomes stricter.

Due to the cutoff present in our test function, an additional inhomogeneity
appears on the right-hand side of our differential inequality for fQ u't*Y du.
In order to nevertheless prove blow-up of fQ u't) dx, we need to assume that
the inhomogeneity is smaller than fQ ug ™ dr. This condition is precisely
(22). As we shall see this inhomogeneity becomes irrelevant as we “zoom in*
on the free boundary, at least for n > 2; for n = 2, the inhomogeneity gives
rise to a stronger condition on the initial data.

Lemma 21. Let u be a strong energy solution of the thin-film equation on
a domain Q C R, d < 3, with nonnegative initial data uy € H*(Q)) with
bounded support and let n € (1,3), a € (—1,0). Suppose that u satisfies the
« entropy estimate. Setting b := n + «, assume that the conditions (H1),
(H2), (H3), (H4) preceding Lemma 18 are satisfied. Given v € [—20; —1],

suppose furthermore that

(H5) The condition

1 v =3 1
2% — - . >
( 2”) b+12(v—2) b+1-
is satisfied for some T € (0,1).

Let M be the closure of a C* domain and let xy € OM; w.l.o.g. we may
assume that o = 0. Denote the tangent plane to OM in 0 by H; w.l.o.g.
(i.e. possibly after a rotation and reflection) we may assume that H = {x €
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R?: x4 = 0} and that xo+ uey € M for any p > 0 small enough. Denote the
projection onto H by P. Define

Zy:={w: |Po| < p,lad < p} (20)
Let R>0and let £ : H— R, £ € C*, be a function such that
ZprNM = Zpn{z € R : x4 > £(Px)} (21)

holds (for R small enough such a function ezists by the implicit function
theorem). Note that £(0) = 0 and that VE(0) = 0 as H is tangent to OM at
0.

Assume that Zp CC (.
Take any r € (0, %) and any K € R such that

(P1) suppug N Zs. C M, i.e. locally near xo the support of ug is contained
m M.

(P2) |D%(Pu)| < K, |DY(Px)| < &, and [DYE(P2)| < 5 for any x € B
with |Pz| < 3r.

(P3) The inequality Kr < e(d,n)T holds for some small constant e(d,n) < 15

which is to be determined in the course of the proof below.

Then there exist constants Co(d,n) > 0, C(d,n) > 0 such that for any § €
(0,7) the following statement holds: Setting

T :=inf{t > 0:suppu(.,t)N(R*\ M) N Zs, # 0}

and assuming that the estimate

/ W0 |zg — €(Px) + O] da (22)
{z:|Pz|<r,|zq|<2r}

1+n+«

T
ZCO(d,n)T4(Kr2)7_4/ /|Vu o (L) dr dt
o Jo

is satisfied for some T > 0, we have

c(d)r Tra
T S—C’(d,n,a) : (le/ LTHRE dz) (23)
5

T

“Tra
: </ ug™|wg — E(Px) + 6|7 dx)
{z:| Pz|<r,|zq|<2r}

if the expression on the right-hand side does not exceed T
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Proof. The proof is somewhat analogous to the proof of Lemma 20; however,
we additionally make heavy use of cutoff arguments.

Set

1
e€(d,n) := min (eo, €1, 1_O> (24)

where ¢y and €; are to be chosen below depending only on d and n. From
now on, to simplify notation we write € instead of e(d,n).

Take a smooth cutoff ¢ : R =+ Rwith0< ¢ <1, ¢ = 1on Zs,, supp¢ C Zs,,
and [V < 99 D% < €2 D] < <2, | Dig| < S

Define € : H — R by

E(x) = E(z) — Kr3(jal =)} . (25)

It is immediate that £ € C*. The function £ satisfies some estimates similar
to (P2), namely:

(P2’) We have |D*(Pz)| < C(d)K, |D*(Pz)| < “9X and |D*(Px)| <
UK for any = € R? with |Pz| < 3r.

2

We set (x) = |rg — &(Px) + §[7¢*(z). This function obviously satisfies
Y € CHM) (as the points at which the function has singularities do not
belong to M). In Lemma 22 below, additional properties of this test function
which we shall need in the sequel are proved.

By the assumptions of our Lemma, Lemma 18 is applicable. Assuming that
t1,ta < T, we use ¢ as a test function in Lemma 18 (this is possible by the
definition of T and the definition of ¢: for ¢t < T" we have supp u(.,t) N Z3, \
M = () and supp ) C Zs,). Making use of the estimates (30) and (31) from
the lemma below, we obtain for a.e. t1,ts € [0,T) with t; > ¢; and a.e.
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to € [0,T) in case t; =0

1 1+a _/ 1 e
[ ettt do— [ e da
(Ur%)/‘/b1WMAw+(b—ﬂ0/m/IHVUDWJWL
b+1A2
I
Bb__ to 1 16[)_- 1 1
”/ /|W”MA¢+3 ”/ /w”é D) -Vu's
b+1 A2
bﬂ/ fuae

> (10— 3 ;1;” - Clmir ) (26)

/ [ 9 s — ) + 6
16b—- ba .
Fa0 =D / / 0P - 2 (0)|va — E(Px) + )72

NEE ><b+—f><v . clama)

/ / P @)~ E(P2) + 0
—C(d, / /Z IVu's 2 — (’n)(KT2)v—4/tt2/Z S+

(b+l ‘ < C(d,n) by assumption (H1), the
fact that ‘b+—1’ < C(d,n) again by (H1), and the fact that supp¢ C Zs,.

where we have used the fact that ‘

By the assumption Kr < 7€ (see (P3)), assumptions (H1) and (H3) and the
condition —20 < v < —1, we see that

(viv = 12) ?bb;l%; — C(d, n)KT) > <v(7 = 1)?;;1%; - C(d, n)GT)
> (256% o, n)67> > (% — C(d,n)e ) (27)

Thus, by 7 < 1 (see (H5)) we see that the prefactor of the first term on the
right-hand side of (26) is nonnegative if we choose €; small enough depending
only on d and n. Thus we can estimate this term from below by dropping
the derivatives in directions perpendicular to €. Additionally taking into
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account our assumption Kr < er, we obtain

/QH%UHO‘(.,tg)Qﬁ dx—/QH%uHa(.,tl)w dx
8b — 2
> (7(7 “Ug 5 1;‘ el n)a)

L/ /W%uﬁw2¢2>uw—£u%»+6w2
—1

- ( b+_12)(7 o n)ET)

/ [ @l Py + 57
~ O(d,n)(Kr?)~2 /t /Z Va2 = C(d, n) (Kr) /t : /Z a1

where the prefactor of the first term on the right-hand side is still nonnegative
(the term v(y—1)2—=3-
as shown in (27)).

G H)Q , by which the prefactor has increased, is nonnegative

We now put ¢ under the derivative in the first term on the right-hand side and
(in the second inequality below) use the first assertion of Lemma 22 below,
the fact that suppu(.,t) N Zs, C M for t < T (recall also supp¢ C Zs,),

as well as the estimate |V¢| < d) < f((dg (recall that Kr < er < 1) and
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Young’s inequality to obtain

/Q—l_fl_aulﬂ"( to)1 dx—/—l u (L)Y da

> (’Y(’Y— 1)(8:;12)” C(d,n 57-)/ / 104(u R 2. |zg — E(Px) + 02

b+1

t2 b+1
—C(dm)/ /ladw | u |Vl ¢ |wg — E(Pz) + 02
t1 Q

to
—C(d, UG - |zg — E(Px) + 672
( ”)/m /u Vo2 - [2q — E(Pz) + 0|

N (7(7 - 1)(bv+—12)(7 —3) cld. n>€T)

to N
/ /ubﬂ'(bz(@’xd—f(Px)Jrﬂw4
t1 Q
to a1 to
—O(d, n) (Kr2)2 / / VU2 — O(d, ) (Kr2)— / / !
Z3T t1 Z37‘

> (7(7 - 1)§:+ g C(d,n 67) / / 10a(u"s Q)| - |zg — E(Px) + 672
_ (7(7 D0 =20 =3) | o, n>€T)

b+1

to N
| / / W G2 (@) |eg — E(Pa) + 5[
t1 Q
t2 b+1
— C(d, n)(Kr2)? / / VU
t1 Z3p
to
— C(d, n)(Kr2)7_4/ / ubtt
tl ZSr

The prefactor of the first term on the right-hand side did not change and so
is still nonnegative.

An application of Fubini’s theorem and the one-dimensional Hardy inequality
(see Lemma 19) on all the lines {z : Px = y}, y € H, with the weight ¢ =
|za—&(y)+0]72 (note that this function has its singularity at x4 = £(y)—4, so

we must check that (ubiz1 &) (1, ..., 241, 1) is zero on some neighbourhood
of &(y) — ¢; this check is performed easily since suppu(.,t) C M and since

x4 > E(Pz) > £(Pz) for € M N Zs,), yields (recall that the prefactor of

53



the first term on the right-hand side is nonnegative)

1 1+a 1 1+«
/Qle (., to)y dx /{21+au (., t1)y do

> (26 - Do~ O n)ef)

/ / / |0 (u 21 2 xg — E(Px) + 02 dag d(zy, ..., 24-1) dt

_( _1;“2)(7 3) C(d,n)w)

. /t2 / uPtt - ¢ (x)|wg — E(Px) + 67
—C(d / /Zgrub;w v
~ctaney [

> (20 - 1y -3 ?f;l')” - Cld.mer)

/ [ P @lea - &pPa) + 57

_( Y= 1)y =2)(y—3) C(d,n)”)

b+1

'/tQ/“bH'(?Q(IB)\wd—E(Pm) 4 g
Old,m)(Kr) / /Z Vs
_(J(cl,n)([{r2)7—4/t1 /ZST e

where we have used the fact that —20 < v < —1 and applied Young’s

inequality to the penultimate term. Assumption (H5) now gives

1 1+a 1 1+a
/1+—a (., 1)1 d:r;—/QH—a (-, t1)Y dx
> (y(y = D)(y = 2)(y — 3)7 — C(d,n)er) (28)

/ / 2w fg — E(Pa) + 1
C(d,n)(Kr?) / / |VubIl
Z3'r
— O(d,n) (K2 / / b+
t1 VAT

Using v < —1, we see that choosing ¢y small enough depending only on n
and d we can enforce that y(y — 1)(y — 2)(y — 3)7 — C(d,n)er > 7.
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Recall that suppu(.,t) N Z3 NQ\ M = for any 0 < ¢ < T. Since Kr <
er < = (by our choice of € in (24) and by 7 < 1) and |{(Pz)| < 9Kr? < r
in case |Pz| < 3r (due to £(0) = 0, DE(0) = 0, and |D?*¢] < K) by (21) we
see that suppu(.,t) N {z : |Px| < 3r,zq € (—3r,—r)} =0 for any ¢t € [0, 7).
Therefore we may apply Fubini’s theorem and the one-dimensional Poincare
inequality on the one-dimensional segments {z : Pz = y,z4 € (=3r,3r)},
y € H, to estimate

to
/ / ubtt dx dt
ty Z3r
t2
:/ / / 't dag d(zy, ... xg_y) di
t1 PZs3y J {zg:|xq|<3r}

to
S/ C’(d)(4r)4/ |Vu%\4 drg d(xq,...,xq 1) di
t1 PZs, {zq:|zq|<3r}

to
:C(d)r4/ / V't |* da dt .
t1 Z3r

Putting these considerations together, we obtain from (28)

/LUHQ( t2)e da:—/#u”a( ty) dr

0 1+a 5y U2 0 1+« 5 U1
to B
>r [ [ Bl - EPa) + o7 (29)
t1 Q
to
— C(d,n)(r (Kr2)* + (Kr?)) / / Va1t
t1 J Zsr

Holder’s inequality implies (since supp u(.,t) Nsupp ¢ C M for t < T)

/ W G2 () |ra — E(Pr) + O] da
Q

< ( [ S wlea &) + 0 dx) b
Q

| </ & (v)|za — E(Pa) + o5 dx) h
M

Estimating the second integral on the right-hand side using Fubini’s theorem,
the local representation of M (see (21)), the definition of £ (see (25)), the fact
that 6 < r (see the assumptions of the lemma), the estimate &(Px) > &(Pz),
the fact that supp ¢ C Zs,, and the estimate |£(Px)| < C(d)Kr? < C(d)r for
z € Zs, (vecall £(0) = 0, DE(0) = 0, and |D*¢(Px)| < C(d)K for z € Zs,),
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we get

(/Q Wt 82 (z)| g — E(Px) + 8] da:)

< / ML 2 (0) g — E(Pa) + O] da

Tha
(/ / |z — &( —|—(5|A’Jr * dz dy)
PZ3r

:/ub“ G (1) |2 — E(P2) + 6] do

3r—E(y)+o Tra
/ / |25 dz dy
PZ3 J&(y)—€ y)+5

: / uPtt () |ra — E(Px) + 6] da
Q

i Cs(d)r Jiati Tta
| Cld)r ) || -

Plugging this estimate into (29), multiplying by 1 + « and using § < r we
see that

/U1+a(.,t2)1/} dx — / () do
Q

Q

b+1

Cs(d)r e ERETR Tia
>ci(d,n, )T rdl/ ST dz / (/ ul Ty dx) dt
1 t1 Q
— Cy(d, n)(r*(Kr*)™* + (Kr?)? / / \Vub4l 1 dx dt

holds for a.e. t1,ty € [0,T) with t5 > ¢; and a.e. t5 € [0,T") in case t; = 0.

