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1 Introduction

Stochastic modeling became a leading paradigm in studies of complex sys-
tems since several decades. Random media, random environments, or ran-
dom fields are central topics for thousands of research papers in physics,
technology, geophysics, and life sciences. For instance, a search for the topic
“random media” in Web of Science returns almost four thousands results
with about thousand citations per year in the last two decades (Figure 1, left
panel). A similar dynamics shows the topic “groundwater contamination”
(right panel of Figure 1), which is one of the investigation directions where
the “randomness” paradigm was intensively used in the last decades.

Figure 1: A Web of Science search for topic “random media” returns 3,847 results

with an average number of citations per year of 1147.20 in the period 1993-2012

(left). For the same period, the topic “groundwater contamination” occurs 2,885

times, with 590.27 average citations per year (right).

The groundwater is contained in aquifer systems consisting of spatially
heterogeneous hydrogeological formations. The scarcity of direct measure-
ments of their hydraulic conductivity is compensated by spatial interpola-
tions and empirical correlations, further modeled as space random fields [12].
The groundwater flow caused by piezometric pressure gradients is usually
modelled by Darcy law for the filtration velocity in porous media and the
randomness of the hydraulic conductivity induces the randomness of the flow
velocity [18]. Contaminant solutes are transported by advection, diluted by
diffusion and hydrodynamic dispersion, and undergo various chemical reac-
tions. Under simplifying assumptions, also supported by experiments, the
hydrodynamic dispersion is approximated as a Gaussian diffusion [53] and
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summing up the molecular diffusion at the pore-scale one arrives at a “local-
scale” diffusive model [8]. Hence, the primary mechanism responsible for
the fate of contaminants in groundwater can be described as a diffusion in
random velocity fields.

The process of diffusion in a random velocity field is the mathematical ob-
ject underlying currently used stochastic models of transport in turbulence,
plasma physics, and hydrogeology (Section 2). As shown in the following
(Section 3), a specific feature of this process are the memory effects induced
by position-velocity correlations, which can be straightforwardly quantified
by correlations of the increments of the process. Their relationship with
the ergodicity issue, for the usual setup of passive transport in hydrogeology
(Section 4), has been investigated numerically through Monte Carlo simula-
tions based on the “global random walk” algorithm (Section 5). The findings
were consistent with theoretical results on statistical homogeneity properties
and ergodicity, derived within the same passive transport setup (Section 6).

The global random walk consists of an arbitrarily large superposition of
weak Euler schemes for the Itô equation and is therefore accurate, stable, and
free of numerical diffusion (Section 7). Coupling this algorithm with finite
element solutions to the flow equations resulted in a considerable speedup
over the finite element solution to both flow and transport equations in non-
reactive transport simulations (Section 8). The coupling procedure will also
be a key tool in solving evolution equations for the probability density of
the random concentrations in reactive transport. Such equations are derived
form models of local mixing and upscaled processes of diffusion in random
fields. The feasibility of the approach proposed to model probability densities
is illustrated for the one-dimensional transport of the cross-section space
average concentration in saturated aquifers (Section 9). Some conclusions
and future prospects are presented in Section 10.

The approach based on diffusion in random fields and applications to
transport in hydrogeological systems as well as in other random environments
have been developed in the frame of the research projects EU Project EV5V-
CT92-0214 (1994-1996), High Performance Computing Project JICG41 at
Research Centre Jülich (since 2003), Romanian Academy grant 31/7006
(1996-1998), Project 01-8-CPD-042 / BIOTECH Programm of the Romanian
Ministry for Education and Research (2001-2004), Deutsche Forschungsge-
meinschaft grants SU 415/1-1, SU 415/1-2 (2005-2008), and Bundesminis-
terium für Bildung und Forschung grant RUS 09/B12 (2009-2011).

The following sections contain a systematic presentation and discussion
of the main results. A detailed presentation can be found in a couple of
journal papers. The most relevant are the 15 papers included as Appendices,
referred to as P1 to P15.
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2 Physical problem

2.1 Random environments

Mathematical models of transport in random environments (e.g. continuous
diffusion processes with random coefficients or random walks with random
jump probabilities [9]) are often used for phenomena which are not repro-
ducible experimentally under macroscopically identical conditions or in cases
where the incomplete knowledge of the physical parameters precludes deter-
ministic descriptions.

To the first class belongs the turbulence, characterized by an intrinsic
randomness, which is modelled by random velocity fluctuations [61, 49, 32,
31]. In plasma physics the turbulent state of systems of charged particles is
described by random electric potentials and magnetic fields [7, 6].

Transport in groundwater belongs to the second class. The way random-
ness enters modeling in hydrogeology is through stochastic parameterizations
of incompletely known hydraulic conductivity fields which induce random
Darcy velocity fields [28, 18].

2.2 Scale effect and memory effects

A common feature of transport processes in random environments is the
apparent increase of diffusion coefficients with the scale of observation. In
hydrogeology, the increase from Darcy scale, to laboratory, and to field scale
of the diffusion coefficients inferred from measurements through different
approaches (by fitting concentrations with solutions of advection-diffusion
equations, from spatial moments of tracer concentrations, or by analysis of
concentration series recorded at different travel distances from the source) has
been called “scale effect” [27, 14, 16]. Similar scale dependence characterizes
the so called “running diffusion coefficients” in plasma physics [5] and the
“turbulent diffusivity” in turbulence [61, 50].

Another characteristic of transport in random media is the presence of
various memory effects associated with the departure of the transport pro-
cess from a genuine Gaussian diffusion. Memory effects manifested by non-
Markovian evolution were explicitly associated with the stochastic nature of
the environment in plasma physics [6]. In the frame of stochastic sub-surface
hydrology, the departure from Fickian, linear-time behavior of the second
moment of the solute plume may be interpreted as a memory effect [54].
The prototype memory-free process is the Wiener process with independent
increments. Therefore, a direct quantification of memory effects is provided
by correlations of increments of the transport process.
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3 Diffusion with space-variable drift

3.1 Fokker-Planck equation

Scale effect and memory effects are already present in case of diffusion pro-
cesses with deterministic coefficients if the drift coefficient varies in space.

The density of the transition probability g(x, t | x0, t0) of a real diffusion
process {Xi(t), t ≥ 0, Xi ∈ R, i = 1, 2, 3} is the solution of the Cauchy
problem for the Fokker-Planck equation,

∂t g + ∂xi(Vig) = ∂xi∂xj(Dijg), g(x, t0 | x0, t0) = δ(x− x0). (3.1)

The transition probability g governs the evolution of the concentration,

c(x, t) =

∫
g(x, t | x0, t0)c(x0, t0)dx0, (3.2)

where c(x0, t0) is the initial concentration. If c(x0 is normalized to unity, so
is c, and both can be interpreted as one-point probability densities.

A diffusion process satisfies uniformly in x and t, for all ε > 0 [22, 36],

lim
∆t→0

1

∆t

∫
|x′−x|>ε

g(x′, t+ ∆t | x, t)dx′ = 0, (3.3)

Vi(x, t) = lim
∆t→0

1

∆t

∫
|x′−x|<ε

(x′i − xi)g(x′, t+ ∆t | x, t)dx′, (3.4)

Dij(x, t) =
1

2
lim

∆t→0

1

∆t

∫
|x′−x|<ε

(x′i − xi)(x′j − xj)g(x′, t+ ∆t | x, t)dx′. (3.5)

Condition (3.3) prevents instantaneous jumps and ensures the almost sure
continuity of the sample paths X(t), (3.4) defines the drift coefficients, and
(3.5) the diffusion coefficients [36].

In (P1) we restricted the class of diffusion process by imposing conditions
for finite first and second moments of g at finite times:

lim
∆t→0

1

∆t

∫
|x′−x|>ε

x′i g(x′, t+ ∆t | x, t)dx′ = 0, (3.6)

lim
∆t→0

1

∆t

∫
|x′−x|>ε

x′ix
′
j g(x′, t+ ∆t | x, t)dx′ = 0. (3.7)
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With (3.6-3.7), the integrals in (3.4-3.5) extend over the entire R3. In fact,
the local averages, over spheres of radius ε, are used in (3.3-3.5) to avoid
the hypothesis that the first two moments exist [22, p. 276]. However,
the latter is always true in case of diffusion in random fields with finite-range
correlations, as well as for samples of fractional Gaussian noise velocity fields.

The conditions (3.6) and (3.7) are fulfilled, for instance, by the one-
dimensional Gaussian diffusion with affine mean and linear variance,

µ(t) =

∫
xc(x, t)dx = x0 + V (t− t0),

s(t) =

∫
[x− µ(t)]2c(x, t)dx = 2D(t− t0),

constant drift and diffusion coefficients, V = d
dt
µ(t), D = 1

2
d
dt
s(t), and tran-

sition probability density invariant to spatial translations,

g(x, t | x0, t0) = (4πDt)−1/2 exp
(
−(x− x0 − V (t− t0))2/4D(t− t0)

)
. (3.8)

3.2 Dispersion and memory terms

For diffusion processes with variable coefficients, the relations between mo-
ments and coefficients are given by the following Proposition, proved in (P1,
Appendix A).

Proposition 3.1 The components of the first moment, µi, and of the
covariance, sij, i, j = 1, 2, 3, of a general diffusion precess satisfying (3.3-
3.5) and the conditions for finite moments (3.6-3.7) are given by:

µi(t, t0) =

∫
xic(x, t)dx = µi(t0) +

∫ t

t0

Vi(t
′)dt′, (3.9)

sij(t, t0) =

∫
(xi − µi(t))(xj − µj(t))c(x, t)dx

= sij(t0) + 2

∫ t

t0

dt′
∫
Dij(x, t

′)c(x, t′)dx + su,ij(t, t0) +mij(t, t0), (3.10)

su,ij(t, t0) =

∫ t

t0

dt′
∫ t′

t0

dt′′
∫
c(x0, t0)dx0

∫ ∫
(ui(x

′, t′′)uj(x, t
′)

+ uj(x
′, t′′)ui(x, t

′))g(x, t′ | x′, t′′)g(x′, t′′ | x0, t0)dxdx′ , (3.11)

mij(t, t0) =

∫ t

t0

dt′
∫
c(x0, t0)dx0

∫
((x0j − µj(t0))ui(x, t

′)

+ (x0i − µi(t0))uj(x, t
′))g(x, t′ | x0, t0)dx (3.12)

where Vi(t) =
∫
Vi(x, t)c(x, t)dx and ui(x, t) = Vi(x, t)− V i(t). �
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According to Proposition 3.1, the covariance sij is decomposed in “disper-
sion terms” su,ij, positive definite, expressed through correlations of the drift
coefficients, (3.11), and “memory terms”, consisting of correlations between
drift coefficients and initial positions (3.12), which are no longer positive
definite (see Fig. 1 in P1).

