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Chapter 1

Introduction

Flow and transport in porous media have plenty of real world applications, like e.g.
water and soil pollution, CO2 storage, oil recovery, nuclear waste management, drug
delivery systems, and cancer research. The use of computers for solving problems
such as those mentioned above is standard today. More and more decisions, some
of them with possibly dramatic consequences for human beings and the environment,
are based on predictions made with the help of computer programs. Nevertheless,
for reliable predictions one needs adequate mathematical models and solvers, bench-
marks and experiments for calibration of the models and an interdisciplinary team to
interpret the results. We especially enhance the need for powerful (mass-conservative)
discretizations (which can capture the important features of the problem, like a compli-
cate computational domain, heterogeneous media, sharp interfaces or reactive fronts...)
and robust and efficient linear and nonlinear solvers. This work contributes on the de-
velopment, understanding and analyzing of numerical schemes for reactive flow and
transport in porous media.

The need for mass conservative numerical schemes for simulating flow in porous
media is well recognized in water research [22, 55]. Therefore numerical schemes
based on FVM (finite volume method) and MFEM (mixed finite element method) are
the first choices. Besides, the MFEM has the advantage of furnishing an accurate flux
directly as an intrinsic part of the solution. Moreover, the flux is continuous over the
edges (faces) of the finite element meshes. This is an enormous advantage when the
water flux is also needed for the simulation of reactive contaminant transport in the
soil (see [15, 16, 72]). We further refer to [55, 23, 32, 37] for the advantages of MFEM
over other methods for heterogeneous media. In this thesis, we consider mainly nu-
merical schemes based on MFEM, more exactly on the lowest order Raviart-Thomas
elements [P1], [P3]-[P9]. The backward Euler method is used for the temporal dis-
cretization. Paper [P2] is considering a MPFA discretization (multipoint flux approxi-
mation method) which is variant of the MFEM.

The set-up and especially the analysis of numerical schemes for flow and transport
in porous media is a very challenging task. The reasons for this are mainly:
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• Nonlinearity of the equations

• Degeneracy of the flow equation

• Coupling of flow and transport

• Coefficient functions are not Lipschitz-, but just Hölder-continuous.

A description of the models used for flow and reactive transport in porous media
is given in the corresponding sections together with a brief state of the art concerning
discretization possibilities and their analysis. We will distinguish between discretiza-
tion error and linearization error. The discretization error refers to the error of the
spatial and temporal discretization, by assuming that the nonlinear systems are solved
exactly in each time step. The aim is to provide order of convergence estimates for
the discretization error. The linearization error is referred to the error induced due to
the linearization schemes applied to solve the nonlinear systems at each time step. We
will consider general saturated/unsaturated flow as well as strictly unsaturated flow
and reactive flow transport with equilibrium or non-equilibrium sorption. The sorption
isotherm is considered to be of Freundlich-type, which is modeled by a Hölder- but
not Lipschitz-continuous function. Due to this a regularization step is necessary when
applying Newton method for linearization.

The main contribution of this thesis are:

• We proved the convergence for a mixed finite element discretization of Richards’
equation in a very general framework: slow and fast diffusion being allowed. No
unrealistic regularity assumption were assumed. Order of convergence estimates
are derived.

• We proved the convergence for a multipoint flux approximation discretization
(O-method) for the Richards equation for saturated/unsaturated flow. Order of
convergence estimates are obtained.

• We have shown the optimal convergence for a mixed finite element scheme for
Richards’ equation for strictly unsaturated flow (nonlinear parabolic equation).

• We proved the convergence for a MFEM scheme for reactive solute transport
with equilibrium or non-equilibrium sorption in porous media. The proof takes
in account the low regularity of the flow equation. The order of convergence
depends naturally on the accuracy of the numerical scheme for the flow equation.

• We set up Newton schemes for solute transport with equilibrium or non-
equilibrium sorption. We derived a priori constraints on the discretization pa-
rameters to ensure their (quadratic) convergence. These constraints are of a rel-
evant interest for practical use.
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• We provided a comprehensive comparative study on numerical diffusion for dif-
ferent discretization schemes for solute transport in porous media. The study
included Galerkin finite element-, FVM- and MFEM-schemes, higher order
schemes in space or time, and upwind schemes. The study can be used by re-
searchers to test their codes and/or new numerical schemes.