We therefore have derived a differential inequality for [, u'*(.,t)y dz. By
the comparison principle, the solution of the corresponding differential equa-
tion yields a lower bound on [, u'™*(.,t) dx (as the right-hand side of our
differential inequality is locally Lipschitz with respect to the solution). The
corresponding differential equation reads

d Ca(d)r 14+a - 11& b1
E“f =c1(d,n, )T Td_l/ 2T dz =
5

b+1

— Cy(d, ) (F (K2 4 (Kr?)) /Q VU da

and the initial condition is f(0) = [, uy™ ¢ dz.

Fixing some T € (0,7T) we can show that the solution f is bounded from
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below at all t € [0,7] by the solution g of

d Caldr e e
-9 = Cl(dv n, 04)7' Td_l/ ST dz - gite
)

dt

with initial data
(0) = [ wlev do
Q
T b+1
— Oy (d, n)(r4(K7’2)7_4 + (KT2)’Y)/ / ]VUT]4 dx dt ,
0o Jo

provided that we have g(0) > 0.

It suffices to prove f > g, in [0,7] for all g, solving the same differential
equation as g, but with initial data g,(0) := ¢g(0) — p > 0: We know that
g,(t) converges to g(t) as p — 0 for any fixed ¢t > 0. To prove f > g,
in [0, 7], we argue by contradiction and assume that t, := inf{t € [0,7] :
gu(t) > f(t)} < oo. This gives

f(tu) - gu<tu)
=f(0) — ¢,(0) — Cx(d, n)(r*(Kr?)"™* + (Kr?)?) /o ' /Q |Vuble|4 dz dt

Cs(d)r Lo\ T b
T a(dn o) ( [ dz) RO a0
4 0

>£(0) — g,(0) — Ca(d, n)(r*(Kr?)—* + (KT‘Q)”)/O /Q |VubirTl|4 dx dt
> [

where we have used the fact that f(t) > g,(t) for t < ¢, and the definition
of ¢,,(0) to obtain the desired contradiction (due to continuity of f and g,,
the definition of ¢, would imply that g,(t,) > f(t.)).

We now choose Cy(d,n) := 4Cy(d,n) in condition (22). Using the estimate
(Kr?)Y < r4(Kr*)"=* (which holds since Kr < 7e < 1 by the conditions on
7 and €) as well as the fact that £(Px) = £(Px) for |Pz| < r and the fact
that ¢ = 1 on Zy,., we see that (22) then implies

90> [ Wy va — E(Px) + 8 da
{z:|Pz|<r,|zq|<2r}
T b+1
— 90y (d, )t (K2 / / Vu | da dt
0 Q

1

Z—/ ug ™ |zg — E(Px) + 0|7 dx .
2 {x:|Pz|<r|zq|<2r}
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Since the equation for g can be solved explicitly (the solution of %g(t) =
q-lg®))™is g(t) = [g(0)'™ — (m —1) - q- t]ﬁ), this implies that g and
therefore f and therefore also fQ ul*(.,t)1 dz needs to blow up before time

Cs(d)r Tra
l+a ' Td—l/ T ate
ald,n,a) n-T s

1 T 1ta
5/ s — €(Po) + 7 )
2 {z:| Pz|<r,|zq|<2r}

if this quantity does not exceed T.

n

This yields an upper bound on T: we know that ¢*(z)|zq — £(Pz) + 4|7 is
compactly supported and bounded from above by §” on M; moreover, for
t < T we have suppu(.,t)Nsuppd C M. As [, u(.,t) dz = [, u dv < oo by
conservation of mass, by Hélder’s inequality [, u'**(.,¢)¢ do must remain
bounded for ¢ < T. Thus, if this quantity blows up at some time 7" we
necessarily have 7" > T.

This finishes the proof of the lemma. O

Lemma 22. With ¢ defined as at the beginning of the proof of the previous

lemma, for any x € M Nsupp Vo we have xg — E(Px) > Kr?.

Moreover, with 1 defined as in the proof of the previous lemma, the following
estimate holds for the second derivative of ¢ for any x € M :

|D20(a) =1y = Dlza — EPo) + 0172 () -due & (30)
<C(Krlza— EPr) + 8~ - 6*(x) + Cd) [ r*]

For the fourth derivative, the following estimate is satisfied for any x € M:

A20(2) =73 = (7 = 2)(y = B)laa — E(Pr) + 8- 2(w)| (31)
<C(A)Krlzg = §(Px) + 8- ¢*(2) + C(d)[Kr’]

Proof. For x € Z,,, we have ¢(x) = 1; additionally we have supp ¢ C Zs,.
Thus for x € M Nsupp V¢ we know = € Zs.; moreover, we either have
|z4| > 21 or |Pz| > 2r.

e In the latter case, by definition of £ (see (25)) we obtain &(Px) —

£(Px) > Kr? which implies z4 — £(Px) > Kr? (since x4 > £(Px) due
tox € M N Zs, and (21)).

e To deal with the former case, we observe that |DE(Px)| < K - 3r for
T € Zs, by our assumption (P2) since |D*¢(Px)| < K for x € Z3, and
DE(0) = 0; using £(0) = 0 this implies [(Px)| < K(3r)? = 9Kr? <
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9¢(d,n)r < r for x € Zs. by (P3), our choice of € (see (24)), and
0 <7 < 1. Thus |xy4| > 2r and x € M N Z3, imply x4 > 2r, the case
xq < —2r being impossible (as x € M N Zs, implies x4 > {(Pz) > —r).
This gives xg — {(Px) > 2r —r = r > Kr? by condition (P3), our
choice of € (24), and 0 < 7 < 1. Since we have £(Pz) < &(Px) by (25),

we deduce x4 — &£(Px) > Kr?

This finishes the proof of the first assertion.
We calculate for € M N Zs, (which implies z4 > £(Pz) > £(Px))
D*(|zq — £(Px) + 6[)
=7(v = Dlwa — {(Px) + 872 - (€, — DE(Px)) ® (€4 — DE(Px))  (32)
=yl = £(Px) + 0] - D*¢(Px)

(where we think of D¢ as taking values in R%, R? being a superspace of the
tangent space of H; we also think of D¢ as taking values in R%*¢) and using
—20 < v < —1 we obtain

|A2(jwq = E(P2) + 61") = 5(y = 1)(y = 2)(y = 3) ta — £(Px) + 8"~

< C)|DE(Px)| - (1 + | DEPL)) - g — E(Px) + 3]~
+ C(d)|D(Px)| - (1 + | DE(P)))? - [aa — £(Px) + 8 (33)
+C(d) (|DYE(P)| - (1 + |DEP)]) + [D*(P)) - |oa — E(Pr) + 8]
+O(d)|DYE(Pr)| - |za — E(Pz) + 8

From (32), for € M it follows that
D20~ E(Pa) + 3'6%(0)

— (v = V)|zg — E(Px) + 6772 ¢*(x) - €4 ® &,

< C(A)(|IDE(Px)| + | DE(Px) *)|za = E(Pa) + 3] 267 ()
+ Cd)|D%(P)]| |va — E(Pw) + 0]~ 6%(@)
+Osup Do) sup g E(Pw) + 3764~ DE(Pa)

zesupp DN M

+C@sup(D%0(0)] + DY) sup e —E(Pa) +0]
< C(d)(Kr + K*r®)|zq — E(Px) + 6] 72¢%(2)
+ C(d)K]za — E(Px) + 0]~ ¢(x)
+C(d)sup Do) sup [fea—E(Pe) + 3] — DE(Pa)]|
T zesupp DN M

+C(d) Sgp(lquﬁ(l’)l +1Do(2)*)  sup |zq —E(Px) + 0|

xesupp DN M
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where we have used the fact that |DE(Px)| < |DE(0)] + C(d)K|Px| <
C(d)Kr for © € Zs. (by (P2’) and DE(0) = 0) and that supp¢ C Zs,;
moreover, we have made use of the estimate |D?¢| < C(d)K (by (P2)).

We have |24 —&(Px) 46| < C(d)r for any = € supp ¢: it holds that supp ¢ C
Zs,; moreover we have 0 < § < r and |£(Pz)| < C(d)Kr* < C(d)r (by (P2),
by £(0) =0, DE(0) = 0 and since Kr < er < 1) for any x € Zs,..

Thus, the second term on the right-hand side in the previous inequality can
be estimated from above by a constant times the first term on the right-
hand side. Using the estimate on D¢ and the bounds |D¢| < C(d)r~! and
|D?¢| < C(d)r—2, we therefore obtain

D*(|zg — &(P) + 0]¢%(x))

—(y = Dlaa — E(Pa) + 6% ¢*(2) - & @ &,

< C(d)(Kr + K*r?)|zq — E(P) + 6] 72¢%(x)

C(d -
+ ( )(1—|—K7") sup  |ag — E(Px) + 67!
r resupp DN M
C(d) -

+

5 sup  |zg —&(Px)+ 0|7 .
r xE€supp DpNM

By this estimate, the inequality Kr < e¢-7 < 1 (the latter inequality holds
due to our conditions on 7 and our choice of €), and the first assertion of the
present lemma, we obtain (30).

We now derive a similar estimate for the fourth derivative. Using the esti-
mates on the derivatives of ¢ (see (P2’)), the estimate |DE(Pz)| < C(d)Kr

for x € Zs, (see the proof of (30)), the fact that |z; — £(Px) + 6| < C(d)r for
any x € supp ¢ (see the proof of (30)), and the fact that Kr < 1, inequality
(33) implies for any x € M
¢*(2)A*(|zg — £(Pz) + 6]7)
— (v = Dy = 2)(v = 3)|za — E(Px) + 6] ¢*(x)
<C(A)KT - |xg — E(Px) + 3| *¢*(x) .

Thus, by the Leibniz formula and the estimates on the derivatives of ¢, we
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obtain for x € M
A*(|zg — E(Px) + 6]"¢*())

— (7 = V(v = 2)(y = 3)|wa — £(Px) + 6] *¢*(x)

< C(d )KT [wa — E(Pz) +6]"71¢" ()

+ Z C(d)yr=*7  sup Di|zg — E(Px) + 6|

zesupp DN M

C( VKT - |2q — £(Pz) + 8 *¢%(x)

3
C(d)|xq — E(Px) + 677
jz x€susll)lg¢ﬁM ( )’xd S( x>+ |
C(d)Kr - [zg — E(Pr) + 649 (x) (34)
3
Zr YKt
7=0

where in the third step we have used the first assertion of the lemma and in
the second step we have used the estimate

Dl|zyg — &(Px) + 6| <C(d)(1 4 Kr)|zq — E(Px) + 61

<C(d)|xa — E(Px) + 87!

which one easily verifies using |D§~(P3:)| < C(d)Kr for x € Z3, and Kr < 1,
the estimate

D2|.I'd — (PiC) + (5|7
<C(d)(1 + Kr + K*r?)|xg — £(Px) +6]""2 4+ C(d) K |xg — E(Px) + 6]~}
<C(d)(1+ Kr + K*r?)|zg — E(P:C) + 72
<C(d)|xg — {(Px) + 0]

which follows from (32) in connection with the bound |DE(Px)| < C(d)K
and the bounds (P2’) as well as the bound |zq — £(Pz) 4 6| < C(d)r for
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x € Zs, (see above) and the inequality Kr < 1, and the estimate

D3|xy — £(Px) + 0|

o E(Po)] - fea — E(Px) + 0"
C@D?E(P)| - |es — DEPE)| - 24 — E(Pa) + 8
C(@)es ~ DE(Po)ra — E(Pa) + 8

<d>§|xd— E(Pr) + o7
C(A)K - (1 + Kr) - |og — §(Px) + 6]~
C(d)(1+ Kr)®|ag — £(Px) + 673

<ClDlaa— o) a7

which is obtained by differentiating (32) and using |DE(Px)| < C(d)Kr for
x € Zs as well as (P2’) and |24 — {(Pz) + | < C(d)r for « € Zs, and the
inequality Kr < 1.

Applying Kr <1 to (34) we obtain (31).
[

We are now in position to prove our main theorem in the multidimensional
case.

Proof of Theorem 5. Assertion a) is a consequence of Lemma 21: We set
b= 5xn + 52, v := —2. For these choices, conditions (H1) to (H5) have
already been checked in the proof of Theorem 3 (in case of (H5) for 7 = 7(n)
sufficiently small).

W.lo.g. we may assume that xo = 0, that H = {x € R? : 2, = 0}, and
that xo + peg € M for any o > 0 small enough. Under the assumptions of
Theorem 5, we can then find R > 0 such that in Zg (as defined in (20)) our
set M is the supergraph of a C* function ¢ : H — R with D&(0) = 0 and
€(0) =05 i.e. (21) holds. Set

K := sup max
J.TGZR

R2

Then there exists R € (0, %) such that Z,; CC Q and such that for any

€ (0, R], the assumptions (P1), (P2) and (P3) of Lemma 21 are fulfilled.