To recast the result of Proposition 3.1 in terms of trajectories, we need
the following Lemma.

Lemma 3.1 Let be B = B1 × · · · ×Bn, Bi ∈ B (the Borel σ -algebra on
R), 1Bi

(y) the characteristic functions of the sets Bi, i = 1, 2, 3 (1Bi
(y) = 1

if y ∈ Bi and 1Bi
(y) = 0 if y 6∈ Bi), {Xt(ω) = X(t, ω), t ≥ 0, ω ∈ Ω} a

stochastic process defined on the canonical probability space (Ω,A, P ), 〈·〉 the
stochastic average with respect to P , and δ(·) the singular Dirac function.
Then,

Pt1,...,tn(B) =

∫
B1

dx1...

∫
Bn

dxn 〈δ(x1 −Xt1(ω))...δ(xn −Xtn(ω))〉 (3.13)

is a consistent n-dimensional distribution of the process {Xt(ω)}.
Proof By Fubini’s theorem, integration permutes with stochastic averaging [36, p.

59]. Then, if Bn = R, the integral with respect to dxn in (3.13) equals 1 (as value of
the Dirac functional) and one obtains the marginal distribution Pt1,...,tn−1 . Obviously,
(3.13) is invariant to permutations in the order of integrals. Thus, (3.13) fulfils the formal
consistency conditions for finite-dimensional probability distributions [22, 36].

The next step is to show that (3.13) is the n-dimensional distribution of {Xi(t)}. With

1Bi(Xti(ω)) =

∫
R

δ(xi −Xti(ω))1Bi
(x)dxi =

∫
Bi

δ(xi −Xti(ω))dxi,

one obtains

Pt1,...,tn(B) =

∫
Ω

1B1
(Xt1(ω))...1Bn(Xtn(ω))P (dω)

= P ({Xt1 ∈ B1, ..., Xtn ∈ Bn}),

which shows that (3.13) is indeed a measure of cylindrical sets on Bn, that is, the distri-

bution of the n-dimensional random vector {Xt1 · · ·Xtn}. �
The integrand from (3.13) was used by van Kampen [62] to define con-

sistent finite-dimensional probability densities. Similar stochastic averages
of δ functions are often used in the literature and referred to as “probability
densities” (e.g., [49]). Averages with respect to such singular densities are
well defined as Dirac functionals.

Modeling motions in random environments requires relations between
spatial moments of probability densities and the statistics of the process
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trajectories (e.g., [42, p. 287]). Lemma 3.1 allows a systematical derivation
of such relations.

Proposition 3.2 Consider Ω = R3 × ΩD, where ΩD is the space of
events of the diffusion process starting from a fixed initial position. Let 〈·〉 =
〈〈·〉

D
〉
X0

= 〈·〉
DX0

be the expectation defined as average over ΩD and over the

initial positions X(0) ∈ R3.
Then, for a constant diffusion coefficient D and stationary drift coefficients
Vi(x), the diagonal components of the covariance (3.10) have the equivalent
representation:

sii(t, t0) = sii(t0) + 2D(t− t0)

+ 2

∫ t

t0

dt′
∫ t′

t0

〈ui(X(t′))ui(X(t′′))〉
DX0

dt′′

+ 2

∫ t

t0

〈[Xi(t0)− 〈Xi(t0)〉
DX0

]ui(X(t′))〉
DX0

dt′. (3.14)

Proof The term 2D(t− t0) is obtained from the second tern of (3.10) for D constant.

By virtue of Lemma 3.1 the average with respect to the joint probability density g(x, t′ |
x′, t′′)g(x′, t′′ | x0, t0)c(x0, t0) = p(x, t′;x′, t′′;x0, t0) in (3.11), for i = j, equals the average

with respect to
〈
δ(x−Xt′(ω))δ(x′ −Xt′′(ω))δ(x0 −Xt0(ω))

〉
DX

0

, which gives the term in

the second line of (3.14). The third line of (3.14) is obtained similarly by equating the

average with respect to g(x, t′ | x0, t0)c(x0, t0) = p(x, t′;x0, t0) in (3.12) by the average

with respect to
〈
δ(x−Xt′(ω))δ(x0 −Xt0(ω))

〉
DX

0

. �

For given coefficients Vi and D of the Fokker-Planck equation (3.1) it is
possible to construct a process satisfying the Itô equation (e.g. [36, p. 144])

Xi(t) = X0i +

∫ t

t0

Vi(X(t′))dt′ +Wi(t− t0), (3.15)

where Wi is any Wiener process with mean E(Wi) = 0 and variance E(W 2
i ) =

2D(t − t0). Equation (3.15) describes the diffusion process in a weak sense,
that is, only the coefficients are specified but not the Wiener process [36]. If
sufficient conditions for the existence of weak solutions to (3.15) are fulfilled,
the process has the same probability distribution as the diffusion process
governed by the corresponding Fokker-Planck equation. Doob [22, Chap. VI,
Sec. 3] also proved the equivalence of Itô and Fokker-Planck representations
in a strong sense. That means, under more restrictive conditions, the path-
wise unique solutions of the Itô equation are diffusion precesses satisfying
(3.3-3.5) and, given a diffusion process with transition probability solving
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the Fokker-planck equation, the associated Itô equation admits path-wise
unique solutions [36, Theorems 4.6.1, and 4.7.1].

Remark 3.1 When the variance of the process (3.15) is computed for
a fixed Wiener process (e.g., by Itô formula, as in P2, p.5) one obtains, in
addition to the terms of (3.14), a term consisting of correlations between
the Wiener process and the velocity fluctuations (equation (27) in P2). This
term is canceled, for instance, when a weak solution to (3.15) is constructed
by successive approximations with independent Wiener processes in each
iteration (P2, p. 9). However, the representation (3.14) holds, via Lemma
3.1, for either strong or weak solutions to Itô equation if the diffusion process
satisfies the supplementary conditions (3.6) and (3.7). The “global random
walk” scheme presented in Section 7 below approximates such a process.

To emphasize the role of the initial conditions, it is useful to rewrite (3.14)
as

sii(t, t0) = sii(t0) + s̃ii(t, t0) +mii(t, t0) (3.16)

where the sum of second and third term of (3.14) is expressed in terms of

displacements X̃i(t) = Xi(t)−Xi(t0),

s̃ii(t, t0) = 〈(X̃i(t)− 〈X̃i(t)〉DX0
)2〉

DX0

The term s̃ii describes an enhanced dispersion (with respect to the local one
2D(t− t0) in (3.14)), which explains the scale effect presented in Section 2.2.
The last term in (3.16),

mii(t, t0) = 2〈(Xi(t0)− 〈Xi(t0)〉
DX0

)(X̃i(t)− 〈X̃i(t)〉DX0
〉)〉

DX0
, (3.17)

describes the memory effects mentioned in Section 2.2.

3.3 Memory effects and transition probabilities

Similarly to (3.16), for any three successive times, t1 < t2 < t3, the variances
of the increments of the process are related by

s̃ii(t1, t3) = s̃ii(t1, t2) + s̃ii(t2, t3) +mii(t1, t2, t3), (3.18)

where

s̃ii(t3, t1) = var{Xi(t3)−Xi(t1)},
s̃ii(t1, t2) = var{Xi(t2)−Xi(t1)},
s̃ii(t2, t2) = var{Xi(t3)−Xi(t2)},
mii(t1, t2, t3) = 2cov{(Xi(t2)−Xi(t1)), (Xi(t3)−Xi(t2))},

9



var{·} denotes the variance, and cov{·} the covariance. In fact, (3.18) is the
general “binomial” rule saying that the variance of the sum of two random
variables is the sum of variances plus two times their covariance (e.g., [48,
p.213]) and as such is valid for any stochastic process X(t). The relation
(3.16) above is retrieved for the increments of the process (3.15) with the
expectation E{·} defined as in Proposition 3.2 by 〈·〉

DX0
.

The condition of vanishing memory terms, mii(t1, t2, t3) = 0, leads to

E{(Xi(t2)−Xi(t1))(Xi(t3)−Xi(t2))} = E{Xi(t2)−Xi(t1)}E{Xi(t3)−Xi(t2)},

which expresses the uncorrelatedness of the increments of the process. As
follows from (3.18), vanishing memory terms is equivalent with the additiv-

ity of the variance of the increments Σ̃ii with respect to nonoverlapping time
intervals (P3, p. 5). In the particular case of diffusion process with constant
coefficients, the increments are uncorrelated, mii(t1, t2, t3) = 0 , and (3.18)
expresses the linearity of the variance s̃ii(tm, tn) = 2D(tn − tm), tn > tm.
It is also easy to see that the uncorrelatedness of the increments is a con-
sequence of the translation invariance of the transition probability density
(3.8). Moreover, it has been shown that the only Itô-diffusion process with
space-homogeneous transition probabilities are Gaussian diffusion processes
with constant drift and diffusion coefficients [1].

In general, according to Theorem II.3.2 of Doob [22, p. 74], for any real
process with E{|X(t)|2} < ∞ and uncorrelated increments there exists a
wide sense version of X(t) (i.e. with the same first two moments) which
is a Gaussian process with independent increments [22, p. 100]. By the
definition of the statistical independence, this process has space-homogeneous
transition probabilities. Since the converse is clearly true, i.e. processes with
homogeneous transition probabilities have uncorrelated increments, we have
the following corollary (P3, p. 5).