• We developed a more robust mixed hybrid finite element scheme for solute trans-
port and an upwind variant of it. The schemes are more suitable for convection-
dominated problems.

• We provided a mass conservative scheme for concrete carbonation. The scheme
is based on the MFEM. The model for concrete carbonation is a fully coupled
flow and reactive transport system. Error estimates are derived for some partic-
ular cases.

The thesis is structured as follows. In Section 1.1 are listed the notations and abbre-
viations used throughout this work. There are eight journal papers which are discussed
in Chapters 2 and 3 and presented in original in Chapter 5. A list of the papers is given
in Section 1.2. Chapter 2 concerns flow in porous media. In its first section the general
framework is presented: the equations, the state of the art and outline our contribution.
The Sections 2.1-2.3 are then concrete describing the first three papers, which are all
concerning flow in porous media. Each paper is described by a short introduction, pre-
sentation of the numerical scheme considered their and the assumptions made on the
data and by giving the main results. Following the same line, Chapter 3 is considering
reactive solute transport and the Sections 3.1-3.5 are describing the remaining papers.
Chapter 4 gives the conclusions and outlook.

1.1 Notations.

Throughout this thesis we use common notations in the functional analysis. We denote
by Ω a bounded, open domain in IRd (d denotes the spatial dimension) with a Lipschitz-
continuous boundary ∂Ω. By 〈·, ·〉 we mean the inner product on L2(Ω), or the duality
pairing between H1

0 (Ω) and H−1(Ω). Further, ‖ · ‖ and ‖ · ‖1 stand for the norms in
L2(Ω) and H1(Ω), respectively. The functions in H(div; Ω) are vector valued, having
a L2 divergence. We denote by T < ∞ a finite end time and let N ≥ 1 be an integer
giving the time step τ = T/N , and tk = kτ for k ∈ {1, . . . , N}. We further denote by
ε > 0 a small regularization parameter.

Furthermore, we let Th be a regular decomposition of Ω into closed d-simplices;
h stands for the mesh-size (see [24]). Here we assume Ω = ∪T∈ThT , hence Ω is
polygonal. In this way the errors caused by an approximation of a non-polygonal
domain are avoided; we mention [58] for a detailed analysis. We will use the discrete



CHAPTER 1. INTRODUCTION 7

subspaces Wh ⊂ L2(Ω) and Vh ⊂ H(div; Ω) defined as

Wh := {p ∈ L2(Ω)| p is constant on each element T ∈ Th},

Vh := {q ∈ H(div; Ω)| q|T = a + bx for all T ∈ Th}.
(1.1)

In other words, Wh denotes the space of piecewise constant functions, while Vh is the
RT0 space (see [18]). Notice that∇ · q ∈ Wh for any q ∈ Vh.

In what follows we use the usual L2 projector:

Ph : L2(Ω)→ Wh, 〈Phw − w,wh〉 = 0, (1.2)

for all wh ∈ Wh. Furthermore, a projector Πh can be defined on (H1(Ω))d (see [18, p.
131]) such that

Πh : (H1(Ω))d → Vh, 〈∇ · (Πhv − v), wh〉 = 0, (1.3)

for all wh ∈ Wh. Following [66], p. 237, this operator can be extended to H(div; Ω).
For the above operators there holds

‖w − Phw‖ ≤ Ch‖w‖1, (1.4)

‖v − Πhv‖ ≤ Ch‖v‖1, (1.5)

for any w ∈ H1(Ω) and v ∈ (H1(Ω))d. Throughout this work we mean by C a
positive constant, not depending on the unknowns or the discretization parameters,
e.g. the mesh diameter h, the time step size τ and the regularization parameter ε.

1.1.1 Abbreviations

The following abbreviations will be used throughout this thesis.

MFEM = Mixed Finite Element Method
MHFEM = Mixed Hybrid Finite Element Method
FEM = (Galerkin) Finite Element Method
FVM = Finite Volume Method
RT0 = Raviart-Thomas lowest order finite elements
BDM1 = Brezzi-Douglas-Marini lowest order finite elements
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1.2 List of the papers

The following papers are the subject of this thesis. The papers in original are given in
Chapter 5.

[P1] F. A. Radu, I. S. Pop and P. Knabner, Error estimates for a mixed finite element
discretization of some degenerate parabolic equations. Numer. Math. 109 (2), 2008,
pp. 285-311.