Possibly decreasing R, we may enforce
|zg — £(Px)| < 2dist(z,0M) (35)

for any x € Zp: if R is small enough, we know that for z € Z 7 we have
dist(z,0M \ Zg) > dist(z,0M). In this case, as Zr N OM is given by the
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graph of § over Zr N H, for x € Zj we obtain

dist(x,0M)
= ] _ ]2 _ 2
inf VIPz =y + Jra =€)l
= inf VIPz =y +]za — £

yEHNZp:|Pr—y|<|xg—&(Pz)|

where in the second step we have used the fact dist(x,0M) < |zg — £(Px)|.
By the triangle inequality, we obtain

dist(x,0M)
> i (VP =y e = €(Po)F - [6(Pa) - €)|
2lea = £(Pr)| = sup £(Pa) —E(v)

yeHNZg:|Pr—y|<|zq—{(Pz)]

>|zq — £(Px)| — 3K Rlzq — £(Px)|

where in the last step we have used the fact that | DE(Pz)| < 3K R for 2 € Zsp,
(which follows from DE(0) = 0 and |D?¢(z)| < K for z € Z,z); note that
y € Z,p since otherwise |Px — y| < |zg — £(Px)| could not hold: we have
x € Zp which implies |z4] < R, |Px| < R as well as |¢(Pz)| < KR?> < R
(since £(0) = 0, DE(0) = 0, |D*| < K, KR < 1). Thus we obtain by
(P2) and (P3) (recall that we have already checked (P2) and (P3) for any
r € (0,R])

dist(x,0M) >(1 — 3eT)|zqy — &(Px)|

which finishes the proof of (35) since 7 < 1 and € < 4.
)

It remains to check (22). Using [¢(Px)| < Kr* < % for € H N Z, (which
follows from (P2), the fact that D£(0) = 0 and £(0) = 0, and the fact that

Kr<er < 1—10), in case § < § we have

From now on, let r € (0

/ U™ g — E(Px) + 0|7 da
{z:|Pz|<r,|zq|<2r}

=/ Ut g — E(P2) + 3 d
{z:|Pz|<r,|zqg—&(Px)|<26}

4(1+a) d 1 1+a
>c(d)s ' 1][ — U dx
{w| Po|<r.[va—¢(Px)| <28} | O
4(14+a) d 1 o
>c(d)s ' _1][ — U dx (36)
{z:| Pz|<r,|xq|<r.dist(z,0M)<§} On
where in the third step we have used (35) and the estimate
LMz : |Px| <1, |zg — &(Px)| < 26})
<2L%{x 1 |Px| < 1, |z4| < 7, dist(x, M) < §}) (37)
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which holds since

{z:|Px| <r |xg—&Px)| <6} C{x:|Pz| <r|zg <rdist(x,0M) <} .

We now fix T > 0. Denote by (r;);en & sequence for which the outer lim sup
in the definition of W in Theorem 5 is approached. Denote by (d7); for
fixed r > 0 a sequence for which the inner lim sup in the definition of W in
Theorem 5 is approached.

Note that 2% _ 1 < 0 since o < —% and n > 2. Using (36), we see that

n

by our definition of W (note that diste(x, xo) = max(|Px|, |x4|) since zp =0
and H = {x € R?: 25 = 0}) we have

lim ugt® - |zg — E(Px) + 65

=00 {z:| Px|<rs,|zg|<2ri}

7 dx = 00

for any ¢ for which the inner limsup in the definition of W is nonzero for
r = r;, in particular for any 7 large enough. Thus for any 7 large enough there
exists jo(, T') such that for any j > jo(i, T) condition (22) is satisfied for our
r;, 03 and our fixed T (as u is assumed to satisfy the o entropy estimate).

Utilizing formula (36) to estimate the second integral on the right-hand side
of (23) and estimating the first integral on the right-hand side of (23) (note

that —1 + 4”70‘ < 0 since o < —% and n > 2), we see that the waiting time
T of u at ¢ is bounded from above by

T <

n

—1 1t T4a
C(d,n) - (rd—1—5—1+42) '

1M 11T 11111 11 _1+41+Ta

r—0 6—0

n

(14e) 1 1+a T 1fa
N _17“d_1][ |:—4UO:| dx
{z:|Pz|<r,|zq|<rdist(z,0M) <6} on

=C(d,n)W ™t

if the expression on the right-hand side does not exceed T. However, T > 0
was arbitrary and the expression does not depend on 7. Choosing T" to be
larger than this expression, this finishes the proof of assertion a).

Assertion b) is shown similarly. Again, w.l.o.g. we may assume that xy = 0,
that H = {z € R? : 15 = 0}, and that ¢ + pé; € M for any u > 0 small
enough. Define £, R, K, R as in the case of assertion a). Thus for r € (0, %)
conditions (P1) and (P2) are fulfilled and (35) holds.

However, to prove assertion b) we now let § and r tend to zero simultaneously.
Set o := —1. Conditions (H1) to (H4) are readily verified. Condition (H5)
is seen to be equivalent to

25
17

27__3_§>
5 =

v—2
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which in turn (due to v < 0) is equivalent to

25

4(—y+3) = 5(—y+2) > 7(—7 +2)7

which in particular is satisfied if
v>-2+4+CT

holds for C' =22 -2 (since we assume v € [—20, —1]).

1 ._ - o CK : _
We now set 1 1= o and 7 := g5, Le. v 1= =2+ F0g (with € = €(d, n)

from condition (P3)). By our choice of 7 and r, the condition (P3) of Lemma
21 is satisfied.

2K

Let 6; be a sequence converging to zero for which the lim sup in the assump-
tions of Theorem 5 b) is approached (with h replaced by ¢).

It remains to check (22). We know [{(Pz)| < Kr? < err < L for x € Z,
(since £(0) = 0, DE(O) = 0, |D*¢(Pz)| < K). For § small enough, we have
r = |logd|™! > 46. Thus for § small enough we see that condition (22) is
satisfied for sure if

/ ugt® g — E(Px) + 6|7 da
{2:Pa]<|log 8|~ Jz4—€(Px)| <26}

T
>0y (d, n) K 6 Tos1| log 5| o / / V()| de dt
0 Q

The previous inequality in turn is implied by the condition

c(d)|log 8|1=5

1 CcK
—24 CE
p
5 _CK_ ][ ugd " Teed dx
3 €| log d]| {LE:‘PI‘<“T1g(5|7‘xd7§(PI)|<2§}

T
>Cy(d, n) K~ Tios31| log 5| o7 / / V()| de dt
0 Q

which due to (35) and (37) in turn is implied by

CKlogé
C(d)e €| log 8|
{x:|Pm|<m,|xd|<

T
>Co(d, n) KO+ e ¢~ g™ / / VG ()| de dt
0 Q

]
———— g dx
o3 dist (z,0M) <5} 62| log §|14+2d

Thus, evaluating at ¢, and passing to the limit ¢ — oo, we see that the
condition (22) is satisfied for any J; with i large enough if we have chosen
T > 0 small enough (as the integral on the right-hand side of the present
formula tends to zero as T — 0).
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Using |{(Px)| < r for x € Zs, and using (35), for § so small that r =
|log 6|~ > 46 the estimate (23) in connection with (35) and (37) yields

inf{¢ > 0 :suppu(.,t)N Z\135| ¢ supp ug }
C(d o] !
CK log &
< i()€|10g5! : (\10g5|_d+1(0(d)\10g5\_1)f“°g“ / R dZ)
5

—4
1
. </ ug |rg — E(Pz) + 0|7 dx)
{z:| Pz|<|log 8|~ 1,|zq—&(Px)| <26}

C(d) 4
SC(d)E| 1og6| . <| 10g5|_d+1(0(d)| 1Og6|_1)4€|€)§6\ / og 3| Z_l dZ)

K 5

—4
1 CK
_ _94 CK_
: ((ﬂlogél d+1][ ug 6~ oedl dx)
{z:|Pz|<|log 6|~ 1,|z4|<]| log §|~1,dist(z,0M )<}

if the expression on the right-hand side does not exceed T. Rearranging,
setting 0 := ¢;, evaluating the first integral and letting i — 0o, we obtain
(since for 7 large enough we have |log |log 6;|| 4+ |log C(d)| < |log ;)

7" <

1—00

C(d
liminf[ §(>€|log(5i|

4
- (|1og<sz-|d“<o<d>|log 5ty ThE (1og o) _ 1og<s@-))

| log 4]
1 94 CK —4
'(5i|log5i|—d+ ugs, T dx) ]

Dt (C (@) 1088 )

—4
. _5 1.4 _ck
- lim inf (|log5i| 4][ ugd; te” e dm)
t—e0 {z:|Pz|<|log §;|~1,|zq|<]| log &;| ~1,dist(z,0M)<d; }

if the expression on the right-hand side is smaller than T. However, the

1%
{z:| Pz|<|log §;|~1,|zq|<]| log &;|~1,dist(z,0M)<d; }

4CK
€| log ;|

IN

first limit on the right-hand side is equal to 1, while the second limit on the
right-hand side is zero by the assumptions in Theorem 5 b). This proves the
second assertion of the theorem. O]

Proof of Corollary 6. The assertion of a) follows using Theorem 5 a). First
we need to construct an appropriate set M since supp ug is only locally the
closure of a C* domain.

After translation, rotation and (possibly) reflection, we may assume that
1o = 0, that the tangent plane H of dsuppug in zg is equal to {z € R? :
xq = 0}, and that for any p > 0 small enough we have zq + pég € supp uy.
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Denote the orthogonal projection onto H by P. Define Z, := {z € R? :
|Px| < p,|ra < p}. Then for R > 0 small enough the set suppug N Z
corresponds to the supergraph of a C* function ¢ : H — R; more precisely,
we have suppug N Zyp = Zsp N {x € R? : 24 > &(Px)}. Decreasing R if
necessary, we may assume that Z.5 C Q. Using the fact that £(0) = 0 and
that VE(0) = 0 (since {x € R?: x4 = 0} is the tangent plane to dsuppug in
0), by decreasing R we may enforce that |£(Pz)| < }5} for |Pz| < 5R.

Take a smooth function ¢ : R — R with 0 < ¢ < 1, ¢(s) = 1 for s < R,
o(s) =0 for s > %R We now define € : HN Z,5 — R,

E(Pe) = 6(|Pal)e(Pa) + (1 — o(|Pa]) (\/ (2R) — |Paf? 31%) .

Then the graph of £ on {z € H : %R < |z| < 2R} coincides with the set
OB,z(—3Reg) N{z € R? : 3R < |Pz| < 2R,—3R < z4}. Note also that
£ <&on HNZ,yp and that we have £ € C* on H N ngz' Therefore

D :={z eR?: |Pz| < 2R, —3R < x4 < £(Px)} U B,x(—3Ré})

is a domain with C* boundary; setting M := D¢, we see that suppuy C M
since D C Zp and since é < &. Moreover, in some neighbourhood of xy we
have OM = dsuppuy (since ¢(|Pz|) = 1 for |Pz| < R, i.e. £(Px) = £(Px)
for |Pz| < R). Thus M satisfies the conditions of Theorem 5.

For any sufficiently small » > 0, h > 0, we now obtain the estimate

1 1+a
/ |:—U():| dx
{z:| Pz|<r,|zq|<rdist(z,0M)<h} hn
1 1+«
TU(J| dx

Ax:|Pac|<7‘,|md|<r,dist(x,8suppuo)<h} |:h"
1 1+
— U dx .
{z:|Pz|<r, |xd|<7“ <dist(z,0supp ug)<h} hn

This implies for 7 > 0 small enough and h € (0,7) (recall that OM is a C*
manifold with tangent plane H = {z € R? : 24 = 0} in zy = 0; recall also

>

that 0suppug coincides with M in some neighbourhood of xg)

1 1+a
][ {—uo] dx
{z:| Pz|<r,|zq|<rdist(z,0M)<h} h"
14+
O] / {Luo] iz
hr {z:|Pz|<r,|zq|<rdist(z,0M)<h} hn
> (d)l / [—uo] dzx
hr {z:| Pz|<r, \:vd|<'r <dist(z,0 suppug)<h} h”

1 1+«
>c d)][ {—uol dx
{x:|Pm|<T,|zd\<r,%<dist(1’,asupp ug)<h} h"

>c(n,d,a)S' .
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Passing to the limit 7 — 0, then » — 0, our assertion is established.

Assertion b) is proven using the same construction for M as well as Theorem
5 b) and analogous estimates for the integrals. ]

3.5 Admissible values for n and b and limitations of our
approach

As a last point, we would like to discuss the results our approach yields for
n € [1,2).

In the figure below, the red area marks the set of pairs (b,n) for which
conditions (H1), (H2) and (H4) of Lemma 18 are satisfied. All pairs below the
yellow line satisfy condition (H3). For all pairs below the green line, v = —2
is an admissible value in condition (H5) of Lemma 20 and Lemma 21. The
green line intersects the boundary of the red area at n =2, b = % The yellow
line intersects the boundary of the red area at n = %(10 +/10) ~ 2.92495,

b= 1(11 4 2/10) ~ 1.92495.

3
2
decreases, we see that for n < 2 the minimal values of v which are admissible

become larger until for n = 1 only values in (—1,0) are admissible. At the
same time, a = b — n also increases until for n = 1 we have a = 0. In
particular, for n < 2 we have 1 + v + 41+T"‘ > 0.

Starting at n = 2, b = = and tracking the boundary of the red area as n

Considering the case d = 1, let kg € dsuppuy be a point with suppug N
(—00,79) = (. Applying Lemma 20 with x; := zy — €, we see that the
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estimate on T™ provided by the lemma converges to zero as € — 0 if near the
—~y—1

free boundary the growth condition ug(z) > S - (z — ) *** is satisfied for

some S > 0. Thus for n < 2 we only obtain immediate support spreading if
ug grows steeper than (z —x0)? at the free boundary for some 5 = 3(n) < 2;
this [ tends to zero as n tends to 1. Note that for g < % the condition
up € H'(R) can no longer be satisfied; thus we have to work with the notion
of solutions with weak initial trace.