Corollary 3.1 If the memory terms of a real process with finite first
and second moments vanish for arbitrary successive time increments, then,
the transport process is a wide-sense version of a Gaussian processes with
spatially homogeneous transition probabilities. �

Thus, memory-free processes have homogeneous transition probabilities.
Inhomogeneous transition probabilities as memory effects, were identified in
case of rare and extreme events (where the memory-free limit are independent
identically distributed variables), for non-Markovian processes (generalized
Langevin equation, diffusion equations with memory, or fractional diffusion),
and of coarse, for processes of diffusion in random fields (P3, p. 5).
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4 Diffusion in random fields model of passive

transport in aquifers

Models of transport in highly heterogeneous media such as atmosphere, plas-
mas, industrial devices, or groundwater are based on stochastic partial differ-
ential equations of parabolic type [3, 4, 9, 42, 5, 15, 29, 2]. In case of transport
in saturated aquifers, essential features of the transport, such as scale depen-
dence, may be described by the simple advection-diffusion equation without
sources and with constant diffusion coefficients (e.g., [18, 35, 21, 23]),

∂tc+ V∇c = D∇2c, (4.1)

where c(x, t) is the concentration field, D is a local diffusion coefficient, and
V(x) is a sample of a random velocity field. The latter is a solution of
continuity and Darcy equations

∇V = 0, V = −K∇ψ, (4.2)

where ψ is the piezometric head and K is the hydraulic conductivity, which
is a sample of a space random function. This model reflects the specificity
of transport in groundwater, where, unlike in case of turbulence, the flow is
laminar and randomness is introduced by a stochastic parametrization of the
flow equations (4.2).

Equation (4.1) has the form of the Fokker-Planck equation. (Note that in
case of variable diffusion coefficients, the advection-diffusion equations also
can be written as a Fokker-Planck equation by adding drift terms propor-
tional with the gradients of the coefficients [36]). Thus, the concentration
c(x, t), normalized to unity may be interpreted as a probability density func-
tion of the diffusion process described by the Itô (3.15).

For a given realization of the velocity field, corresponding to a realization
of the hydraulic conductivity, (4.1) describes the diffusion with space variable
drift analyzed in Section 3. To model diffusion in random velocity fields, the
space of events from Proposition 3.2 is enlarged to the Cartesian product
Ω = R3 × ΩD × ΩV , where ΩV is the space of realizations of the random
velocity field. Correspondingly, the expectation will be formally written as
〈·〉 = 〈〈〈·〉

D
〉
X0
〉
V

= 〈·〉
DX0V

. With these, we define three centered processes

of mean zero, Xeff
i (t), Xens

i (t), Xcm
i (t), i = 1, 2, 3, so that their variance

describes the “effective” and the “ensemble” dispersion, Sii(t) and Σii(t)ii,
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and the fluctuations of the center of mass, Rii(t) (P4, pp. 1-2):

Xeff
i (t) = Xi(t)− 〈Xi(t)〉DX0

, Sii(t) = 〈(Xeff
i (t))2〉

Xens
i (t) = Xi(t)− 〈Xi(t)〉DX0V

, Σii(t) = 〈(Xens
i (t))2〉

Xcm
i (t) = 〈Xi(t)〉DX0

− 〈Xi(t)〉DX0V
, Rii(t) = 〈(Xcm

i (t))2〉 (4.3)

By Lemma 3.1, the variances of the three processes in (4.3) correspond to the
expectation (average over velocity realizations) of the second spatial moment
of the single-realization concentration c(x, t), Sii(t), the second moment of
the ensemble average concentration 〈c(x, t)〉

V
, Σii(t), and the variance of the

first spatial moment of c(x, t), Rii(t). These quantities are related by

Sii = Σii −Rii. (4.4)

This identity was used by Le Doussal and Machta [39], in the context of
measurements methods for diffusion coefficients, to define ”quenched” and
”annealed” coefficients, Sii/(2t) and Σii/(2t) respectively. Attinger et al. [2]
considered the same quantities to define effective and ensemble dispersion
coefficients, 1

2
dSii/dt and 1

2
dΣii/dt respectively. Kitanidis [35] also obtained

the identity (4.4) after computing Sii(t) and Σii(t) by averaging an advection-
diffusion equation with random coefficients.

If necessary joint measurability conditions which allow permutations of
averages are fulfilled (e.g. [64]) the second moment of the mean concentration
can be expressed as (see P5 and, for the case D = 0, P6)

Σii = Sii(0) + 〈Xii〉X0
+Mii +Qii, (4.5)

where where Sii(0) = 〈(X0i − 〈X0i〉X0
)2〉

X0
, Xii = 〈(X̃i − 〈X̃i〉DV

)2〉
DV

is the
“one-particle dispersion” (defined by averaging with respect to D and V for
a fixed initial position), Mii = 〈mii〉V is the ensemble mean of the memory

term (3.17), and Qii = 〈(〈X̃i〉DV
− 〈X̃i〉DX0V

)2〉
X0

is the spatial variance of

the one-particle center of mass 〈X̃i〉DV
, computed by averages over X0.

As follows from (3.15), the trajectory X(t′) depends on the Lagrangian
velocity field Vi(X(t)), which consists of observations at random locations on
the trajectory of the random Eulerian velocity (which is defined in a fixed
reference frame) [64]. If the Lagrangian field is statistically homogeneous the

one-particle center of mass 〈X̃i〉DV
and dispersion Xii are independent of X0.

Then Mii and Qii vanish and from (4.4) and (4.5) one obtains

Sii = Sii(0) +Xii −Rii. (4.6)

The validity of the Lagrangian homogeneity hypothesis and of the the relation
(4.6), first derived by Dagan [19], is crucial for the interpretation of the field
measurements and for the inference of the up-scaled diffusion coefficients.
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5 Monte Carlo results

An ideal tracer experiment, consisting of passive transport of substance under
different deterministic initial conditions, was simulated numerically with the
method presented in Section 7 below. A two-dimensional advection-diffusion
problem was solved by simultaneously tracking large collections of compu-
tational particles (ten billions in most cases, e.g., P5-P9) by an approach
equivalent to a superposition of weak Euler schemes for the Itô equation
(implementation details are given in Appendix A of P7).

For a given statistically homogeneous log-normal random hydraulic con-
ductivity K with exponential correlation and finite correlation length λ, the
velocity field was approximated to the first order in the variance of lnK. The
approximation (equations (21-22) in P4), obtained by a formal asymptotic
expansion of the flow equations (4.2) [29, 18], was computed numerically
by the Kraichnan’s approach [38] as sum between a constant mean (U, 0)
and a superposition of random periodic fluctuations (e.g. equation (8) in
P8). In this way one obtains fast estimations of samples of random veloc-
ity fields which allowed us to compute ensembles of thousands of transport
simulations at moderate computational costs. For finite number of random
periodic modes the fluctuations of the estimated dispersion quantities may
have an artificial logarithmic increase (P10, Appendix A). As an empirical
recipe, the number of modes was chosen to be of the order of the total com-
putation time (P10). The convergence of the Monte Carlo estimates was
ensured by using several hundreds of simulations (P11, Fig. 4).

5.1 Ergodic properties of the center of mass process

Figure 2 shows the long-time decay of the variance Rii of the center of mass
process Xcm

i (t). This implies, according to (4.4), that at large times the ex-
pectation of the second moment of the concentration may be approximated
by the second moment of the mean concentration, Sii ≈ Σii. Figure 2 also
shows the decrease of Rii with increasing supports of the initial concentra-
tion. One expects therefore that, for sufficiently large contaminant sources,
the approximation Sii ≈ Σii also holds at finite times. Following the ter-
minology introduced by Dagan [19], large plumes, for which the expected
second moment can be approximated by the second moment of the ensemble
mean concentration, are usually called “ergodic” plumes in the hydrogeolog-
ical literature. One hypothesizes also that the mean second moment Sii as
well as the unaveraged moment sii of an ergodic plume can be approximated,
according to (4.6), by the one-particle dispersion Xii (P6 and P9).

Another ergodic property was formulated by Sposito et al. [55]. The
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Figure 2: The variance of the center of mass Rii/(2Dt), i = 1, 2, decreases uni-

formly with increasing source dimension and goes to zero for large times.

transport in groundwater is called “asymptotically ergodic” if the solution
of (4.1) for a given realization of the velocity field approaches that of the
“macrodispersion” model, an up-scaled advection-diffusion equation sup-
posed to exist when the random fields have finite correlation scales. Various
meanings of ergodicity in hydrogeological literature are particular cases of
the general formulation proposed in (P7): an observable of the transport
process is ergodic with respect to a stochastic model if the root mean square
distance from the model prediction is smaller than a given threshold. The
squared distance can be decomposed as sum between the squared deviation
of the ensemble mean of the observable from the reference stochastic model
and the variance of the observable about its mean (definition (5) in P7). The
usual statistical inference for ergodic estimators of the mean [63] is retrieved
in this formulation when the observable is an average over the parameter
range (time or space) and the stochastic model is the ensemble mean of the
random function (see also P6, paragraph 8). The self-averaging property
from statistical physics [9] corresponds to the particular case when the ob-
servable is the (unaveraged) process itself and the stochastic model is the
ensemble mean of the process. Self-averaging is thus ensured by a vanishing
variance in the long time limit.

The behavior Rii → 0 for t → 0 corresponds to the self-averaging of
the process Xcm

i (t). The self-averaging of the center of mass corresponds
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Figure 3: For sources with large dimensions on the i-direction the ensemble dis-

persion Σii depends on the initial conditions.

to a self-averaging property of the mean Lagrangian velocity 〈ui(X(t′))〉
DX0

(P1, Figure 2). The variance of (Xcm
i )2(t) also was found to decrease in

time and with increasing source size (P5, fig. 1). This implies the self-
averaging of the dispersion coefficient of the center of mass (Xcm

i )2/(2t) (see
P2, equation (23)). Since, according to Slutsky’s theorem [63] a vanishing
variance is a sufficient condition for ergodicity, the self-averaging implies the
usual ergodicity, that is, the convergence of the time and space averages of
the observables Xcm

i (t)), 〈ui(X(t′))〉
DX0

, and (Xcm
i )2/(2t).