[P2] R. A. Klausen, F. A. Radu and G. T. Eigestad, Convergence of MPFA on
triangulations and for Richards’ equation. Int. J. for Numer. Meth. Fluids 58 (12),
2008, pp. 1327-1351.

[P3] F. A. Radu and W. Wang, Convergence analysis for a mixed finite element
scheme for flow in strictly unsaturated porous media. Nonlinear Analysis Serie B:
Real World Applications, DOI:10.1016/j.nonrwa.2011.05.003, 2011.

[P4] F. A. Radu, I. S. Pop and S. Attinger, Analysis of an Euler implicit - mixed
finite element scheme for reactive solute transport in porous media. Num. Meth. for
Partial Diff. Eqs. 26 (2), 2010, pp. 320-344.

[P5] F. A. Radu and I. S. Pop, Newton method for reactive solute transport with
equilibrium sorption in porous media. J. Comput. and Appl. Math. 234 (7), 2010,
pp. 2118-2127.

[P6] F. A. Radu and I. S. Pop, Mixed finite element discretization and Newton
iteration for a reactive contaminant transport model with non-equilibrium sorption:
convergence analysis and error estimates. Comput. Geosci. 15 (3), 2011, pp. 431-
450.

[P7] F. A. Radu, N. Suciu, J. Hoffmann, A. Vogel, O. Kolditz, C.H. Park and S. At-
tinger, Accuracy of numerical simulations of contaminant transport in heterogeneous
aquifers: a comparative study. Adv. Water Resour. 34 (1), 2011, pp. 47-61.

[P8] F. A. Radu, A. Muntean, I. S. Pop, N. Suciu and O. Kolditz, A mixed finite
element discretization scheme for concrete carbonization in unsaturated porous media.
J. Comput. and Appl. Math. 246, 2013, pp. 74-85.

1.2.1 Role of co-authors

I am the first author in seven of the eight papers in this thesis. I was the driving-force
for all these papers and I did the main part of the work. At one of the papers I am the
second author. In that paper I did the work concerning the convergence of the scheme
for Richards equation, which is the relevant part for this thesis. I acknowledge the
contribution of all co-authors: I. S. Pop, P. Knabner, S. Attinger, N. Suciu, R. Klausen,
A. Muntean, G. T. Eigestad, W. Wang, J. Hoffmann, A. Vogel, and O. Kolditz. The
papers and implicit this thesis are of higher quality due to them.
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Chapter 2

Flow in porous media

In this section we consider flow in saturated/unsaturated porous media. We present the
mathematical model and some numerical schemes together with convergence results.
The papers associated to this section are [P1]-[P3]. A short description of each of them
is given in Sections 2.1 - 2.3.

The water flow in porous media is mathematically described by the Richards equa-
tion, a nonlinear, possibly degenerate, parabolic partial differential equation. In the
pressure formulation, the Richards equation [17] is expressed as

∂tΘ(ψ)−∇ · (K(Θ(ψ))∇(ψ + z)) = 0 in (0, T )× Ω. (2.1)

Here ψ denotes the pressure head, Θ the volumetric water content, K the hydraulic
conductivity and z the height against the gravitational direction. The Richards equation
results from the Darcy law

q = −K(Θ(ψ))∇(ψ + z), (2.2)

and the mass balance equation for water, which is assumed incompressible

∂tΘ(ψ) +∇ · q = 0. (2.3)

Equations (2.2) - (2.3) are completed by initial and boundary conditions

ψ(t = 0) = ψI in Ω, and ψ = 0 on (0, T )× ∂Ω. (2.4)

We consider only homogeneous Dirichlet boundary conditions, but the results pre-
sented in this work can be easily extended to more general types. Based on experi-
mental results, different functional relationships have been proposed for describing the
dependency between K, Θ and ψ (see e. g. [17]), yielding the nonlinear model (2.1).
In this sense we mention the model proposed by van Genuchten - Mualem [89, 56],
where

Θ(ψ) = ΘR + (ΘS −ΘR)θ(ψ), θ(ψ) =
(

1 + (−αψ)
1

1−m

)−m
,

K(θ) = KSθ
1
2

[
1−

(
1− θ

1
m

)m]2

.
(2.5)

10
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whenever the flow is unsaturated (ψ < 0). Here ΘR,ΘS, KS > 0, α > 0 and m ∈
(0, 1) are medium dependent parameters. For the fully saturated regime (ψ ≥ 0) we
have Θ = ΘS and K = Ks. Notice that in the present setting the Richards equation
degenerates whenever ψ goes to −∞, implying that both Θ′(ψ) and K(Θ(ψ)) are
approaching 0, or in the fully saturated regime (ψ ≥ 0), when Θ′(ψ) = 0. The regions
of degeneracy depend on the saturation of the medium; therefore these regions are not
known a priori and may vary in time and space.