Proof of Theorem 8. Dal Passo and Garcke [50] approximate ug by regular-
ized initial data ugs, e.g. by mollified versions wugs := ps * ug, and consider the
strong solution us of the thin-film equation with initial data ugs (in the sense
of Definition 9) constructed by a procedure like in [12]; then they pass to the
limit 4 — 0 and construct the solution u to be the limit of an appropriate
subsequence.

First, observe that for such a subsequence we have strong convergence of
us T to wttetn in LI (R x [0,00)) as § — 0 if n € (1,2) and o € (—1,0):

loc
Lo(R % [0,00)) (see Lemma 6 in

We know strong convergence of us to w in L,

[50]). The estimate

s (- )o@y <ClVus(, )| z2@) + Cllus( D)l @)
8—n_ _ 3
<C(n)lfuol| igayt 572 + Clluol |1 m)

(the first estimate corresponds to a Sobolev inequality; for the second in-
equality see Theorem 2 in [50]) implies that u} is bounded uniformly (with

respect to §) in L'(K x [0,T)) for every T > 0 and every K CC R (note that

3
8+2n

convergence of uj T to u!toF" in L}

-3 > —1). Putting these considerations together, we obtain strong
(R x [0,00)) since 1 + o +n < 3.

We now notice that the assertion of Lemma 23 survives the approximation
procedure: For the solutions us, Lemma 23 applies (provided that we can find
b subject to conditions (H1) to (H4); see below), i.e. the formula in Lemma
18 holds for us. We then want to pass to the limit 6 — 0. Convergence of the

terms on the left-hand side in the formula of Lemma 18 for a.e. t5 > ¢t; > 0

1
loc

follows using convergence of us in L; (R x I) (passing if necessary to a
further subsequence). For t; = 0, convergence of the term on the left-hand
side follows by the assumption of our theorem that us(.,0) — ug in L'(R).
Convergence of the third term on the right-hand side is a consequence of
convergence of u; ™" in L} (Rx[0,00)). It remains to deal with the first two
terms on the right-hand side. Note that § < b by (H2), thus the prefactors

of these terms are nonnegative.

Since supp g is assumed to be bounded, we have supp ug C Bg,(0) for some
Ry > 0. The approximation procedure by Dal Passo and Garcke (see Section
3 in [50]) then guarantees that suppus(.,0) C Bg,+5(0). By the finite speed
of propagation result Theorem 10, we thus obtain supp us(.,t) C Bg,w)(0),
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where Rs(t) := Ry+0+C(n )HuO(;HLl R)t@n. Note that |[uos| |1 () = [|uo| L1 (m)
by the choice of ugs by Dal Passo and Garcke. Fix T" > 0 and assume that
Yyz > 0 on Bg,(1)(0). By the lower semicontinuity of L? norms with respect
to convergence in the sense of distributions, we obtain

hmlnf/ / [(us? )g|* do dt > / / |(u 2 ).|? do dt

for any open set A C R and any 0 < t; < ty. Using Fubini’s theorem we see

that
/ / “N(us) e P ge do dt
+1
/ / / )e|? da dt ds
b +1 0,00) 1/1m>s}

for 0 < t; <ty < T and 0 < 1 (note that by our assumption we have
Yz > 0 on suppus(.,t) for t < T and 6 < 1, thus the present equation
indeed holds). By Fatou’s Lemma, we therefore get (due to continuity of .,
the sets {x € R : 9, (z) > s} are indeed open)

lim inf / / (s e P ge do dt
0—0
f )2
(b 1) / - hgn_)lgl / /%ps} )o|” dx dt ds
/ / "y |ty da dt

for 0 < t; <ty < T. Thus the inequality in Lemma 18 also holds for the
limit u, at least if we have 1),, > 0 on Bg,(1)(0) and ty < T for some T > 0
and if b is chosen such that (H1) to (H4) are satisfied.

Let € > 0 and 7" > 0. Set x; := xp — €. Consider the function |z — z;|" (with
v < —1) on the interval [z1 + €, Ry (T")). This function can be extended to a
nonnegative function ¢ € C*(R) which satisfies ¢,, > 0 on (—Ry(T), Ry(T)).
Thus by the previous considerations, the formula of Lemma 18 holds for the
solution u and the test function ¢ as long as t, < T' (and provided that (H1)
o (H4) are satisfied). Define

= inf{t > 0 : suppu(.,t) N (—o0,xq) # 0}

and choose T > T. Then for t < T we have suppu(.,t) C [z, Ri(T)); in
particular, ¥ coincides with |z — 21| on suppu(.,t) for t < T. Therefore
we see that the formula of Lemma 18 holds for ¢(z) := |z — 2|7 and a.e.
to,t1 € (O,T) with t; <ty as well as a.e. ty € (O,T) in case t; = 0 (provided
that b satisfies (H1) to (H4)).
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Since the proof of Lemma 20 used the inequality from Lemma 18 only for the
test function |z — z1|?, we see that Lemma 20 also applies to our limit u (at
least if the parameter T' of Lemma 20 is chosen to satisfy T" < T ). Suppose
now that we can find b and ~y such that (H1) to (H5) are satisfied. Using the
assertion of Lemma 20 for all T < min(7’,1), we therefore have the upper
bound

| /\

f{t > 0:suppu(.,t)N(x, — € 21 +¢) # 0}

n

14+«
|z — 2,7t a5 dx]

IN

: [
nT Ute[()l suppu( )\(117€7$1+6)

__n

1+«
: [/ ug ™|z — x| d$}
R

if the expression on the right-hand side is smaller than 1. Thus, we get

_n_
1+

(38)

1 1 - lza
: uptr et do
(zo,z0+€)

if the expression on the right-hand side is smaller than 1.

We now choose b and fy such that (H1) to (H5) are satisfied. For n € (1,1.5]
we choose b 1= —n + 22 40, in case n € (1.5,2) we choose b := %n + %. For
these choices, condltlons (H1) to (H4) are verified in the proof of Theorem
11 below. It remains to choose v < —1 such that (H5) holds. Note that for

€ (1,1.5] condition (H5) holds for some 7 > 0 if (2b—2)-2=2 — (b41) > 0,

2 y—2
ie. if % : 1—73 > 80482 this is equivalent to v > —2(2Z22) =: Yins(n).
For n € (1.5,2), (H5) holds for some 7 > 0 if 24252 = 13 > 20056 which is
equivalent to vy > —(172"—__714) =: Ying(N).

Choose v € (yint, —1). Note that by our choice of b and the definition of 7,
we have v + 4142 > —1 (since v,y > —2 and a € (—3,0) as & = b —n).
Thus by the finite speed of propagation estimate the ﬁrst integral on the
right-hand side of (38) converges to some finite value as ¢ — 0. The second
integral tends to infinity as € — 0 (at least for a subsequence) if the growth
condition from our theorem is satisfied for § := %’:1 and if v has been
chosen close enough to v;,s (depending on the 7 from our growth condition

in our theorem). Thus, the main assertion of the theorem is established.

Note that since 7;,;y < —1 we have 8 > 0. Moreover, we have § < 2 since
a > —% and v > —2. O

Most probably our results in the regime of strong slippage are not optimal;
we expect that at least for initial data with growth steeper than (x — 20)%
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one should have immediate support spreading. However, the derivation of
such an improved result is currently out of reach.
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4 Proof of the optimal lower bounds on asymp-
totic support propagation rates for the thin-
film equation

4.1 Derivation of a simplified entropy estimate

Recall the notation b := n+« and the following definitions from the previous
chapter (see Lemma 18):

H1) Assume that 1 <b < 2.
H2) Suppose that § <b < n.

(
(H2)
(H3) Assume that n —1 < b.
(H4)

H4) Suppose that the inequality

(n=b) (b 1) (b—1)(2—b)2ﬂ<5§—4b> (b—1>]2

is satified.

The set of (b,n) € R x R for which (H1) to (H4) are satisfied is depicted
below. The set of points for which (H1), (H2) and (H4) hold at the same
time corresponds to the red area. All points below the yellow line satisfy
(H3). The yellow line intersects the boundary of the red area at b ~ 1.92,
n ~ 2.92. For all points below the green line, v = —d is an admissible
choice in condition (Hba) of Lemma 25 below. The green line intersects the
boundary of the red area at b=1, n = 1.
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In the previous chapter, Lemma 18 has been seen to be a consequence of
Lemma 16, Lemma 17, and Young’s inequality. Recall that in the case of the
Cauchy problem Lemma 18 reads as follows:

Lemma 18. Letn € (1,3), a € (—1,0), and let u be a strong energy solution
of the thin-film equation on RY, d < 3, with nonnegative initial data uy €
H'(R?). Assume that suppug is bounded. Suppose that u satisfies the o
entropy estimate. Set b:=n+ « and assume that (H1) to (H4) are satisfied.

Let ¢ € CHRY); assume that 1 > 0. Then for a.e. ty,ty € [0,00) with
to > t1 and for a.e. ty € [0,00) in case t; = 0 we have

1 1
/Rd H—awa( () da — /]R H—au”a(.,tlw(-) dx
( b— —n)/ / = Vul2 Ay dx dt
4 (_b — —n) / / u’ IV - D% - Vo da dt
R4
b+1 2
o 1/ /R A% da dt .

However, for d > 1 existence of strong energy solutions is only known for
n € (2 — ,/8+d,3>. Thus, for d > 1 and n slightly larger than 1 only

existence of strong solutions is guaranteed. We therefore need to extend
Lemma 18 to the case of strong solutions:

Lemma 23. Let d < 3 and n € (1,2) as well as o € (—1,0). Suppose
that (H1) to (H/) are satisfied. Let uy € H'(RY) be nonnegative and have
bounded support. Then the assertion of Lemma 18 also holds if u is not a
strong energy solution, but a strong solution to the Cauchy problem for the
thin-film equation constructed by the procedure in [12].

Recall that the regularity of solutions u € L>°(I; HY(RY))NHL (I; [WhP(RY)])
implies u € C?

D (I; L>(V)) for any bounded open set V' C R¢ with smooth
boundary (see e.g. Corollary 4 in [53|). Thus by approximation, the formula

in our lemma again holds for all £, > ¢; > 0, not just a.e..

The remainder of the current section is dedicated to the approximation ar-
gument necessary for establishing Lemma 23; it may be skipped on first
reading.

Proof. We use the notation from [12]. In [12], the solution to the Cauchy
problem is obtained as follows: First a solution u of the thin-film equation
on the bounded domain Q := By/(0) is constructed as the limit of the
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solutions ug, of the problem
d
dt
1+ Vuse =1 - VAus, = 0 on 0Qy x [0,00) ,
Uso(.,0) = ug + 6% + 0% in Qup |

Usy = =V - (Mo (U55) VAUs,) in Qu x [0, 00), (39)

(where W is chosen so large that supp ug CC Qy) with 61,6, > 0 and

Un—i—s

Jun + vs + gynts

mse (V)

Let T' > 0. By the finite speed of propagation result (see [12]), if W has been
chosen large enough (depending on wug and 7)), it is seen that suppu(.,t)
cannot touch 9Qy for t < T. Therefore extending u to R? x [0, T] by setting
u = 0 outside of Qu x [0,7], a solution to the Cauchy problem for the
thin-film equation on the time interval [0,7] is obtained. This process is
repeated starting at time 7' with initial data u(.,T'), resulting in a solution
to the Cauchy problem on the time interval [T,2T]. Stitching together the
two solutions, a solution to the Cauchy problem on the time interval [0, 27|
is obtained. By an inductive construction, the global solution to the Cauchy
problem is constructed.

It is therefore sufficient to prove the assertion of our lemma for all strong
solutions v on some )y which have been constructed as the limit of some
sequence us, (ug, satisfying the auxiliary problem (39)). From now on we
abbreviate (2 := Q. Let 0,0 > 0.

Then, as shown in [34], choosing s > 8 ifd=3ors >4ifd=1ord =2,
there exists a solution us, which is strictly positive for a.e. t > 0 and satisfies
the energy estimate

t
/|VU5U(.,t)]2 da:—i—/ /m(;a(u(;a)\VAuaa\z dz dt < / [Vuo|* du .
Q 0o Jo Q

Moreover, this solution has the property us, € H}.(I;(H'(Q))'); for a.e.
t > 0 we know that VAus, € L*(Q2) holds and for any ¢ € L*(I; H'(2)) any
any 1" > 0 the solution satisfies

T T
/ <%u50,¢> tt= [ [ mantuse) Vs, o dz e (40

For a proof of these claims see also [34].