5.2 Dependence on initial conditions

The variance of the process Xens
i (t), i.e. the second moment of the mean con-

centration Σii, computed for different shapes and sizes of the source is shown
in Figure 3. Significant dependence on initial conditions of the ensemble
dispersion corrected for the initial second moment, Σii − Sii(0), manifests in
case of asymmetric sources with large extension on the i-axis while the ini-
tial conditions have negligible influence for sources with direction of largest
extension perpendicular to the i-axis. This behavior was attributed to the
mean memory terms, which may be significantly large in the first case and
negligible in the second (according to (4.5), where the influence of the Qii

term was found to be negligible, see P1, P5, P6).
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Figure 4: Single-realization dispersion (sii−Sii(0))/(2Dt) (thin lines), one-particle

dispersion Xii/(2Dt) (dot lines), ensemble averages (Sii − Sii(0))/(2Dt) (thick

lines), and (Sii − Sii(0)± SD(sii))/(2Dt) (line-points).

From Figure 3 we can conclude that the second moment of the mean
concentration depends on the size, geometry, and orientation of the source
and it does approximate the one-particle dispersion only in special cases.
Unless the cases of narrow sources with small extension on i -th direction
and small memory terms (3.17), Σii 6= Sii(0) + Xii. This indicates that
the Lagrangian stationarity, which would imply (4.6), fails even though the
velocity field considered in simulations is statistically homogeneous.

5.3 Non-ergodic effective dispersion at finite times

The variance (3.16) of the effective process Xeff
i (t) computed for fixed re-

alizations of the velocity field shows large sample to sample fluctuations in
cases where Σii is also strongly influenced by the initial conditions (Figure
4). The one-particle dispersion Xii shown in Figure 4 was approximated by
Σii−Sii(0) in ergodic situations consisting of large slab sources perpendicular
to the i-axis. The deviation Sii −Xii from the one-particle dispersion of the
mean of sii is one to two orders of magnitude smaller than its standard de-
viation SD(sii). These are the two quantities which determine the deviation
from ergodic behavior in the general formulation from Section 5.1.

Ergodicity may be expected, within acceptable small root mean square
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Figure 5: Longitudinal (left) and transverse (right) memory terms in non-ergodic

cases, for finite and infinite Peclet numbers. Solid lines correspond to Mii and thin

lines correspond to (Mii ± SD(mii)/R
1/2)/(2Dt), where R = 1024 is the number

of Monte Carlo simulations used in statistical estimates.

distances, for longitudinal dispersion in case of large transverse slab sources
and for transverse dispersion in case of longitudinal slab sources. However,
the Monte Carlo results contradict a common belief on ergodicity issue: large
transverse plumes do not necessarily imply the ergodicity of both longitudinal
and transverse dispersion. On the contrary, increasing the plume dimensions
might result in dramatic non-ergodic behavior, mainly for the transverse
dispersion. This is an issue of concern for the assessment of the up-scaled
diffusion coefficients in studies of reactive transport in groundwater (P10).

5.4 Loss of memory and asymptotic ergodicity

In ergodic cases from Figure 4 (slab sources perpendicular to i-axis) the
approximation sii ≈ Xii may be considered. Since memory terms also can be
neglected (see (3.17)), it follows that in ergodic situations sii − Sii(0) ≈ Xii

is an approximate form of (3.16). Thus, in non-ergodic cases (3.16) can
be approximated by sii − Sii(0) ≈ Xii + mii, which allows estimations of
means and standard deviations of the memory terms mii (for more details
on this approximation see P1, p. 8). Since the deviation of the mean, Sii −
Sii(0) − Xii, is negligible as compared with the standard deviation SD(sii)
(see Section 5.3), SD(mii) ≈ SD(sii) quantifies the non-ergodicity of sii with
respect to Xii.

The results presented in Figure 5 show that memory effects at finite times
are stronger for asymmetric sources, and almost identical with those for pure
advection (Pe= 100). The mean-square convergence of mii to zero indicates
the asymptotic ergodicity of the actual dispersion sii.

17



6 Theoretical results

6.1 Statistical homogeneity properties

The failure of Lagrangian homogeneity (Section 5.2) means that the mean

〈X̃i〉DV
and the variance Xii of the increment X̃i(t) = Xi(t) − Xi(t0) de-

pend on the deterministic initial position Xi(t0). Since the transition density

g(x, t|x0, t0) is the probability density of X̃i, the statistical homogeneity of X̃i

is equivalent to the invariance to space translations of the ensemble averaged
transition density 〈g〉

V
.

The usual set-up for statistical homogeneity is as follows. Let V be a
homogeneous random function defined on the canonical probability space
(Ω,A, P ), usually denoted by V (ω,x) = ω(x) . Measure-preserving shifts on
Ω are defined through (τx0

ω)(x) = ω(x + x0), P ◦ τ−1
x0

= P . A composed

function F (V ) is also homogeneous if it depends on ω and x0 only through
measure preserving shifts F = F (τx0

ω) [64].
Let us consider the transition density solving (4.1) in a translated refer-

ence system, x̃ = x− x0,

∂tg(x̃, t|0, t0) +∇(V(x̃ + x0)g(x̃, t|0, t0)) = D∇2g(x̃, t|0, t0). (6.1)

As follows from (6.1), g depends on velocity statistics only through τx0
ω =

V(x̃+x0), hence, it is statistically homogeneous if the Eulerian velocity field
V(x, ω) is homogeneous. If, in addition, the solutions of (4.1) are unique
in a classical sense, then g(x, t|x0, t0, ω) = g(x − x0, t|0, t0, τx0ω) and the
measure-preserving property of τx0 implies the translation invariance of the
mean transition density, that is, 〈g〉

V
(x, t|x0, t0) = 〈g〉

V
(x− x0, t|0, t0).

According to (3.15), to Fokker-Plank equation (6.1) one associates an Itô

equation solving for displacements X̃i(t) = Xi(t)−x0i from the deterministic
initial position Xi(t0) = x0i,

X̃i(t) =

∫ t

0

Vi(X̃(t′) + x0)dt′ +Wi(t). (6.2)

If the solutions to (6.2) are pathwise unique, then the displacement field

X̃(t; x0, ω) = X̃(t; 0, τx0ω) is homogeneous [64, Remark 6.7 and Prposition

6.1]. Homogeneity of X̃(t) implies homogeneity of the Lagrangian velocity

field, V L
i (x0, t) = Vi(X(t)) = Vi(X̃(t) + x0), which depends on statistics of X̃

through measure-preserving shifts. Conversely, assuming the homogeneity of
Vi(x0, t), (6.2) implies the homogeneity of X̃ (see also P3, p. 2).

We have thus the following Proposition which summarizes these homo-
geneity properties of the process of diffusion in random velocity fields.
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Proposition 6.1 If (1) the Eulerian velocity field V(x, ω) is statistically
homogeneous and (2) the Fokker-Plank equation (4.1) admits unique classical
solutions for (3) deterministic initial conditions, then
(a) The mean transition density 〈g〉

V
is invariant to spatial translations,

〈g〉
V

(x, t|x0, t0) = 〈g〉
V

(x− x0, t|0, t0).
If, in addition, (4) the associated Itô equation (3.15) admits pathwise

unique solutions, then
(b) the following statements are equivalent:

(b1) The displacement field X̃ = Xi(t)− x0i is statistically homogeneous.
(b2) The Lagrangian velocity field V L

i (x0, t) is statistically homogeneous.
(b3) The ensemble mean transition density 〈g〉

V
is translation-invariant. �

The statements (b1) and (b2) in Proposition 6.1 can be proved inde-
pendently, without requiring the existence of a density g for the transition
probability. The first proof of homogeneity property (b2) and of the equal-
ity between Lagrangian and Eulerian means was given by Lumley [41] for
purely advective transport, under the implicit assumption of analytical ve-
locity realizations. Port and Stone [51] extended this result by considering
diffusion in random advection fields and provided a rigorous proof for the
equality of the Lagrangian and Eulerian one-point probability distributions
under milder conditions, i.e continuity of the first-order spatial derivatives
of the velocity samples. Zirbel [64] extended previous homogeneity results
to statistical stationarity in case of space-time velocity fields and generalized
the results of Port and Stone by replacing the Wiener process by a family of
martingales which allow including the diffusion in the random environment.

The results obtained so far do not go beyond the equality of the one-
dimensional probability distributions of the Lagrangian and Eulerian veloc-
ity fields. Since the higher distributions do not coincide, the probability laws
of the Lagrangian and Eulerian fields are in general different [64]. The in-
variance to spatial translations of the mean density 〈g〉

V
(Proposition 6.1,

(a)) is also a one-point statistical property, which implies the homogeneity of

〈X̃i〉DV
and Xii, cancels the mean of the memory terms (3.17), and ensures

the validity of the expression (4.6) for the second moment.
These homogeneity properties hold true under the uniqueness conditions

(2) and (4) in Proposition 6.1. The irregularity of the velocity samples for the
exponentially correlated lnK field used in Monte Carlo simulations (see P3,
pp. 2-3 and Figure 1), which do not ensure the uniqueness of the solutions,
may explain the non-vanishing mean memory terms indicated by Figures 3
and 5.

Also essential is the assumption of deterministic initial conditions (as-
sumption (3) in Proposition 6.1). In case of random initial conditions, the
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velocity with the spatial argument translated by x0(ω) in equations (6.1)
and (6.2) is not a measure-preserving shift and we are no longer in the
frame of the usual homogeneity setup. Since the mean memory terms are
time integrals of the Lagrangian velocity covariance (equation (15) in P3),
they are non-vanishing as long as the velocity is correlated. This implies
that translation-invariance of the mean transition probabilities associated to
successive increments of the process may be expected only in case of un-
correlated velocity fields or asymptotically in the long time limit, for velocity
fields with finite correlation scales. Then, by Corollary 3.1, the transport
process is a wide-sense version of a Gaussian diffusion.