The set-up and especially the analysis of numerical schemes for the Richards equa-
tion are very challenging tasks. A classical method to deal with this is to apply the
Kirchhoff transformation, see e.g. [4]. The main benefit of applying the Kirchhoff
transformation is that the two nonlinearities in (2.1) are combined in just one which
makes the analysis easier.

The Kirchhoff transformation is given by

K : R −→ R

ψ 7−→
∫ ψ

0

K(Θ(s)) ds. (2.6)

Notice that the hydraulic conductivityK can only vanish in the completely unsaturated
case, when Θ = 0. Hence K(Θ(s)) > 0 whenever Θ > 0, so the transformation is
bijective. With

u := K(ψ),
b(u) := Θ ◦ K−1(u),
k(b(u)) := K ◦Θ ◦ K−1(u),

(2.7)

we can bring equation (2.1) to

∂tb(u)−∇ · (∇u+ k(b(u)) ez) = 0, (2.8)

where ez denotes the vertical unit vector. b(·) is assumed to be monotone increas-
ing and only Hölder-continuous (not Lipschitz-continuous). Therefore two types of
degeneracy are allowed: for some u ∈ IR

⋃
{±∞} the following situations may occur:

a) u→ u implies b′(u)→ 0: the fast diffusion case,

b) u→ u implies b′(u)→∞: the slow diffusion case.

In particular, the vanishing of b′(·) may occur on intervals.
Among the papers where numerical schemes are set and analyzed for equations like

the Richards equation with the Kirchhoff transformation we mention: [8, 68, 81] for
MFEM, [92] for an expanded MFEM, [34] for FVM, [35] for a combined MFEM-
FVM and [58, 62, 65] for the Galerkin FEM. The discretization in time is done by
using the backward Euler method. The convergence for Galerkin FEM schemes for
Richards equation has been proved in [5, 58] for saturated/unsaturated flow. The au-
thors in [8] provided a proof for the MFEM scheme for Richards equation and sat-
urated/unsaturated flow by using the Kirchhoff transformation. To obtain order of



CHAPTER 2. FLOW IN POROUS MEDIA 12

convergence estimates by using [8] one needed additional, non-realistic regularity as-
sumptions for the solution of Richards’ equation. This has been improved in [68],
where order of convergence estimates are shown for saturated/unsaturated flow (fast
diffusion case). For strictly unsaturated flow, when Richards’ equation is regular, we
mention [6] for the convergence of Galerkin FEM. The convergence for the MFEM
scheme in cases of both slow and fast diffusion was still missing, as well as the con-
vergence for the MFEM in the strictly unsaturated case. A still open problem is the
convergence of the MFEM scheme without using Kirchhoff’s transformation for satu-
rated/unsaturated flow.

In [P1] we prove the convergence for the MFEM-scheme in a very general frame-
work, see short description below (Section 2.1). Furthermore, in [P2] we give a proof
also for the convergence of a MPFA-scheme for Richards’ equation. The conver-
gence is shown for saturated/unsaturated flow, but only fast diffusion case (i.e. b′(·)
is Lipschitz-continuous). The analysis can be but extended to include also the slow
diffusion case (i.e. b′(·) is only Hölder continuous). A short description of the paper is
given in Section 2.2.

All the schemes above involve the Kirchhoff transformation. Nevertheless, many
researchers are using the Richards equation without involving the Kirchhoff trans-
formation. Although the use of the Kirchhoff transformation at the continuous level
gives an equivalent equation, at the discrete level the schemes are not equivalent any-
more. This makes it very difficult to transfer the error estimates obtained for the
scheme with Kirchhoff’s transformation to the one without it. For the general case,
saturated/unsaturated flow there is no convergence proof for MFEM scheme for the
Richards equation that does not involve a Kirchhoff transformation. For Galerkin FEM
we mention [5] for the saturated/unsaturated flow and [6] for the strictly unsaturated
flow regime. We give in [P3] a proof for the convergence of the MFEM for strictly
unsaturated flow. A short description of the results of [P3] is given in Section 2.3.