We now proceed as in the derivation of the entropy inequalities in [12]. Set

) 1 o
,UaJrnfs + o« + ,Uonrn
a+t+n—s « a-+n

gso(v) 1=

)



and

) 1

G " = a+n—s+1 = atd 41
so(0) (a+n—s)(a+n—s+1) a(a—kl)v (41)
o
+ ,Ua—i—n—i—l
(a+n)(a+n+1)
nta—1 14+n+a

We have G5 (v) = gso(v) and gj, (v) = ot Knowing that ug,* €
L4

P ALWE(Q)) (by the entropy estimate; see [51]) which by the Sobolev
embedding implies g b e € L} (I; L>=(Q)) and knowing that we have us, €
L>=(I; HY(R)), due to n + o — 1 < M2 (by (H1)) it is easily seen that
9% (use +¢€) € L (I; H(Q)). Thus we may test the equation (40) with
Y- g5 (usp + €), where ¢ € C°(Q2), to obtain for a.e. to > t; > 0 and a.e.
ts > 0 in case t; = 0 (for the rearrangements involving the term with the
time derivative, see the proof of Theorem 3.1 in [12])

to

/ Gso(Uuse +€) - dx

t1

u6a+€n+a1
- Mso (Use ) VAUs, - Vg, dr dt
/ / m60u50+€) 6<6) ’ ’

+/ / Gso (Uso + €) - Mo (Use ) VAuUs, - Vi) dx dt .
t1 Q

Integrating by parts yields (recall that for a.e. ¢ > 0 we have inf, u(x,t) > 0
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and u(.,t) € H}?

loc

(Q2); thus integration by parts is possible)

to

/ G&,(U&,— + 6) v dx

t1

U . + E n+a—1
/ / 0 Mo (Use) D*use : D*usy da dt
Mg (Use + €)

n+a 1
/ / Uso £ ) ()T - DPugy - Vg, d dt

m&r Use + 6

uéa + 6 n+a—1

Mg (Use + €)

) m/50<u50)

(u&j + €)n+a—2

Mg (Use + €)

+(n+a—1) Mo (Use)

(uéa + e)n—l—a—l
N [mé (U5 + 6)]2 ' méﬁ(u‘sa " €> . m50(u5‘7>

Vus, - D*usy - Vs, dx dt

(u&; + €)n+o¢—1

Mso (Uss + €)

*Mso (u&r)

oy

+ géo’(uéo' + 6) : mgg(uéd) VU(;U : D2u§o : V¢ dx dt

to
— / /g&,(uaa + €) - Mo (Use) D*use - D> da dt
t1 Q

= I+ 11+ 1II+1IV+V.

Now we can pass to the limit ¢ — 0. Note that the strict positivity of us, (., 1)
for a.e. t > 0 and for t = 0 implies that the left-hand side converges for a.e.

t1,t3 > 0 and a.e. t5 > 0 in case t; = 0.
n+a+1
To prove convergence of the right-hand side, first recall that we have uz, > €
n+a+1l
L (I; H*(Q)) and ug, * € L} .(I; W14(Q)) (see [51]) which implies that

loc
n+a—1

D2, € L2, (I LX(Q)) and u. ' Vg, € L (I; L)),

U

Convergence of term I can be shown as follows: Suppose € < 1. Note that we
have ms,(v) < % moreover, for v < 2 we have mgs,(v) > c(n, s, d, o)v
Thus, in case v < € we have

(U + e)n—l—a—l €n+01—1

mae(v+€) mio(v) < C(n, 5,0,0,0) v° < C(n,s,a,6,0)" !

ES
where we have used the fact that s > 4 (in particular s is larger than n and
larger than n + a — 1). In case v > € we obtain

nt+a—1 nta—1
% -mgsy(v) <C(n, s, q, 0, U)U—()m&,(v)

Mo (v + €) Mo (V
<C(n,s,a,d,o)" ",
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Thus, we get convergence of term I as ¢ — 0 using dominated convergence
(since pointwise convergence holds a.e. due to the strict positivity of us,
a.e.).

Term 11 can be treated similarly.

To show convergence of term IV, we only need to show the bound
1950 (v + €) - mj (v)] < C(n,s,a,d, o)1

(as a corresponding bound for the first term in brackets in term IV has
already been derived); then again convergence follows by the dominated con-
vergence theorem. Let € < 1. We obtain in case v < €

(950 (v + €) - iz (v)] < Cn,5,0,0,0)e™ 0™ < Cn, 5,0, 0,0)0" "

since a+n—s < a <0 (as s > 4) and since mj, (v) < C(n,s,0,d)v""! for
v < 1. For v > € we get

UnJrsfl

|g§0<v + 6) ’ mgo(“)’ SC(H, §, @, 6’ U) (UQH“L*S T UaJrn)Un + pnts

<C(n,s,a,d, o)1,
Regarding term V', for € < 1 we deduce in case v < € that
1950 (v + €) - mse(v)] < C(n,s,a,0,0)e* ™ *v° < C(n, s, a,8,0)v*" .

In case v > € we have

Un+s

o ' o <C 3 Oy 767 atn=s o)
|950 (v + €) - mse (V)] <C(n,s,,6,0)(v +v )vn+v”+5

<C(n,s,a,d,0)v*t" .

Again by dominated convergence, the term V' converges.

It remains to prove convergence of term I//. Using dominated convergence,
the convergence of this term is established as soon as we have shown the
appropriate estimates. Assume € < 1. For v < € we get

(et (v et

—— ms,(v)+(n+a—1)——F—— ms, (v
mso (v + €) HORE ) mso (v + €) io(V)
(v +¢)ntort
— m . mga(v + 6) . m(gg(v)
6n+o¢—1 6n-l—oz—2
<C(n,s,a,0,0) 4 Cn, s, ,8,0) -°
68
n+a—1
+C(n,s,a,(5,0)€ 5 eyt
6 S

<C(n,s,a,d,o)" T2,
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On the other hand, for v > € we obtain

v+e n+a—1 v+e n4+a—2
(Gl -, (V) + (n+a — 1)L Mo (V)
Mso (V + €) Mse(V + €)
(v + ¢)nta-t
— m . m:;a(’l) + E) . mgg(’l))
Un—i—a—l Un—i—s—l Un—i—a—Q

<C(n,s,a,0,0) +C(n,s,a,6,0)——

Mo (v) V" + v + vt e (v)

Un+a71 UnJrsfl
Mo (0 v+ o o

<C(n,s,a,d,0)v" T2,

+C(n,s,a,d,0) Mg (V)

Summing up, we have shown that (recall that b :=n + «)

to

/G5U(u5a) ¢d$

t1

/ / Y- upte 'D2%us, : D*ugy dx dt
/ / ntelgy . D?ug, - Vs, da dt
—/ Y- (n+a— Vuyt* *Vus, - D*usy - Vug, dx dt

oy

_/ /g5a(u5a> m5o(u5U)D2u50 . D2¢ dx dt
t1

to
t1

)

{u?ja Y4 950 (Use) - M, (Use) | Vtse - D*usy - Vb da dt

2

D

—~

)

/1/1 u&,lDzu(g(, D?us, dx dt

[2)
—/ /uéalvw D?us, - Vugy dx dt
t1

o)

Yv-(n+a— 1)u§;2Vu(;o - D*ugy - Vug, dx dt

| |
—
= &+ <+
V) [\V)

u50 + uéa :|VU§U D*us, - V) dx dt

ul, D*usy : D*1) da dt

Q|+

G50 (Uso) - s, (Use) — nugal] Vusy - D*usy - VO d dt

|
r\
= B
)
| — |

D*us, : D* dx dt .

|
T
S 5— o 55— o —

1
G50 (Uso) - Mo (Use) — auga

|
—
= &S
IS
| — |
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Recall that u is strictly positive and bounded for a.e. ¢t > 0 and that u(.,t) €
H} () for a.e. t > 0. Several integrations by parts therefore yield

to

/G(gg(u(gg) wdx

/ /w ub 1]D2u(;g|2 dx dt
/ /u501|VU50| Ay dz dt
t1

b— Lo,
u5g \Vuse|*Vuse - Vb do dt

—(b— 1)/ / P - ug;2Vu50 - D*ugy - Vug, dx dt

/ /uéal\vu(ﬂ Ay dx dt

b -1)
/ /u502|VU5U| Vus, - Vb dx dt

/ /u501Vu50 D? V- Vugs, dx dt
- / / ul Vs, - VAY da dt

-,
-,

oy 1

/ [gaa Use) - My (Use) — —Ug, ]vu&, - D*us, - Vb d dt
Q (0%

J

o)

1
[950 Uso) * Mo (Usy) — auga] D*us, : D*¢ dx dt .

80



Further integrations by parts yield
to

/G(SJ(U(SJ) djdl‘

n—b/ /u501|D2u&, Y dx dt
(b— —n) / /u5gl|Vu5g| Ay dx dt

—/ /u&,qu&, D* - Vug, dx dt
t1

b+1 A2
b+1// A2 dy dt
(b—-) b—1)( 2—b/ /u503|vu50|4¢ dz dt

(Qn —3b)(b—1) / / u&,zVu&, - D?us, - Vusy 0 dx dt

+ — (— - b (b— 1)/ / us | Vus, | Augy 1 do dt
/ / {gaa Use) M, (Use) — u&, ]Vu(;g D?us, -V dx dt

1
- / / |:g(50(u60) Moo (Use) — —ugg} D*us, - D* dx dt .
t1 Q (8%

Multiplying the equation by «, conditions (H1) to (H4) in connection with
Lemma 17 now imply (for details see the proof of Lemma 18) that

oz/Ggg(U5U(.,t2)) o dx—a/QG(;U(u(gg(.,tl)) W da

( b— —n) / /u501|VU5U|2A¢ dx dt
+ <—b — —n> / /ug(71Vu50 - D* - Vug, dx dt
Q

~ 531 / / MA%Y da dt (42)

—/ / {ag(gg(u&,) -, (Usy) — nu&_ ]Vu(gg D*us, - V) dx dt
t1 Q

[
— / / {agtgg(utgg) Mo (Usy) — ugg] D*us, - D*¢ dx dt
t1 Q

for a.e. t5 > t; > 0 and a.e. t3 > 0 in case t; = 0.

We now pass to the limit 6 — 0, then to the limit ¢ — 0. The first three
a+t+n+1 a+n+1
terms on the right-hand side are seen to converge since uz, > — u, > and

at+n+1
(I; H'(€2)) (see Proposition 1.6 in [51]).

atn+1
Uy 2 —u 2 strongly in L?

loc
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We now show that for a.e. t1,t5 > 0 the terms on the left-hand side con-
verge. Recall (41). Using the strong convergence of uj**! and u?tet! in
Ll n—&-a—&-l(‘ t)

LI LYQ)), we first deduce for a subsequence convergence of u

and ur ot

t) for a.e. t > 0 in L'(€). This implies convergence of the inte-
gral of the second term in the definition of Gg, (us, (., 1)) -7 (i.e. convergence
of [yusr*(.,t)¢ dx) to the desired limit for a.e. ¢ > 0 and for ¢ = 0 since
1+a € (0, 1). Moreover, by the uniform boundedness of us, (with respect
tod € (0,1), 0 € (0,1)) in L>(I; H'()) and the Sobolev embedding, we see
that the integral of the third term in the definition of Gy (use (., 1)) - ¢ (i.e.
o [qust" (., 1)y dx) is bounded by C(d,Q)ol|y||r=xr) HufgaHlLto"J}%l(Q))'
therefore this term vanishes in the limit ¢ — 0. It remains to prove conver-
gence to zero of the integral of the first term in the definition of G, (us, (., 1))
¥ (i.e. convergence to zero of 4 [, ug™ > (., t)¢ dx); this is more involved

sincea+n—s+1<0duetos>4andn <3, a<0.

Considering the & entropy inequality (see Proposition 1.2 in [51]| and relation
(4) in [12]) for us, for & := o — v with v > 0 sufficiently small, we deduce
using (¢ —v+n—s+1)<0and (¢ —v+n) >0as wellasa—v € (—1,0)
(these inequalities hold since v > 0 is small) that for a.e. t >0

/5u°‘ vin=stl(g t) do
<C(n,a,v, s)/uéja “(z,t) dx
Q

+ C(n7 a, v, 8) / 0 - (u[) + (561 + 092)a71/+n73+1 dx
Q

+ C(n,a,v,s) / o - (ug + 0% + gP2)rromvtl gy
Q

We know that mass is conserved; in connection with Holder’s inequality this
gives a uniform (with respect to ¢ and § € (0,1) and o € (0,1)) bound on
Joust® ¥ (x,t) do (since 0 < 1+« — v < 1). The third term on the right-
hand 31de is bounded by C(d,n, e, v, 5, Q)0 sy (., 0)|[ gy " this yields a
uniform (in § € (0,1), o € (0,1)) bound. The second term on the right-hand
side is bounded by C(n, a, v, 5)§|Q|o? ("=sTa=v+1) (note that the exponent is
negative). For v > 0 small enough and ¢ > 0 fixed we therefore obtain a uni-
form (with respect to § € (0,1) and ¢ > 0) bound for [, dug, """ (xz,t) dx.
For every > 0 we now have

/5 atn=stl(y t) do < Sp* TS HHQ| + /5u°‘ vin=stl(g t) do

The latter integral being bounded uniformly with respect to 6 € (0,1) and ¢,
setting p := 0 for > 0 small enough the convergence to zero of the integral
of the first term in the definition of G, (uss) ¥ (i.e. of § [, ug "> (., t)¢ du;
note that v is bounded) as § — 0 follows.
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It remains to prove that the last two terms on the right-hand side in (42)
converge to zero. We compute

|gso (V)Mo (v) — 0"

,Un—l—s ,Un-l—s

< |v® — " 4+ 6C (n, o, s)p" TS
— | dun 4 vs + gunts (n, @, 5) Jum + vs + gynts

Un—f—s

C ,Q, n+o
+oC(n, a,s)v ov"™ 4+ vs + gunts

ov™ + ot
ovm + vs 4 gunts

n+ao

<C(n,a,s)

Using this estimate and Young’s inequality we get for all g > 0

to
/ / {agtgg(u(;a) c My (Usy) — uga] D*us, : D* dx dt
t1 Q

pof
g—/ /ugal|D2u50|2 dz dt
2 t1 Q

1 to (5 n n+s 2
n ﬂ/ /QC(n,a, s)( Usy T OUs, n+s> ug:aH’Dzwz de dt
t1

n S
ouy + uj, + ouyg)

at+n+1 a+t+n+1
By Vitali’s convergence theorem and the convergence us, > — u, > and
atntl at+n+1

us 2 —wu 2 strongly in L2 (I; L*(f2)), the second integral on the right-

loc

hand side tends to zero when passing to the limits § — 0 and o — 0; the

first integral is known to be bounded uniformly. Since p > 0 is arbitrary, the
term on the left-hand side converges to zero.