6.2 First-order approximations

Theoretical investigations in subsurface hydrology are often based on first-
order approximations of the variances of the effective, ensemble, and center
of mass processes defined in (4.3) [29, 17, 2, 21, 23]. Such approximations
are essentially asymptotic expansions truncated at the first order in the vari-
ance of the velocity field. Approximations obtained by Eulerian approaches,
based on Fourier representations of solutions to partial differential equations
similar to (4.1) [29, 2, 13, 23], are in good agrement with those derived from
trajectory equations of type (3.15) [10, 23] (see also P8 and P10). This is just
as we would expect from the Itô - Fokker-Planck equivalence (e.g., Propo-
sition 3.2). Itô representation is to be preferred here since it renders the
computations easier and leads to simpler physical interpretations (P3).

In the following, the first-order approximation approach is illustrated for
the ensemble process Xens

i . Approximations for the effective, Xeff
i , and

center of mass, Xcm
i , processes can be obtained similarly (P2, Section 4).

The Itô process starting from x0 = 0, in non-dimensional form, reads

Xi(t) = δi,1t+ ε

∫ t

0

ui(X(t′))dt′ + Pe−1/2Wi(t), (6.3)

where Pe = Uλ/D0 is the Péclet number with respect to the correlation
length in the mean flow direction λ = λ11, U = 〈V1〉V , ui = Vi − δi,1U ,
〈ui〉V = 0, 〈u2

i 〉V = σ2, and ε = σ/U are velocity fluctuations. Within the
order of magnitude hypothesis Pe−1/2 = O(εα), α > 0, the ensemble process
Xens
i (t) = Xi(t)− 〈Xi(t)〉DV

is described, according to (6.3), by

Xens
i (t) = ε

∫ t

0

ui(X(t′))dt′ + εαWi(t).

Taking the half time derivative of the variance of Xens
i (see (4.3)), which

defines ensemble dispersion coefficients Dens
ii (t) = 1

2
dΣii(t)/dt [2], one obtains
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a Taylor-Green-Kubo formula (P3):

Dens
ii (t) = ε2α + ε2

∫ t

0

〈ui(X(t))ui(X(t′))〉
DV
dt′. (6.4)

The convergence of the integral in (6.4) for t→∞ ensures finite correlation
times τii of the Lagrangian velocity. Finite τii is a criterion for diffusive limit,
formulated for instance by Fannjiang and Komorowski [26]. If this criterion
is fulfilled, then the long time limit of (6.4) defines asymptotic dispersion
coefficients of the process Xens

i .
The Kubo relation (6.4) has been derived in (P3, equation (7)) in case

of homogeneous Lagrangian velocity fields. In absence of Lagrangian homo-
geneity, (6.4) is still valid if ui(X(t)) is replaced by vi(X(t)) = ui(X(t)) −
〈ui(X(t))〉

V
. In the derivation of (6.4), cross-correlations between the Wiener

process Wi and the velocity fluctuations vi cancel, according to Remark 3.1,
because the diffusion process fulfils the supplementary conditions (3.6) and
(3.7). If we are only interested in a first order of approximation, there is no
distinction between the two situations, since the approximated Lagrangian
velocity is sttistically homogeneous (P2, Section 4).

A consistent formal asymptotical expansion of the dispersion coefficients
(6.4) can be obtained as follows. Consider the asymptotic series of the tra-
jectory (6.3), X(t) = X(0)(t) + ε∆X(t) + · · · , where X(0)(t) = (t, 0, 0) is the
trajectory of the mean flow, and the formal Taylor expansion of ui,

ui(X) = ui(X
(0)) + εu′i(X

(0))∆X + · · · , (6.5)

where u′i denotes the Fréchet derivative. Then, assuming α ≥ 1, from (6.4)
and (6.5) one obtains,

Dens
ii ∼ ε2α + ε2τ

(0)
ii + ε4F (ui(X

(0)), u′i(X
(0))) + · · · , (6.6)

where τ
(0)
ii are the Lagrangian correlation times and F is a functional of the

Lagrangian velocity ui and of its Fréchet derivative u′i. The truncation to
the first-order in ε2, written in dimensional variables, gives (P3, p. 4),

Dens
ii ∼ D0 + σ2λii/U. (6.7)

Remark 6.1 Consistent first-order expansions may be obtained from the
first iteration of the Itô equation about the reference solution X(0)(t) (P2,
P8). Formally, this consists of replacing ui(X(t)) by ui(t) in (6.4).

Rigorous proofs of existence for up-scaled processes with constant coeffi-
cients similar to (6.7) (limit theorems) can be found in a series of papers by
Kesten, Papanicolaou, Fannjiang, Komorowski [34, 26, 37], among others.
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The first iteration of the Itô equation about the process of diffusion taking
place in the mean flow field, Z(0)(t) = X(0)(t) + εαW(t) leads to

Dens
ii (t) = D0 +

∫ t

0

dt′
∫ ∫

〈ui(x)ui(x
′)〉

DV
g(x, t; x′, t′)dxdx′. (6.8)

where p(x, t; x′, t′) is the Gaussian joint probability density of the diffusion
process Z(0)(t) (P3, equation (11); also P2, equation (34)). This approxima-
tion is an inconsistent asymptotic expansion, because it mixes the orders of
magnitude, by including the contribution εα in the zero-th order Z(0). How-
ever, (6.8) leads to the same asymptotic behavior (6.7) (P8, Figure 2). In
addition, the inconsistent approximation, unlike the consistent one, accounts
for enhanced diffusion (i.e. scale effect) in single realizations of the velocity
field (P. 8, p.2). Non the less, such approximations allow the computation
of the dispersion coefficients in power-law correlated velocity fields as linear
combinations of scale-dependent coefficients for diffusion in velocity fields
with short-range correlations (P4, equation (42)).

6.3 Anomalous diffusion and ergodicity

The ergodicity of the center of mass process Xcm
i (t) (shown, for instance in

Figure 2) has been associated, at an heuristic level, with that of the space-
random fields with finite correlation range and with the normal diffusive
behavior of the process at large times [19]. In the more general case of
space-time random fields, arguments have been put forward that temporally
ergodic flows satisfy the diffusion limit criterion of convergent integral in (6.4)
and that the violation of this criterion may lead to anomalous diffusion [26].
For time-independent fields and small velocity fluctuations, some relations
between the ergodicity of the random fields, that of the effective dispersion
coefficients, and the type of diffusive behavior are readily available in the
frame of the consistent first-order approximation.

Consider first velocity fields with short range correlations. In such cases
the integral range is finite and the space-random velocity is necessarily er-
godic [12]. Typical examples are exponential and Gaussian short range cor-
relations, for which, according to Remark 6.1, the first-order approximation
of the Lagrangian correlation behaves like covu(t) ∼ e−t and covu(t) ∼ e−t

2
,

respectively. The corresponding correlation times τii are finite and define
constant dispersion coefficients, given by (6.6) truncated at the order ε2.

An ergodic estimator in the first-order of approximation of the dispersion
coefficient for the “reduced” process Yi = Xens

i − Wi can be obtained by
replacing in (6.4) the Lagrangian covariance covu(t − t′) = 〈ui(t)ui(t′)〉V by
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a time average of the product ui(t)ui(t
′),

D∗Y,ii(t) =

∫ t

0

dt′
1

T − t

∫ T−t

0

ui(t+ s)ui(t
′ + s)ds =

∫ t

0

covTu(t, t′)dt′. (6.9)

Since to the first-order the velocity fields are Gaussian of mean zero (e.g.,
[29]), the forth moments are completely determined by the correlation func-
tion (e.g., [63, equation (3.29)]). The limit, in the mean square sense,
〈[covTu(t, t′)−covu(t−t′)]2〉

V
→ 0 as T →∞ exists if and only if the condition

of Slutsky’s theorem for ergodic variance is fulfilled [63, p. 234], i.e.

1

T

∫ T

0

(covu(s))2ds −→
T→∞

0. (6.10)

The validity of (6.10) implies the mean square convergence of the estimator
D∗Y,ii towards the ensemble coefficient Dens

Y,ii.
Consider now fractional Gaussian noise velocities with power-law correla-

tions covu(t) ∼ t−β, 0 < β < 2. The process Yi has the variance Σii ∼ t2−β. If
β 6= 1, Yi is a fractional Brownian motion with Hurst exponent H = 1−β/2,
0 < H < 1, H 6= 1/2 (superdiffusion if 0 < β < 1 and subdiffusion if
1 < β < 2). If β = 1 (the case of “1/x” noise), then Σii ∼ t ln t − t. In all
these cases of anomalous diffusion, the increments of the process are corre-
lated and the memory terms Mii ∼ t2−β persist indefinitely (P3, p.6). Deng
and Barkai [20] proved the ergodicity of the variance in the particular case of
fractional Brownian motion. Since the condition (6.10) holds for all β > 0,
ergodicity is also a corollary of Slutsky’s theorem.

Summarizing, we have the following result.
Corollary 6.1 Ensemble dispersion coefficients for diffusion processes in

either short-range correlated or fractional Gaussian noise random fields are
ergodic within the precision of the consistent first-order approximation. �

Remark 6.2 Consider the single-trajectory quantity

Σ∗ii(t) = 2

∫ t

0

(t− τ)dτ

(
1

t− τ

∫ t−τ

0

ui(s)ui(s+ τ)ds

)
.