We have

g5 (v)mis, (v) — no™ 7|

o (V" +v* 4 av" ) (n 4 s)v" Tt
(dv™ + v8 + gunts)?
Lo —0" S (nov" ! + s 4 (0 s)out ) a1
(0v™ + vs + gvnts)?
+ C(n, s, ) (00"t 4+ g™ t®)
(00" + v + ov™ ) (n + s)v" el
. { (6v™ + v + ovnts)?
V" (ndv™ !+ svsT 4+ (n+ s)oum )
(0v™ + vs + ovnts)? ]
" 4 ov™t

dv™ + vs + gynts

<|v

<C(n,s,«a) ntesl
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We therefore obtain by Young’s inequality

to
/ / |:04950<U5g) -y, (Usy) — nuggl} Vusy - D*ugy - V) da dt
t1 Q

to to
§u/ /ug‘ja_llDQuaa\z dz dt + u/ /u”:a_3\Vu5a’4 dz dt
t1 Q t1 Q

5
C(n,s,a) [™ oul 4 ourts :
+ (Iug )/ /( o T OUgs, n+s) ugj—a+1|v¢|4 dz dt
t1 Q

n S
ouy +uy, + ougt

and conclude that the term on the left-hand side tends to zero using Vitali’s
theorem, the uniform bounds on us,, and the arbitrariness of . O]

4.2 Suboptimal estimates on asymptotic support prop-
agation rates
In this section, we derive a differential inequality for the weighted entropy

Jga u' (., t)]x — 207 dx in order to obtain a first lower bound on support
propagation, which however is not yet optimal.

We need the following version of Hardy’s inequality:

Lemma 24 (Hardy’s inequality). For any v € HY(R?) with suppv CC
R\ {0} and any ¢ € C=(R4\ {0}) with Ay >0 on R\ {0} the inequality

2 2
/ VA dm§4/ Vy N
Ra R4

— Vv
V)| Ay
Proof. Integration by parts and Hélder’s inequality give
/ VEAY do = —2/ vVou -V dz
Rd

R4

<2 (/ vEAY da:)2 </ Aiwwv-vw dx)z .
R4 Rd

The inequality now follows easily. O]

dx

holds.

Combining the results of the previous section with Hardy’s inequality, we
shall prove the following lemma:

Lemma 25. Let ug € HY(R?), 1 < d < 3, be nonnegative and compactly

supported. Let u be a strong energy solution of the Cauchy problem for the

thin-film equation with initial data ug and n € <2 — ,/8%[, 3> or let u be a

strong solution of the thin-film equation constructed as in [12] andn € (1,2).

Suppose that conditions (H1) to (H4) of Lemma 18 are satisfied and assume

1

that u satisfies the o entropy estimate. Gwen v < —3,

that

suppose furthermore
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(H5a) The condition

2b—%n.(7—4+d)(7+%) 1 _
b+1)2 (y=2)(v—24d) b+1~—

is satisfied for some T > 0.

(H6) We have v < —d.
(H7) It holds that v+ d + 42 > 0.
Let 79 € RY\ suppug be some point.
Let to > 0. Suppose that
to > e[diam(supp ug) + dist(zq, supp uo)]“”'dHugHZf(Rd) (43)

holds for some € > 0. Define
T" :=inf {T >0: Oiltlf dist(xg, suppu(.,t)) = O} .

Then there ezists a constant C(d,n,c,y,€) > 0 such that the estimate

4+4&+n(d+'y)

T SmaX<2to, O(d.n, 7, &) |Joll 1 iy

44n-d
1 —vy+a-d
- [/ u' (. o)z — xo]” dx] >
R4

holds.

Proof. By our assumptions, Lemma 18 and/or Lemma 23 are applicable. We
may assume ty < 1™ as otherwise the assertion of our lemma is trivial.

Let T' < T*. The function |z — x|” is smooth in some neighbourhood of the
set Uiy suppu(., ). By the FSOP estimate Theorem 10, [z — zo[” coin-
cides on Ute[O,T} supp u(., t) with a nonnegative smooth compactly supported
function.

Thus, we may use | — zo|” as a test function in Lemma 18 or Lemma 23.
This yields for tg <t <ty <T*

1 1
/Rd H—aupra(., t2>’$ — 33'0”Y dr — /Rd H—au1+a(.,t1)|x — l’o”y dx
t2
< b— —n) / / u’ VUl Alr — x0|” da dt
1 b 1 2
+ —b—— Vu- Dz —zo|” - Vu dz dt
3 3 R4

uPttA? " dx dt .
[ [t
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We calculate

D?|z — zo|" = D(v|z — 0| *(z — x0))

=y(y = 2)|z — xol'y"l(m‘ — ) ® (x — x0) + y|x — x0|7’2ld )

Combining the last two formulas, we obtain
1 1
/Rd H_—aulw(.,tg)\x — xo|" dx — / Tu1+°‘(.,t1)|x — xo|" dx
>y (y—244d)- ( b——n)/ / u’ ™ Vul? |a:—x0|72dxdt
00 (=) [ Lo
R4
4 1
+7 ( b— —n)
/ / u V- ( —x_xo®w_$0)-Vu|x—x0|”’_2dmdt
R |z — x| |z — x|

1 f2
—7(7—2+d)(’y—2)(’y—4+d)—/ / utH o — x| da dt .
b+ 1 t1 R4

-Vu

\x — 0|72 dax dt

|x—x0]

We now rewrite

V|2 = Vu - (Id— |""C_x0 ® x_xo) Vo +

r—xo| |z — 0

— - Vu

|a:—x0|

Thus we obtain
1 14 1 1
—u (.t — 20l” dx — — (Lt —x0|7 d
/]Rd 1+ozu (s t2)lz = zol” du / 1+04u (- 1)|x Tol" dx

<w4%( o) [ L

1

/ / WV - <Id — ) SV |z — o[ da dt
R |:U—x0| |z — x|

—7(7—2+d)(’y—2)(7—4+d)—/ / Tz — x| da dt
b+1 t1 Rd

-Vu |£E — 0" dx dt

|x—x0\

We may drop the second term on the right-hand side since it is nonnegative
by (H6) and (H2) . Thus we get

1 1
/Rd H_—au1+o‘(.,t2)|x — l’o"y dx — / H—aul+a(.,t1)’$ — iL'O|’y dx

i () [ L |

|z — 20[77? d dt
—7(7—2+d)(7—2)(7—4+d)—/ / Tz — 20| da dt
b+ ]. t1 ]Rd

x—x0|
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An application of Hardy’s inequality (Lemma 24) with ¢ = |x —x0|7"2 yields

1 1
[l —al o= [ )l -l do
>y(y = 2+d)(y = 2)(y —4+d)

20— in (v—4+d)(v+ 45 1
b+12 (=2 (y—2+d) b+1

to
/ / e — x| da dt .
t1 R4

By (Hb5a) we obtain

1 1+ / 1 1
—u (., — 20| dx — — qytte Lt —x0l” d 44
/Rd . +au (., to)|x — xo|” dx 1 +au (i, t1)|x — xo|” dx  (44)

to
ZT/ / e — x| da dt .
t1 R4

Holder’s inequality gives

/ u ()| — x| da
R4

o 14a
o b+1 b1
< (/ |z — o[ a5 dm) </ u ()] — |7 dx)
supp u(.,t) Rd

Let y € supp ug. By Theorem 10 we know that supp u(.,t) C Br)(y), where

R(t) = diam(supp ug) + C(n, d)||uo||ﬁ?£d tiran . Rearranging the previous

inequality, we obtain

/ utH ()| — mo| T do
Rd

T 1ta
14+«
> / |z — 2o/
BR(t)+dist(y,zq) (Z0)

b+1

e
: (/ u (L )|z — 2|7 dm) :
Rd

Using (H7) and (44), we therefore arrive at the differential inequality

1
1+«

2 1+«
>c(n, a, d, 7)/ [R(#) + dist(y, zo)] O H5+4) s

t1

/ulw(.,tg)]x—xoﬁ dx — /u”a(.,tl)\x—xor’ dr
Rd d

1+«

b+1

1+a
: (/ () |x — x| dx) dt .
R4
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Taking into account our assumption on t, (43) and using the fact that y €
supp ug was arbitrary, we obtain for all ¢y, ¢, with to > t; and ¢;,t5 € [to, T)

1
1+«

)
>c(n, o, d,y,€) / [| || |l4;1F"Rdd)t4+n a
t
' b+1

Tta
: (/ u ()| — 207 dx) dt .
Rd

The solution of the differential equation 4o (t ) = b(t) - (2(t))?, 2(ty) = a,

1 1+
w (L t)|r — x| dx
1+Oz/Rd ( 1)| o

] (v+attetd) 2o

/ utt ()| — mo|7 dw —
Rd

dt
is given by 2(t) = (a'™? — (p — 1) ft dt)l 7; in particular the solution
blows up as soon as the term in brackets becomes zero. Set p = %

Using the comparison principle, we see that blowup of the weighted entropy
Jpa ' (. t)|z — xo|7 da occurs before or at time T if the condition

y4ite 4 d).
} ( )1+ dt

T
c(n,a,d,v,€) / [[ || ’ﬁnR«fi)tHn a

to
n

T Tia
> </ u (L to)|x — x| dx)
Rd
is satisfied. This condition is implied by the condition

Layg).n andan (=T
elm, . d,, 0l [ T Tt

~Tra
> (/ u (o) |r — x| dx)
Rd

(note that the exponent at t is nonnegative since a € (—1,0] and since
v < —d) which in turn in case T' > 2t; is implied by

t=to

a-n-d—yn

T (+o)(dtn-d)
e (et td) “Tha
ZC(TL, Q, d,’)/, E)HUOHET(R(Z)( ) e (/d u1+a(.,t0)|m - $0|’Y dI) :
R

This proves our lemma since blowup of the entropy cannot occur before T*
as we have

/ ut () |z — 2|7 da
R4

1+a —a
< (/ u(.,t) dx) </ R dx)
R4 {|z—z0|>dist(xo,supp u(.,t))}

(note that the right-hand side is finite for ¢ < T* since [y, u(.,t) do =
|[uo| 11 (rey and since the second integral is finite due to a € (—1,0) and
v < —=d). O
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4.3 Estimate on entropy production

Our next aim is to bound the entropy f u't(.,tg) dz from below; the esti-
mate for this quantity will provide the starting point for an application of
the results from the previous section.

Lemma 26. Assume d <3 andn € (1,3). Let ug € H'(R?) be nonnegative
and compactly supported. Let u either be a strong solution of the Cauchy
problem for the thin-film equation constructed as in [12] and n € (1,2) or
let u be a strong energy solution of the Cauchy problem for the thin-film

equation and n € (2 — 3). Assume that u satisfies the a entropy

8
8+d
estimate, where o € (—1,0). Set Ry := diam [suppug]. For any ¢ > 0 the
following assertion holds: If the condition

to > eRE™ug| |77z

is satisfied, then there exists a constant c(d,n,a,€) > 0 such that

—a-d

n-d
[ e te) do = eld s ol 85
R

Proof. By the a entropy inequality we have

to 14+ntao
/ ut (., to) dx > / ug™® dw +c(a,n)/ / |Vu =3 |* dx dt
Rd Rd Rd

We have diam [suppu(.,t)] < C(d,n)(Ry + ||u0||ﬁFR‘§)t4+nd) this is a con-

sequence of Theorem 10. Moreover we have [ u(.,t) dz = ||ug||p1(ga).

This implies by the Poincare-Sobolev inequality on the ball with radius
c(d, n)(Ro + ||u0||zJ{”Rffi)t4+nd) (note that 4 > d which implies that any L?

norm of w4 may be estimated in terms of the L* norm of VUHTQ) that

for ae. t >0

14+n+a
ol L7 = (/ ul. 1) d:z:)
Rd

+(n+a)d n+a
<C(d,n, ) (Ro -+ [[uol izt 77 ) / Va5 da

L1(R9)

Putting these inequalities together, we obtain

/ u (o) da
R4

14+n+« o 4+n 4+n-d L —4=(nta)d
>e(d,n, o) |uo| L4 (Ro ol B t4+nd> dt
0

L(Rd Ll(]Rd)

to —4—(n+a)-d
n,a, €)||ug U t4+nd t
eld,n, ool [, (luoll e 75 d
to
2

—a-d

>C<d n, a EHuoHLla )4+ndt4+nd

where in the second step we have used the assumption to > eRg*"™ % |uol| ;7" (R4)

and in the third step we have used the fact that 4;‘:1% > 0. O
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4.4 Optimal lower bounds on asymptotic support prop-
agation rates

We are now in position to prove our main result on asymptotic support
propagation.

Proof of Theorem 11. Define r := dist(xq,suppug) + diam(suppug). Set

to = r4+”'d\|u0\\£}1(Rd). For a € (—1,0), we obtain by Lemma 26

/d u1+°‘(.,t0) dx > c(d,n,a)||u0||1LT&d)r_o"d .
R

Let y € supp ug. We now know by Theorem 10 that SUPp u(.,t0) C Bruo)(v),
where R(tg) = diam(suppug) + C(d, n)||u0||f{dR’fi t4+d". Putting these con-
siderations together, we obtain in case v < 0

/ u' (. to) | — |7 dx >e(d, n)?”/ u'te (L to) da
Rd Rd

>c(d,n Oz)HuoHlLJ{OI‘Rd)r’O"dW

If we can find o € (—1,0] and v < 0 such that Lemma 25 is applicable (with
e = 1), we get the estimate

44+4a+n(d+~) 44+n-d )

T* < max <2t070(dna,7)!|uOHLl‘”§” ol o]

which gives

T < C(d,n,«a 7)||u0||L1(Rd pAtdn

Since a and v only depend on n and d, the result is then established.

Thus it remains to find admissible values for o and . We first treat the case
ne(1.5,2). Set b:=3 + £(n—3)=En+ 1 and v := —d. This implies
a = 1 Ln  Conditions (H1), (H2), (H3), (H6), (H7) are immediate.

40 20
12n — 64\ 2 /22n — 24\
40 40

Condition (H4) is equivalent to
18n —16 2n+16 22n —24 64 —22n
4(18n — 16)(2n + 16)(64 — 22n) > (12n — 64)2(22n — 24) .

. . . >
40 40 40 40 -

R

which is equivalent to (since n > 1.5)

Factorization (e.g. using a computer algebra system) leads to

64(2 — n)(99n? — 1761 + 256) > 0 .
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As the second polynomial factor is immediately seen to be strictly positive,
condition (H4) is satisfied since n < 2. Finally, condition (H5a) is satisfied
for some 7 > 0 if the inequality

(2()— E) . (—d —4+d)(—d+ &2
2
holds. Simplifying, this inequality becomes

24n + 32 4 - 22n + 56
40 3 40 ’

which is satisfied for n = 2 and for n = 1.5. Thus the inequality is satisfied
in the whole interval (1.5, 2] (as the difference of both sides of the inequality
is an affine function).

We now deal with the case n € (1,1.5]. Weset b:= 2+ (n—3) = 2n+2

and y := —d. This implies o« = 2 — 2n. Conditions (H1), (H2), (H3), (H6)

and (H7) are verified immediately. Condition (H4) is now equivalent to
28n — 88\ % (18n — 18 ”
40 40 ’

4-22.(22 —2n) - (58 — 18n) > (28n — 88)? - 18 .

22n —22 22—-2n 18n—18 58 — 18n
40 40 40 40

>

A

which is equivalent to

Rearranging the latter inequality, we obtain
11-(11—=mn)-(29—9n) > 9- (Tn —22)* .
The last condition is seen to be equivalent to
—342n” + 1364n — 847 > 0 .

This condition is true for all n € [1, 1.5] since for all such n we have —342n%+
1364n — 847 > (1364 — 1.5 - 342)n — 847 > 1364 — 1.5 - 342 — 847 = 4. Tt
remains to verify (Hba). Condition (H5a) is seen to be satisfied for some
7> 0if

16n +44 4 - 18n + 62
40 3 40 '

This inequality holds for n = 1.5; for n = 1, equality holds. Thus, since the
difference of the functions on both sides of the inequality is an affine function,

the inequality holds for every n € (1,1.5].
Finally, we treat the case n € [2, %) In this parameter range, we are fine

with the choice b := 2%71 + ;—(2), ile. a= —;—én + %, and v := —d. For these

choices, conditions (H1) to (H4) have been verified in the proof of Theorem
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3. Conditions (H6) and (HT7) are immediate. It remains to check (H5a). We
see that (Hba) is satisfied for some 7 > 0 if the inequality

>b+1

(Zb—ﬁ> (—d—4+d)(—d+ E2)
2 (—d—2)(—d—2+4d)
holds. Using our choice of b, this condition becomes

8n+24 4 - 9In + 32
20 3 20

For n = 3, this condition is satisfied; for n = 2, it is also satisfied. Both sides
of the inequality being affine functions, the inequality holds for all n € [2, 3].
This finishes our proof. n

Proof of Corollary 12. The assertion follows directly from Theorem 11: Tak-
ing into account that suppu(.,t;) C suppu(.,ts) for all 0 < t; < to, fixing
1o € R? we see that dist(zg, suppu(.,t)) is a nonincreasing function of t. This
yields dist(z, suppu(.,t)) = 0 for t > T (with T* as defined in Theorem
11), which in turn implies xy € suppu(.,t) for ¢ > T*.

Rearranging the estimate on 7™, we see that it is equivalent to the inequality
dist(xg, supp ug) > c(d, n)||u0||ﬁ?£d)(T*)44+2n — diam(supp ug). Given T' > 0,
we thus have 7% < T for all points z( satisfying dist(zo,suppug) < R(T).
Using xs € supp ug which implies dist(xg, zs) > dist(zo, supp ug), the proof

is finished. O
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5 Proof of the infinite speed of propagation
of solutions to the Derrida-Lebowitz-Speer-
Spohn equation

We now proceed to the proof of infinite speed of support propagation for
solutions of the DLSS equation. We first prove a Hardy-like inequality which
will be required in the multidimensional case.

Lemma 27 (Hardy-like inequality). Let ¢ € C* (R%\ {0}) be given with
Ay > 0 on R\ {0}. For any nonnegative v € H*(R?) with suppv CC
R4\ {0}, the inequality

|Av]? [y
UAwdxg/ — — dx
/Rd Rd v A'[b
holds.

Proof. For smooth compactly supported nonnegative v we calculate

/vAwd:E:/ Av Y dx
R R

3 2 2 3
S(/ (U+E)Awdaj> (/ %%dw) :

By approximation (convolution of v with a smoothing kernel and passing to
the limit) this formula remains valid for any v with the properties stated in
the lemma.

Passing to the limit ¢ — 0 using the monotone convergence theorem, we
finish the proof. O

We now prove our main result in the one-dimensional case with periodic
boundary conditions.

Proof of Theorem 14. Let 1 be a smooth 1-periodic function on R. We re-
arrange the weak formulation of the DLSS equation (6) with test function 1)
using integration by parts; this yields

T T 1 (T
/ (Oyu, ) dt = 2/ / IV Uy |* e dx dt — —/ / U Vypyze dx dt .
0 o Jo 2J)o Jou

We now argue by contradiction. Extend w from (0,1) x I to R x I by
periodicity. Suppose that there exist zo € [0,1], 6 > 0, 0 < tg < tp such
that suppu N (Bs(zo) X [ts,tr]) = 0. Without loss of generality, we may
assume zo = 0. We then would like to choose ¢ (z) := 27 as a test function
in our previous formula, where 7 < —4. Note that v is not admissible (since
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we would need it to be smooth and 1-periodic); however, by our assumption
u(.,t) vanishes in (0,6) U (1 —6,1) for a.e. ¢ € [ts,tg], so instead of using
as a test function we may use a smooth function 1/1 with suppw - (g, 11— g)
and with ¢ = ¢ on (2, 2), this function ¢) may be extended to a smooth
1-periodic function and inserting ¢ we get the same formula as we would if
we would use ¢ as a test function. Thus we obtain for a.e. ty,T € [tg,tg]
with tg < T and for all v < —4

T
/ u(.,t)z? dz
(071) to

-1 [ ) [ W s (15)

1
— —v(y=1(y=2)(y - 3) / / )z’ dx dt .
2 (0,1)

For a.e. t € [tg,tg], by assumption u(.,?) vanishes in some neighbourhood
of 0 and 1. We set v(x) := /u(z,t) for z € (0,1) and v(x) := 0 elsewhere;
we then have v € H'(R) for a.e. t € (t5,tr). Applying Lemma 19 to v with
weight |22, we obtain

4
Vi de < ——— |V, |*27 2 da
(v=3)2Joy

(0,1)

for a.e. t € [tg,tg] and all v < —4. With (45) it follows that

/ u(.,t)x” dx
©0,1) t

2590 = 1) (=3~ (1= 2y~ ) //) ) da di

vy = D(y - 3// )z dx dt
0,1)

Yy =D (y — 3// t)z” dx dt
0,1)

where in the last step we have utilized z=* > 1 on (0,1). Gronwall’s Lemma
now implies that for a.e. ty,T € [tg,tg| with to < T and for all v < —4

/ u(., Tz dx 26_§7(7_1)(7_3)(T_t0)/ u(.,to)x” dx (46)
(0,1)

(0,1)
>~ 27 DO (T—10) ||y | 1@

T

N | —

> _

DN | —

where we have used 7 > 1 on (0,1) (recall that v < 0) and conservation of
mass. We now note that

/ u(., T)a” do < 07| u(., T)|| 1) = 07 ||uol| L1
(0,1)
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for a.e. T € [tg,tg| and all v < —4, where we have used conservation of mass
and the fact that suppu(.,7") N Bs(0) = 0 for a.e. T € [tg,tg]. Putting this
estimate and the inequality (46) together, we obtain for a.e. ty,T € [tg,tg]
with tp < T and for all v < —4

8 Juo|| 1) > e*%V(V*U(W*”)(T*to)HuOHLl(Q)
or equivalently since ||ug||z1) > 0

1> e Mos §+5(y=1)(v=3)(T—to)]

which yields a contradiction if we let v — —oo for T' > ¢, fixed (with tg <
to, T < tg). This is possible as v < —4 is arbitrary; recall also that tg > tg.
Thus our assertion is proved. O]

The following result has been established in [25].

Theorem 28. Let d < 3 and let u be a weak solution to the DLSS equation
on Q = (0,1)% with periodic boundary conditions. Provided that u has the
additional regularity ui € L2 (I; H2,.(Q)), we have for any T > 0 and any

per

W€ L®(I; W2=(Q)) N WHY(T; L=(Q)) with (., T) = 0

per

—2/0T/Q¢a¢t da dt—Q/Q\/u—w(.,O) dz (47)

:/OT/Q%Mﬂdedt—/OT/QA\/ﬂAwdxdt.

‘A\‘;l is well-defined and belongs
to L}

L (I LY (). Therefore our formula (47) implies that we have /u €
whi(r; [H2.,.(Q))') which yields \/u € C},.(I;[H},.(Q)]'). In connection with
conservation of mass (which implies \/u € L>*(I; L*(Q2))) we deduce that
Vu e C) (I; L2(9)), where L2 denotes the space L? equipped with its weak

topology.

Note that by the following lemma, the term

Lemma 29. Let d < 3. Given v e H2 ((0,1)4) with v > 0 and some

per

I-periodic ¢ € C®(R?), we have vz € WEA(Q) with the estimate

per
/ IVoz|* do gC(d)/ |D%0|? da .
(0,1)4 (0,1)¢

Moreover, for v € H2,.((0,1)%) with v > 0 and \/v € HZ,.((0,1)%) we have

per
Av =0 a.e. on {v =0} as well as

|[Avf?

1 2
= AX{vz0} - (A\/5 + 4| Vs |2>

In particular we have the estimate

C(A)1vVollz2 0,1y

L((0,1)%)
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Proof. We calculate for smooth strictly positive 1-periodic v

1 3
|8v2 |t do = v 20| de = — v HO|20%v da .
].6 16 [
(0,1)4 (0,1)d (0,1)4

By Young’s inequality we obtain

/ |8¢U%|4 dr < C’/ |0%0)? dx .
(0,1)4 (0,1)d

Taking the sum with respect to 7, we obtain the first assertion of the lemma
for smooth strictly positive v. By approximation the inequality carries over
to the case of stricly positive v € H2,.((0,1)?). Considering v+ € and passing
to the limit € — 0, by lower semicontinuity of the W norm (with respect to
convergence in L*) we finally see that the first assertion of the lemma holds

for any nonnegative v € H2,((0,1)9).

per
Regarding the second assertion of the lemma, we first note that the first
assertion of the lemma applied to /v yields v1 € Wt ((0,1)4). For smooth
strictly positive v we calculate

AP IV (VYRR _ (VIAVE+ V)’

()

which implies

Avl? L2
A0l :4(A\/5+4|Vv1|2>
v

By approximation, the latter identity remains valid a.e. for strictly positive
v € H2 ((0,1)%) (note that by d < 3 we have v € C°((0,1)%)). To prove

per

the identity for all nonnegative v € H7,.((0,1)%) with /v € H_,.((0,1)%), we

per
consider v+ € in place of v and deduce by the chain rule for Sobolev functions

(note that A(v + €) = Av)

2
Aol (Vo : LR
Ay/v + \Y +4 Vo1 .
p =0V - )%I Vol (HE)%! |
Passing to the limit € — 0, the desired assertions are obtained as by dom-
inated convergence the right-hand side converges strongly in L((0,1)%) to
the desired limit (note that Vy/v = 201 Vo1).