The expression in the brackets is an ergodic estimator of the velocity covari-
ance covu(t), and, if it is accurate enough, then

Σ∗ii(t) = 2

∫ t

0

dτ

∫ t−τ

0

ui(s)ui(s+ τ)ds ≈ 2

∫ t

0

(t− τ)covu(τ)dτ. (6.11)

The right hand side of the approximate equality in (6.11) is the Taylor’s
formula valid for a stationary ensemble variance Σii [46, equation (9.30’)].
Thus, Σ∗ii is a self-averaging estimator of Σii which can be used to estimate
dispersion coefficients on a single trajectory of the process through Σ∗ii/(2t)
(see also P11, equations (2) and (3)).
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7 Global random walk

7.1 Global random walk algorithm

The global random walk algorithm (GRW) used in the Monte Carlo sim-
ulations presented in Section 5 solves diffusion problems by moving large
collections of computational particles on regular lattices. Instead of mov-
ing particles sequentially, GRW redistributes all particles from a lattice site,
through advective displacements and diffusion jumps, in a single numerical
procedure. GRW can thus be thought as a superposition of weak solutions
to Itô equation projected on the lattice: instead of computing individual tra-
jectories, it approximates the evolution of the probability distribution of the
Itô diffusion by that of the number of particles at lattice sites (P12).

In a one-dimensional GRW algorithm, the number of particles n at lattice
sites i and successive time steps k and k + 1 is given by the rules

n(j, k) = δn(j + vj, j, k) + δn(j + vj − d, j, k) + δn(j + vj + d, j, k), (7.1)

n(i, k + 1) = δn(i, i, k) +
∑
j 6=i

δn(i, j, k), (7.2)

where vj = [Vjδt/δx] are discrete displacements due to advection by the local
velocity field, computed as the integer part [·] of the non-dimensionalized
velocity, δt and δx are the time and space steps, j + vj are new positions
after advective displacements, and d are natural numbers describing discrete
diffusive jumps dδx. The number of particles undergoing diffusion jumps,
δn(j + vj ± d, j, k), and the number of particles waiting at j + vj over the
k-time step, δn(j + vj, j, k), are binomial random variables. The space and
time steps, δx and δt, are related to the diffusion coefficient D through

D = r
(dδx)2

2δt
, (7.3)

where r is a rational number, 0 ≤ r ≤ 1.
The relation (7.3) is the Kolmogorov’s definition of the diffusion coefficient

(3.5) projected on the lattice, where the parameter r plays the role of the
transition probability. Indeed, according to (7.1), the trajectory of each
particle is governed by

X̂k+1 = X̂k + vδx+ ξ, (7.4)

where the discrete process ξ is an unbiased random walk with amplitude
|ξ| = dδx and transition probabilities

P{ξ = ±
√

2Dδt} =
r

2
, P{ξ = 0} = 1− r. (7.5)
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Proposition 7.1 The discrete process X̂ approximates a continuous dif-
fusion process X(t) with finite first two moments satisfying (3.3-3.7).

Proof The definition of a diffusion process can be reformulated in terms of transition
probabilities and conditional expectations, without requiring that the transition probabil-
ity has a density (e.g., [36, p. 68 and p. 142]).

Condition (3.3), reformulated as lim
δt→0

1
δtProb{|X̂k+1 − X̂k| > ε} = 0, is fulfilled if for

every ε > 0 there exists a small δt such that Prob{|X̂k+1 − X̂k| > ε} = 0. According to
(7.4), |X̂k+1 − X̂k| = |vδx+ ξ| takes on a maximum value of (|v|+ d)δx. Using (7.5), one

finds that if δt ≤ δt∗ = rd2ε2

2D(|v|+d)2 , then (|v|+ d)δx ≤ ε with probability 1. Thus, the con-

dition (3.3) is fulfilled because Prob{|X̂k+1 − X̂k| > ε} = 1−Prob{|X̂k+1− X̂k| ≤ ε} = 0.
Since transitions outside the interval (−ε, ε) have probability zero if δt ≤ δt∗, the condi-
tions (3.6-3.7) for the first two moments of X̂k+1 − X̂k are fulfilled as well.

Condition (3.4), reformulated as an expectation for fixed X̂k and δt ≤ δt∗, yields

lim
δt→0

1

δt
E{X̂k+1 − X̂k} = lim

δt→0

1

δt
E{V δt+ ∆vδx+ ξ} = V + lim

δt→0

1

δt
∆vδx, (7.6)

where the truncation error of the advective displacement is defined by ∆v = v − V δt
δx ,

−1 ≤ ∆v ≤ 1, and (7.4) implies E{ξ} = 0.
Condition (3.5) is verified exactly:

1

2
lim
δt→0

1

δt
E{(X̂k+1 − X̂k)2} =

1

2
lim
δt→0

1

δt
E{V 2δ2t+ 2V ξδt+ ξ2} = D, (7.7)

where one uses (7.5), which implies E{ξ} = 0 and E{ξ2} = 2Dt. �
According to Proposition 7.1, the GRW algorithm (7.1-7.3) fulfills the re-

quirements for an exact decomposition of the variance of the second moments
of the concentration as sum of dispersion and memory terms (see Remark
3.1). As shown by (7.3) and (7.7), the algorithm is free of numerical diffusion
by construction. The main source of errors is the truncation of the advective
displacement from the last term in (7.6). A priori error estimates are not
available for the GRW algorithm but one expects that refining the space and
time steps reduces the truncation errors (e.g., P12, figure 1). A posteriori
error estimates can be obtained by comparisons with a biased-GRW (P13).

In case of a constant velocity, there are no truncation errors at all if one
chooses V δt = vδx, which cancels ∆v in (7.6). The first three moments of
the random walk ξ with jump probabilities given by (7.5) satisfy

|E(ξ)|+
∣∣E(ξ3)

∣∣+
∣∣E(ξ2)− δt

∣∣ = 0 ≤ Cδt2,

for any positive constant C, condition required for a consistent first-order
truncation of the Itô-Taylor expansion [36, Section 5.12]. We have thus the
following corollary to the Proposition 7.1.

Corollary 7.1 If V is a real constant, then the discrete process (7.4)
is a weak Euler scheme with convergence order O(δt) for the Itô equation
dX(t) = V dt+ dW (t), E(dW ) = 0 and E((dW )2) = 2Dδt. �
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By virtue of Corollary 7.1, in case of constant V the GRW algorithm
is a superposition of weak Euler schemes which approximates the one-point
probability density of the Itô process by particle density at lattice sites.

The mean of the binomial random variables δn(j+vj±d, j, k) with param-
eters n(j, k) and r/2 (see (7.5)), i.e. the mean number of unbiased right/left
jumps from the lattice site j at time t, equals 1

2
rn(j, k) [48, p. 156]. Taking

the mean over an ensemble of GRW runs (denoted in the following by an
overline) and using (7.1) one obtains

δn(j + vj ± d, j, k) =
1

2
r n(j, k), δn(j, j + vj, k) = (1− r) n(j, k). (7.8)

In case of constant D and V = 0, according to (7.1-7.2), the evolution
of the mean number of particles is described by an explicit finite difference
scheme for the diffusion equation ∂tc = D∂2

xc,

n(i, k + 1) =
r

2
n(i+ d, k) + (1− r)n(i, k) +

r

2
n(i− d, k). (7.9)

The continuous solution can be approximated by c(xi, tk) = n(i, k)/δx (P12).
In weak formulations, c(xi, tk) is usually approximated by a sum of Dirac
measures [40, 25]. Since the initial value problem is well-posed (as conse-
quence of conservation of the number of particles) and the scheme (7.9) is
stable (r ≤ 1 fulfils the von Neumann’s criterion), it is also convergent, ac-
cording to Lax-Richtmyer Equivalence Theorem [56]. The convergence order
is O(δt) in time and O(δx2) in space.

7.2 Implementation and numerical convergence

The exact GRW algorithm is implemented by extracting the random variables
δn(j + vj ± d, j, k) from the cumulative binomial distribution function (see
P12, pp. 532-533). Several other implementations were also proposed in
(P12), for instance, the “deterministic GRW”, where one gives up the particle
indivisibility and n are arbitrary positive real numbers evolving according
to (7.9), approximations of the binomial distributions by erf -functions for
large n, or the reduced fluctuations GRW algorithm. The latter proved its
efficiency in large scale simulations of transport in groundwater (P5, P7).

In the reduced fluctuations GRW, the number of left jumps is given by

δn(j + vj − d, j, k) =

{
n/2 if n is even

[n/2] + θ if n is odd,
(7.10)

where n = n(j, k) − δn(j + vj, j, k), [n/2] is the integer part of n/2, and θ
is a random variable taking the values 0 and 1 with probability 1/2. The
number of right jumps is given by the difference n− δn(j + vj − d, j, k).
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Figure 6: Distribution of N = 300 particles staring from x = 100 after the first

three GRW time steps for D = 1 and fixed parameters r = 1 and d = 1.

Figure 7: Convergence with the

number of particles of the exact

GRW algorithm (GRW0) and of

the reduced fluctuations algorithm

(GRW), for a one-dimensional Gaus-

sian diffusion problem.

Figure 8: Comparison of CPU

times for simulations carried out

with GRW, GRW0, and PT of a

three-dimensional Gaussian diffusion

problem over ten dimensionless time

steps.
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In practice, (7.10) is implemented by summing up reminders of division
by 2 and multiplication by r of n(j.k), which avoids the need to use random
number generators (P14, p. 3).

The GRW solution to the initial value problem for a Gaussian diffusion is
illustrated in Figure 6. By increasing the number of particles the unaveraged
GRW solution approaches the solution of the finite difference scheme (7.9).
It was found that the GRW algorithm is self-averaging, in the sense that if
the total number of particles N is large enough, no ensemble averaging over
GRW runs is necessary to obtain smooth solutions (P12, Figure 5). Thus,
the GRW solution converges like O(δx2) +O(1/

√
N). The decay with N of

the error norm is a bit faster in case of reduced fluctuations GRW (Figure
7). The number of particles required for self-averaging increases with the
simulation time and the dimension of the spatial domain. In case of large
scale simulations in groundwater is vas found to be N ∼ 1010 [57].

Compared with sequential particle tracking procedures (PT), consisting
of ensembles of (generally) strong solutions to Itô equation, GRW has the
advantage of providing smooth solutions by using huge numbers of particles,
at low computational costs. This is shown by a comparison of CPU time
used to solve the same problem given in Figure 8. While for PT the CPU
time increases linearly with N and requires increasing numbers of processors
(up to 256 for N = 109 on a Cray T3E parallel computer), the computing
time increases significantly only for more than N > 108 in case of exact GRW
algorithm (GRW0) and is practically constant in case of reduced fluctuations
GRW.