The last assertion of the lemma follows by applying the first formula of the
lemma to /v and using the second formula. O

We are now in position to prove the infinite speed of propagation result
in up to three spatial dimensions. We first show that the support of the
solution immediately reaches any point x¢ € (0, 1)¢ with dist(zg, suppug) <
dist(zg, 9]0, 1]¢); the general case will be seen to follow below.
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Lemma 30. Let d < 3 and Q = (0,1)4. Suppose that u is a weak solution
of the DLSS equation with periodic boundary conditions. Assume that u has
the additional reqularity ui € L2 (I; H2,.(2)). Suppose that supp \/ug # 0.

loc per
Given xog € Q with dist(xo, supp /uo) < dist(zg, 02), for any § > 0 we have
supp /i 1 (By(ao) x [0,8)) # 0.

Proof. We argue by contradiction. Assume that there exists 6 > 0 such
that (Bs(zo) x [0,0)) Nsupp/u = 0. Set r := dist(xo, supp /ug) and R :=
dist(xg,02); by assumption we have r < R. Take a smooth nonnegative
cutoff ¢ with ¢ = 1 on B#(xo) and ¢ = 0 on Rd\Bﬁ (mg). Let & € C*(R)
be a smooth monotonous function with £(s) = 1 for s < 0 and &(s) = 0 for
s> 1. Let ty € (0,0) and v < —d — 4. We use ¥(x,t) := ¢*(x)|z — 2|7 -
¢ (=) as a test function in formula (47) (Theorem 28 is applicable by our
assumptions). The function ¢*(z)-|z—x0|” is smooth on some neighbourhood
of Ute[o,é) supp v/u(., t); moreover it vanishes on a neighbourhood of 99, i.e.
it belongs to W2%°((0,1)?). Thus our test function is admissible.

per

Letting € — 0 and recalling that \/u € CP_(I; L2 (€)) (here L? denotes the
L? space with its weak topology), we obtain for any ¢y, € T

2/ Sl )6 e — mol da — 2/ Jied' e — ol da

Q Q
to 4. o 0 to

:/ /M\A\/EP dx dt—/ /A\/EA(¢4 Nz — zo|?) dz dt .
0 Q \/ﬂ 0 Q

Let 0 < t; < ty < 0. We obtain (since the previous formula holds for any
tO € (07 5))

2/ Vul., ta) ¢tz — x| do

Q

_2/ Vu(., t)é |z — x0|" dx
Q

2z — | 2 2
+ = |Alp*Vu dxdt—/ /¢4\/ﬂAzx—x7dxdt
/tl Q ¢4\/a ’ [ H t1 Q ’ O’
(48)

N o | —m] 4 2
ﬂL/t1 /QTM\/M _W|A[¢ Val|” de dt

[
—/ /\/EAQ[¢4|$—330]7]—¢4\/E A%z — xo|” dx dt .
t1 Q

Note that ¢*v/u € L},.(T; H2,(Q)) and \/¢*/u = ¢*ui € L2, (I; HZ,(Q));
this implies by Lemma 29 that the expression \/¢>14_\/6A[¢4\/E] is well-defined

and belongs to L2 (I; L*(2)).

loc
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Lemma 27 applied to v := ¢* - \/u (where v is extended by 0 to R?) and
Y= Alx — xo|” for v < 1 — d states that

— 4
(vv(i)_v2+4d+d /¢\/_A2|1’—$ " dx</ IA(Z\\//_TI & — 2|7 da

Note that for ¢ € [0, ), by definition of § the function ¢*,/u vanishes on some
neighbourhood of z; moreover, we have supp ¢*y/u CC (0,1)? and therefore
(for a.e. t € [0,0)) v € H?*(R?). Thus Lemma 27 is indeed applicable for a.e.
t €10,9).

Using this inequality in (48), we get
2 [ Valitéte -l da
zz/ﬂ Vu(, 1) gtz — x| da
+ (v —=2)(y — 4 +d)(—4y — 2d + 8) /tQ / o'V | — 0|7 do dt (49)
R N e N [
_ /t /Q\/MZWM — o] = 6*uAz — wo] da dt

Note that the difference in the latter two integrals is nonzero only on supp Vo,
i.e. it is zero outside of Bri2r(xg) \ B2rrr (2g). Moreover we have
3 3

oz siear,, + [z,

<C(d)||¢*ut] 22 + CA)Ju |22 (50)
<C(d, §)lJut |30

(the first inequality is a consequence of Lemma 29 applied to v := ¢*\/u and
v := y/u; the second inequality follows by the product rule and smoothness
of ¢). Note also that

|A(¢' V) — ¢'AVu| < CP|Velut|Vui| + O Vo> Vu + C6 | Adly/u

which implies

1
¢2u4 <¢ \/_) - u_4A\/— < C(T R)X{ 2r+R<|x 0 ‘<r+2R} (u4 + |Vu4|) .
(51)
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Moreover, we have
|6 A% — wo[" = A*(§* |z — wo|")] (52)
SC(r, R)X (zs2rgh <ja—ag|<m42R) (|x — zo|" + ] - | — o
+ (P 1) - o =@+ (P + 1) o - wo\rg) '

Putting (50), (51), and (52) together, we therefore obtain (note that the
constant does not depend on 7)

to 4 . N B N
/tl /Q%’A\/EP - % |AlgVall” de dt’

to
| [ vt o) - 9 aAle — al da dt\
t1 Q
NP RATRNE
< 1 3 1 .
<cia.rmo+hf) [ 25| e,

Using this inequality in (49), this proves that
/ Vul., ta) ¢t — o] do
Q
2/ Va6 — wol da
Q

1 "
+50-D0 -4 -ty -2a+8) [ [ $Vile - d d
t1 Q

O R)(1+ ) [”*RT | it

3 H2(Q)
2/ Vul(., t)¢! e — ol da (53)
0

1 2
+ 5(7—2)(7—4+d)(—47—2d+8)R_4/ /¢4\/ﬂ |z — 0|7 dx dt
t1 Q

2r + R17 ("
-ctnrahl) 2| ]

1112
u4

1
ut

dt
H2(@)

where in the last step we have used supp ¢ C Bgr(zg). Recalling that r =
dist(xg, supp y/ug) we see that My := f33 i (o) VU0 dz > 0 and therefore
4

3r+R]"
/\/u(.,0)¢4|m—x0|7 dx > { TI } My >0.
Q

Here we have used that ¢ = 1 on B#(:ﬁo). We now apply Gronwall’s
inequality to (53); using our assumption (Bj(zg) % [0,d)) Nsupp u = 0 we
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get for t € (0,0)
57/ Vu(.,t)e* da
Q
2/ Vu(., t)¢te — x| do
Q
> (/ Vu(., 00tz — 20| da
Q

—Cd, 7, R, ¢)(1+ |7]*) {Qr ;)L R]v/ot

1
u

2
dt
H?(Q)

exp (ER“*(V — )y — 4+ d)(—Ay— 2d + 8)t>

2
2
dt
H?(Q)

. ( {37« I R} "
- exp (13—4(7 —2)(y —4+d)(—4y—2d + 8)t) :

1
u4

Y pé
-ctnron+ b |25 [
2

For —~ large enough (depending on d, r, R, ¢, My, and u), the first factor

on the right-hand side can be estimated from below by 1 [#P My since

2
3r+R 2r+R T . . . .
=7 < =57 Dividing both sides of the inequality by 47 we obtain for

t€(0,0)
/\/u(.,t)¢4 dx
Q
1 1
Z§Mo exp (§R4(’y —2)(y—4+d)(—4y—2d+ 8)t
+’ylog3r+R —’ylogé) .

Letting v — —oo we get [, /u(.,t)¢! dv = oo for any t € (0,6). With ¢
being smooth, this contradicts the fact that u € L>(I; L'(2)) and therefore
finishes the proof. O

Proof of Theorem 15. 1t is sufficient to show that for any é > 0, any zy €
(0,1)% and any t > 0 we have supp /u N (Bs(zo) X [t,t +6)) # 0. W.lLo.g.
we may assume t = 0.

Thus it suffices to prove that for any 6 > 0 and any zo € (0,1)? we have
supp /u N (Bs(zo) x [0,6)) # 0.

In Lemma 30 this assertion has been shown if the additional condition
dist (o, supp /uo) < dist(xg, 02) is satisfied. The general case follows easily
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by iterating the result of the lemma: Given an arbitrary point zy € €2 and
a point y € Q with dist(y, supp \/ug) < dist(y,dQ) (such a point exists as
otherwise supp y/ug = (), there exists a path a : [0,1] — Q with «(0) =y
and a(1) = zy. By compactness of the interval [0, 1] and continuity of «, for
any n sufficiently large we have

dist (a (%) a <kzl>) + % < dist ( ([0, 1]),09)

for all k € {0,...,n — 1}. We additionally require n >

1
S.

Since dist(y, supp \/ug) < dist(y,02), by the previous lemma there exists
ty € [0, ?) such that the inequality dist(a/(0),supp vu(.,t)) < % holds.
This implies

dist (a (%) , Supp \/17(-,%))
< dist (a (0 , (%)) + dist (a (%) , SUpp \/ﬁ(-,to))

3|

con(o (1) m)

We can therefore apply the previous lemma again (starting at time ¢, instead
of 0) to obtain t; € [to, f—fl) satisfying

dist (a (%) , supp \/E(.,tl)) < % .

More generally, let £ € {1,...,n — 1} and assume that there exists ¢, €

[O, M:L”) such that

dist oz( ) supp v/u(., t ))

Then we deduce that

dist (a (

< dist

(-(
(o
(

supp vu(., ))

<
)
() o) o)
)<

,aQ) |

+3

1

/\/‘\
o>
+ 3

= =

— Q
@

< dist(«(][0, 1]

<dist |

VR
N»—t
S|+
N———
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Thus, applying the previous lemma again with initial time ¢; instead of 0,

n%l) (in particular t ;1 € [0, 655:12)))

we see that there exists {1 € [tk, tr +
with
k+1 1
dist (oz (;) , SUpp \/ﬂ(.,tk+1)) < -
n n
Arguing by induction, we finally obtain ¢, € [0,d) for which the inequality

dist(a (1), supp vu(., t,)) < % < 6 is satisfied (recall that n > ). This
finishes the proof since a(1) = . O
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6 Discussion

In this thesis, we have obtained sharp bounds on waiting times for solutions
of the thin-film equation for n € (2, %), in the regime of weak slippage
n € (2,32) the thin-film equation is seen to induce support spreading of

solutionsnexactly as predicted by the order of degeneracy of the operator.
The critical exponent for the occurrence of a waiting time is %.

However, for n < 2 the situation changes drastically: for n = 2 we can only
prove nonexistence of waiting times for initial data with growth steeper than
2% log x|g, whereas the existence of a waiting time has only be shown for
growth like 23 or slower. This gap becomes significantly larger when n < 2;
both the minimal growth exponent % known to be sufficient for the existence
of a waiting time and the maximal exponent known to be sufficient for the
nonexistence of a waiting time move away from 2 in opposite directions.
Although the entropy estimates are a powerful tool providing compactness
for the construction of solutions and being the base of studies of qualitative
properties of solutions to the thin-film equation, it may be that they provide
only partial information on qualitative properties of the thin-film equation
in the regime n < 2.

As a second result, in this thesis we have shown that the upper bounds on
asymptotic support propagation rates for the thin-film equation by Bernis
[4], by Hulshof and Shishkov [39], by Bertsch, Dal Passo, Garcke and Griin
[12] and by Griin [35] are optimal for any initial data: we have derived
lower bounds on asymptotic support propagation rates which coincide with
these upper bounds up to a constant factor for any solution of the thin-film
equation. To the best of our knowledge, this is the first lower bound on
large-time support propagation for solutions to the Cauchy problem for the
thin-film equation for n # 1.

While we have shown that for large times solutions to the thin-film equation
display support spreading at the rate suggested by the behaviour of the
corresponding self-similar solution, one may hope to prove polynomial decay
of any solution to the self-similar solution as done by Carrillo and Toscani
[16] in case n = 1 and d = 1. However, proving the latter assertion for n # 1
currently seems out of reach: for n # 1, an entropy useful for proving decay
to the self-similar solution must differ significantly from the entropy used in
[16], since for n # 1 there is no explicit formula available for the self-similar
solution.

Regarding the Derrida-Lebowitz-Speer-Spohn equation, we have shown that
solutions to the DLSS equation displays infinite speed of support propaga-
tion; more precisely, viewing a solution u of the DLSS equation as a function
of both space and time, the support of u has been seen to be either empty or
equal to © x [0,00). Unfortunately, our approach does not yield any result
on the support of u at any fixed time. Numerical results seem to indicate
that the support of any solution to the DLSS equation is nondecreasing with
respect to time [42]. However, as comparison methods are unavailable for
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higher-order equations and our methods do not seem to yield any stronger
assertion, we do not know how to prove estimates on suppu(.,t) at a fixed
time t > 0. If d = 1 and if at a certain time ¢, the quantity logu becomes
globally integrable, formal calculations suggest that it will stay integrable for
all t > to; see e.g. |44]. However, a localization of this result is presently out
of reach.

Future work based on the methods developed in this thesis may involve the
extension of our upper bounds on waiting times to the full range n € (2, 3)
(as opposed to n € (2, %) in the present thesis; note that % ~~ 2.909) or an
improved analysis of the waiting time behaviour of the thin-film equation for

n € (1,2); this is currently work in progress.
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