Two-and three-dimensional GRW algorithms can be constructed by re-
peating the one-dimensional procedure for each spatial direction, in case of
constant diffusion coefficients, or by using independent random walks, in case
of variable diffusion coefficients (Figure 9). In the latter case, one uses space-
time variable rx and ry, rx+ ry ≤ 1, and for given dx, dy, δx and δy, the time
step is chosen to satisfy

δt ≤
(

2Dmax
x

(dxδx)2
+

2Dmax
y

(dyδy)2

)−1

.

where Dmax
x = max{Dx(x, y, t)} and Dmax

y = max{Dy(x, y, t)}. This imple-
mentation yields accurate solutions even if the diffusion coefficients are highly
variable and random (for instance, in simulations of diffusion in human skin,
modeled as a three-layer two-dimensional model with Gaussian distributed
diffusion coefficients [59]).
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Figure 9: Two-dimensional GRW for constant diffusion coefficient, built as a

superposition of two one-dimensional GRW procedures (left) and GRW for vari-

able diffusion coefficients, based on two independent random walks on x- and

y-directions (right).

Figure 10: GRW state at t = δt = 0.5 (left) and BGRW state at t = δt = 0.0025

(right), for the same problem of transport in groundwater (P13).
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7.3 Biased-GRW algorithm

If the velocity and the diffusion coefficients vary in space, overshooting errors
may occur when the particles jump over more than one lattice site (see Figure
10). Overshooting can be avoided if advection is simulated by a bias in the
random walk probability and only jumps to the nearest sites are allowed.
This results in a biased global random walk (BGRW) algorithm (P13). Since
BGRW moves all the particles lying at a lattice site in a single numerical
procedure, N can be as large as necessary to ensure the self-averaging, which
is the main difference with respect to the biased-random walks on lattices
which move particles sequentially [33, 24]).

The two-dimensional BGRW is defined by the rule

n(i, j, k) = δn(i, j | i, j, k)

+ δn(i+ 1, j | i, j, k) + δn(i− 1, j | i, j, k)

+ δn(i, j + 1 | i, j, k) + δn(i, j − 1 | i, j, k), (7.11)

where n(i, j, k) is the number of particles at the site (x, y) = (iδx, jδy) at
the time t = kδt. To the components of the drift (velocity) and diffusion
coefficients of the transport problem, Vx(x, y, t), Vy(x, y, t), Dx(x, y, t) and
Dy(x, y, t), one associates dimensionless parameters

vx = Vx
δt

δx
, vy = Vy

δt

δy
, rx = Dx

2δt

δx2
, ry = 2Dy

2δt

δy2
. (7.12)

Instead of (7.8), the average over BGRW runs of the terms in (7.11) are now
related by

δn(i, j | i, j, k) = (1− rx − ry) n(i, j, k),

δn(i± 1, j | i, j, k) =
1

2
(rx ± vx)n(i, j, k),

δn(i, j ± 1 | i, j, k) =
1

2
(ry ± vy)n(i, j, k). (7.13)

The last four terms in (7.13) are averages of binomial random variables,
like in the unbiased GRW algorithm, and the reduced fluctuations BGRW is
implemented similarly to (7.10).

Defining the particle density ρ(x, y, t) = n(i, j, k), summing up the contri-
butions coming from the first neighbors to a lattice site, and using (7.11-7.13)
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one obtains

ρ(x, y, t+ δt)− ρ(x, y, t)

δt
+

Vxρ(x+ δx, y, t)− Vxρ(x− δx, y, t)
2δx

+
Vyρ(x, y + δy, t)− Vyρ(x, y − δy, t)

2δy
=

Dxρ(x+ δx, y, t)− 2Dxρ(x, y, t) +Dxρ(x− δx, y, t)
δx2

+

Dyρ(x, y + δy, t)− 2Dyρ(x, y, t) +Dyρ(x, y − δy, t)
δy2

. (7.14)

The relation (7.14) is the forward-time centered-space finite difference scheme
for the Fokker-Plank equation

∂tρ+ ∂x(Vxρ) + ∂y(Vyρ) = ∂2
x(Dxρ) + ∂2

y(Dyρ). (7.15)

As follows from (7.13), the BGRW algorithm is subject to the following
restrictions

rx + ry ≤ 1, |vx| ≤ rx, |vy| ≤ ry. (7.16)

By the last two inequalities in (7.16), the Courant numbers Vxδt/δx and
Vyδt/δy are sub-unity, which ensures that the BGRW algorithm is free of
overshooting errors. If, in addition, one imposes the conditions rx ≤ 0.5
and ry ≤ 0.5, the von Neumann’s criterion for stability is also satisfied,
Thus, the convergence of the scheme (7.14) is implied by the Lax-Richtmyer
Equivalence Theorem [56]. Summarizing, we have the following proposition.

Proposition 7.2 Under the conditions stated above, the solution of the
BGRW algorithm (7.11-7.13) for an initial value problem converges with the
order O(δx2) to the solution of the Fokker-Planck equation (7.15). �

As shown by (7.14), the BGRW algorithm is equivalent with a finite dif-
ference scheme even if the velocity field is a space-time function, unlike in
case of unbiased GRW, for which the equivalence holds only for constant ve-
locity. Instead, since advection is accounted for by biased jump probabilities,
BGRW is no longer equivalent to an Euler scheme for the Itô equation.

The advection-diffusion equation which corresponds to Fick’s law,

∂tρ+ ∂x(V
∗
x ρ) + ∂y(V

∗
y ρ) = ∂xDx∂xρ+ ∂yDy∂yρ,

becomes equivalent to (7.15) if the drift coefficients are replaced by Vx−∂xDx

and Vy − ∂yDy [36] and the corresponding BGRW algorithm can be derived
similarly.

The BGRW algorithm is highly accurate but more expensive than the
unbiased GRW, because of the restriction of sub-unity Courant numbers in
(7.16). Therefore, BGRW was mainly used to validate the faster but less
accurate unbiased GRW algorithm (see [58], P8, and P13).
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8 Coupled MFEM-GRW simulations

8.1 A typical problem of transport in aquifers

Consider a two-dimensional flow and transport problem associated to (4.1)
and (4.2) and its solutions obtained by the mixed finite element method
(MFEM) proposed in [52, 11]. The computational domain is Ω = [0, 210] ×
[0, 85] and T = 200 is the final time. The constant diffusion coefficient is set
to D = 0.01 (lengths are measured in m, times in days, and concentrations
are normalized by the maximum initial concentration, as in typical field-scale
transport problems for saturated aquifers (P7)). The initial and boundary
conditions for both pressure and concentration are given in Fig. 5.

-

-

-
-

(0,0) (210,0)

(0,85) (210,85)

ΩI

ΩI = [40, 45]× [40, 45]

Initial conditions

cI(x, y) =

{
0.04 if(x, y) ∈ ΩI
0 otherwise

.

Boundary conditions

ψ(x, y, t) =

{
3.5 at x = 0
0 at x = 210

,

elsewhere V · n = 0, ∇c · n = 0.

Figure 11: Computational domain, boundary conditions, and initial conditions

for the flow and transport problem [52].

Log-normal K fields with variance σ are generated as a superposition of
Np random periodic modes

ln(K(x)) = σ

√
2

Np

Np∑
l=1

a(ql) sin(ql · x + αl),

where the wave vectors ql are mutually independent Gaussian random vari-
ables, with probability distribution proportional with the spectral density of
the lnK field, and the phases θl are random variables uniformly distributed
in the interval [0, 2π]. (P14). The generated random field u(x) has the mean
zero, the variance σ2, and an isotropic correlation described by the function
C(r) = σ2e−r/λ, where r is the lag distance and λ is the correlation length.

For accurate simulations of the lnK field Np has to be of the order of the
total simulation time (P7, P9). However, for the validation of the approach
presented in the following, a smoother lnK field with Np = 1 will be consid-
ered. The resulting hydraulic conductivity K and the velocity field given by
the MFEM solution to (4.2) are presented in Figure 12.
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Figure 12: K(x) (left) and corresponding V(x) (right) for a single sine-mode.

8.2 MFEM-GRW coupling

The large scale GRW simulations presented in (P7) were carried out with the
a first-order approximated velocity field (GRW-Kraichnan approach) which is
accurate only if the variance σ2 of the lnK field is small enough. It is there-
fore desirable to have a coupled approach consisting of GRW simulations,
free of numerical diffusion, with exact and accurate velocity fields produced
by MFEM methods. The MFEM-GRW coupling method proposed in (P14)
consists of the following steps:

• compute MFEM solutions to the flow and Darcy equations,

• import the velocity field from the MFEM basis into GRW:

– find the MFEM element containing the lattice site x,

– compute

V(x) =
3∑

k=1

fk
x− xk

2a
,

where fi are basis coefficients, xk are position vectors of the cor-
ners, and a is the area of the triangular MFEM element,

• use V(x) as input in GRW transport simulations.

The coupled MFEM-GRW achieves a speed-up of computation of a fac-
tor of ten compared to the full MFEM solution to both flow and transport
problems (P14, p. 9).
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Figure 13: Mean Lagrangian veloc-

ity components V L
1 = dµx/dt nor-

malized with the MFEM mean Eu-

lerian velocity U1 = 0.871 m/day,

computed by full MFEM, coupled

GRW-MFEM, and GRW-Kraichnan

approximation.

Figure 14: The same as in Figure 13,

for mean Lagrangian velocity compo-

nents V L
2 = dµy/dt normalized with

the MFEM mean Eulerian velocity

U2 = 0.014 m/day.

8.3 Validation of the MFEM-GRW approach

For validation purposes, full MFEM solutions to both flow and transport,
for a small grid-Peclet number Pegrid = 0.0871, are compared with coupled
MFEM-GRW solutions. The resolution of the velocity field in the GRW sim-
ulation is controlled by a new parameter p = Uδt/δx [57] and by the mean
Courant number Uδt/dδx = p/d, where U = U1 is the longitudinal compo-
nent of the Eulerian mean velocity and d is the amplitude of the diffusion
jumps. A sub-unity value p/d = 2/3 ensured small overshooting errors.

The first and second centered spatial moments

µα(t) =

∫ ∫
αc(x, y, t)dxdy, µαα(t) =

∫ ∫
(α− µα)2c(x, y, t)dxdy,

where α stands for x or y, were computed by integrating over the spatial
support of the concentration c(x, y, t).

Figures 13 and 14 show comparisons of the mean Lagrangian velocity
components V L

α = dµα/dt computed by the two approaches as well as by
the GRW-Kraichnan approach. MFEM and MFEM-GRW results are close
to each other, while the GRW-Kraichnan results are acceptable only after
sufficiently large times.

The effective diffusion coefficients Deff
αα = µαα/(2t) are compared in fig-

ures 15 and 16. The GRW-Kraichnan solutions show again large deviations
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Figure 15: Longitudinal effective

diffusion coefficients computed by

full MFEM, coupled GRW-MFEM,

and GRW-Kraichnan approximation.

Figure 16: The same as in Figure

15, for transverse effective diffusion

coefficients.

from the other two approaches. Nevertheless, even though they are inac-
curate for single-realization simulations, large ensembles of GRW-Kraichnan
solutions were found to be accurate enough for the purpose of Monte Carlo
simulations [58]. MFEM results for the longitudinal effective diffusion co-
efficient show a small systematic deviation from those obtained by MFEM-
GRW. This was found to be caused by the residual numerical diffusion in the
MFEM scheme. The latter was evaluated by solving a transport problem for
constant velocity and subtracting the nominal (input) diffusion coefficient
from the diffusion coefficient computed by the MFEM method. After cor-
recting for the residual numerical diffusion, the MFEM and MFEM-GRW
results become quite close after a few dimensionless times (thin lines in Fig-
ure 16). This concludes the validation test of the coupled MFEM-GRW
approach.

The coupled MFEM-GRW approach may be especially useful in Monte
Carol simulations of passive transport for large variances of the log-hydraulic
conductivity. Another useful application is the assessment of the numerical
diffusion in MFEM methods by comparisons of solutions for passive trans-
port problems. MFEM schemes with acceptable small numerical diffusion
can be further used to solve reactive transport problems (an application to
aerosol filters modeled as random media is presented in Section 4 of (P14)).
The MFEM-GRW approach will be also a valuable tool in solving evolution
equations for the probability density of the random concentration, as that
sketched in Section 9.1 below.
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9 GRW solutions to PDF evolution equations

9.1 Modeled PDF evolution equations

The evolution of the probability density function (PDF) of the random con-
centration in groundwater systems can be modeled, similarly to approaches
developed in turbulence and combustion theory [49, 15, 32, 31, 44], by Itô
equations for trajectories of “fluid particles”, Xi, i = 1, 2, 3,

dXi(t) = Vi(t)dt+ dW̃i(t), E{W̃ 2
i (t)} = 0, E{W̃ 2

i (t)} = 2

∫ t

0

Dii(t′)dt′,

(9.1)
where Vi and Dij are up-scaled velocity fields and dispersion coefficients, and
by Itô equations describing time-random concentrations C(X, t) carried by
fluid particles,

dC(t) = A(t)dt+B(t)dW (t) + S1(C(t), C(t)),

dC(t) = S2(C(t), C(t)), (9.2)

where C and C are mobile and immobile species concentration related by
reaction terms S1 and S2 and W (t) is the standard Wiener process [60].

A general form of the drift term in (9.2) is

A(t) = −a(t)(C(t)− 〈C〉) + ∆diff〈C〉,
where ∆diff〈C〉 describes the attenuation of the mean concentration through
diffusion [45]. The diffusion coefficient in (9.2) has the generic form [49]

B(t) ∝
√
〈(C(t)− 〈C〉)2〉.

By Itô - Fokker-Planck equivalence one associates to the position (Xi)
and concentration (C,C) Itô equations a Fokker-Planck equation describing
the joint concentration-position PDF p(c,x, t),

∂tp+ V∇p+∇c(Ap) = D∇2p+∇2
c(Bp)−∇c,c((S1 + S2)p). (9.3)

The reaction terms S1 and S2 are in a closed form, the same as in the
concentration balance equation. The drift and diffusion coefficients in phys-
ical space (V , D) and in the concentration space (A, B) are unclosed and
require modeling. V and D can in principle be obtained from homogenization
MFEM approximations for non-periodic media and random coefficients (e.g.,
[47]). MFEM solutions imported into GRW and mixing models for A and
B can be used to solve the equation (9.3) for the evolution of the joint PDF
in physical and concentration spaces by a coupled MFEM-GRW approach
similar to that described in the previous section.
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9.2 GRW solutions to modeled PDF equations

The feasibility of the GRW-PDF approach has been illustrated in [60] for
the passive transport problem considered in (P7). The Monte Carlo results
were processed statistically to infer various correlations and PDFs (P15).
The strong correlation between the longitudinal dispersion coefficient and
the cross-section space-average concentration and the smallness of the other
input-output correlations (P15, Figure 6) supply numerical support for a one
dimensional model (9.1), with constant constant V and time-variable D.

The coefficient D = D11 has been estimated according to Remark 6.2,
using a single trajectory of diffusion in a realization of the Kraichnan velocity
field, with the discrete version of (6.11),

D = X2
t /(2Sτ), X2

t =
S∑
s=1

δX2
s + 2

S−1∑
r=1

S−r∑
s=1

δXsδXs+r, δXs = Xsτ −X(s−1)τ .

The drift term in (9.1) was set to the constant mean V = 1 m/day.
The drift term A(t) in (9.2) was specified by a(t) = D(t)/λ, λ = 1

m. The attenuation of the mean concentration by the local diffusion of
coefficient D = 0.01 m2/day, ∆diff〈C〉, was evaluated from one-dimensional
GRW solutions. In absence of a model for the diffusion in the concentration
space, a coefficient B = 10−6 day−

1
2 was chosen, which corresponds to (7.3),

with the time and concentration steps used in simulation, r = 1, and d = 1.
The initial condition for the Fokker-Planck equation (9.3) was the concen-

tration PDF after the first time step in the Monte Carlo simulations (P15),
multiplied by N = 1024 particles for the purpose of the GRW simulation.

Figure 17 shows contour plots for n = 1 and n = 106 particles in the (x, c)
plane at successive times and Figure 18 shows the evolution of the simulated
concentration PDF.

Integrating over c the solution p(c, x, t) of the Fokker-Planck equation
(9.3) gives the marginal p(x, t), which is the mean concentration correspond-
ing to (9.1). The comparison with Monte Carlo results from Figure 19 shows
that the GRW solution fulfils this consistency condition.

The comparison in Figure 20 between the input dispersion coefficient,
those computed during the GRW simulation, and the Monte Carlo reference
value indicates that the “ergodic” estimation based on (6.11) is an acceptable
approximation for the transport problem considered here.

As shown by Figure 21, the cumulative probability distribution is still
different from that obtained by Monte Carlo simulations. This is a somewhat
expected result, because the GRW simulation is incompletely parameterized.
Nevertheless, these results provide a numerical support for the feasibility of
the GRW-PDF approach.
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Figure 17: Contours in (x, c) plane

at t = 0, 10, 50, and 100 days.

Figure 18: Transport of p(c) along

x = Vt over 100 days.

Figure 19: 〈C〉(x), at t = 10

days, t = 100 days (peaks), and

〈C〉(x = Vt) (monotone curves) com-

pared with Monte Carlo results.

Figure 20: Input and computed dis-

persion coefficients compared with

Monte Carlo results.

Figure 21: Cumulative distribution function at the center of mass x = Vt trans-

ported in time by the GRW-PDF algorithm (left) compared with the Monte Carlo

estimate (right).
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10 Conclusions

The model of diffusion in random velocity fields can be parameterized by
experimentally inferred local dispersion coefficients and by space dependent
drift coefficients. The latter are solutions of boundary value problems for the
flow equations, with hydraulic conductivity parameters provided as samples
of a random space function, inferred by geostatistical interpretation of field-
scale measurements.

Diffusion in random velocity fields is a stochastic process with memory.
The relevant memory effects are quantified by correlations of the increments
of the process, determined by correlations of the velocity field. The mem-
ory may be transitory, for short-range velocity correlations, or indefinitely
persistent, in case of power-law correlations.

Memory effects cause a “non-ergodic” behavior of the actual dispersion
and concentration with respect to theoretical models given by stochastic av-
erages, such as the one-particle dispersion and the macrodispersion model.
Therefore, in practical applications aiming at monitoring groundwater con-
tamination, theoretical averages are not enough and the one-dimensional
PDF of the random concentration is often required.

Efficient solutions to PDF evolution equations can be obtained by GRW
or by coupled MFEM-GRW approaches. The challenge is to identify suit-
able mixing models for the dynamics of the concentration at fixed locations.
Mixing models used in turbulence and combustion theory may be a starting
point, however, they cannot be simply transferred and applied to transport
problems in sub-surface hydrology.

An option for a better modeling of the local mixing could be to evaluate
directly the mean diffusion flux from which mixing models of type (9.2) are
usually derived [15, 45]. This evaluation can be done dynamically through
independent GRW simulations of local diffusion processes in physical space,
at every lattice site and time step of the GRW-PDF code. The efficiency of
the GRW algorithm makes possible such imbedded simulations, at reasonable
computational costs.

The next step should be to get closer to measurements. Time series
of concentrations may be interpreted as polydispersive processes consisting
of superpositions of Gaussian processes associated to local thermodynamic
equilibrium states at different scales [30]. A mechanism which is able to
generate time series with the same polydisperse parameters may serve as a
mixing model. Such an approach is justified by the hierarchical structure of
scales and by the low flow velocity in groundwater systems.
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