The nonlinear systems at each time step are commonly solved by different methods:
the quadratic convergent Newton method, robust first-order linearization schemes, e. g.
[63, 93], or the Jäger-Kačur scheme [38, 39]. The convergence of the Newton method
applied to systems provided by a MFEM for an elliptic problem is studied in [60] and
for degenerate parabolic equations in [69, 73, 74].

2.1 Convergence of the MFEM-scheme for variably
saturated flow: [P1]

In [P1] we prove the convergence of the MFEM (RT0), Euler implicit scheme for
Richards’ equation in a general framework. It continues the work in [68], where the
ideas in [8, 81] are combined with the techniques for degenerate parabolic equations
that are developed in [58]. The order of convergence estimates in [68] are obtained for
a Lipschitz-continuous nonlinearity b(·). An essential point of the proof in [68] is the
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equivalence between the mixed and conformal formulations, for both the continuous
and the time discrete problems.

In [P1] we only assume the Hölder continuity of b(·). Therefore both degeneracies
mentioned before are allowed. This applies in particular to the Richards equation
(2.1) and extends the results presented in [68, 81]. Although the equivalence to a
conformal formulation remains valid in this general framework, it is used now only
for the regularity of the solution. We exploit in [P1] the possibility to have L2 test
functions in the mass conservation equation, which is a particular feature of the RT0

elements. This leads to a simplified convergence proof for the semidiscrete scheme,
avoiding the techniques involving the Green operator used in [58, 62, 65, 68]. Notice
also that in this work we do not assume b(u) ∈ L∞(0, T ;L∞(Ω)), as commonly done
in the literature (see e. g. [8, 92]). Another advantage of the present approach is that
the convergence in the non-degenerate case, as well as in the fast diffusion case where
b(·) is Lipschitz-continuous, can be obtained directly as particular cases of the current
results. We also mention that in many papers a regularized problem is considered as an
intermediate step in obtaining the convergence results, where an adaption rule between
the regularization and the discretization parameters is required. Here we avoid such a
regularization step and make the result more transparent.

Fully discrete mixed variational formulation. Let n = 1, . . . , N and un−1
h be

given. Find (unh,q
n
h) ∈ Wh × Vh such that

〈b(unh)− b(un−1
h ), wh〉+ τ〈∇ · qnh, wh〉 = 0, (2.9)

〈qnh,vh〉 − 〈unh,∇ · vh〉+ 〈k(b(unh))ez,vh〉 = 0, (2.10)

for all wh ∈ Wh and vh ∈ Vh. Initially we take a p0
h ∈ Wh such that it satisfies the

condition b(p0
h) = Phb(uI) on any T ∈ Th. The discrete scheme is implemented in the

software package UG [13].
Assumptions. The following assumptions are made on the domain, coefficient

functions and regularity of solution.

(P1-A1) Ω ⊂ Rd is open, bounded and has a Lipschitz-continuous boundary.

(P1-A2) b(·) ∈ C0,α is non-decreasing and Hölder continuous: there exists an α ∈ (0, 1]
and Cb > 0 so that |b(u1) − b(u2)| ≤ Cb|u1 − u2|α for all u1, u2 ∈ R. For
simplicity we assume b(·) continuously differentiable almost everywhere.

(P1-A3) k(b(·)) is continuous and bounded and satisfies for all u1, u2 ∈ R,
| k(b(u2))− k(b(u1)) |2≤ Ck(b(u2)− b(u1))(u2 − u1).

(P1-A4) The initial data satisfies uI ∈ L2(Ω).

(P1-A5) qn ∈ H1(Ω)d for all n = 1, . . . , N and
N∑
n=1

τ‖qn‖2
1 ≤ Cτ

−
2(1− α)

1 + α , where qn
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is the solution of semi-discrete (discrete in time) variational problems as defined
in [P1], p. 292.

Remark 2.1.1 When the coefficient functions are given by the Genuchten-Mualem
model [89, 56], the assumption (P1-A2) holds with α = 2m/(3m + 2) (so b(·) is
not Lipschitz-continuous!), whereas (P1-A3) is satisfied whenever m ∈ [2/3, 1). For
the porous medium equation (P1-A2) is satisfied with α = 1/m.

Remark 2.1.2 Assumption (P1-A5) is automatically fulfilled in the case of one spatial
dimension, when the spaces H(div; Ω) and H1(Ω) coincide. In the multi dimensional
case and in the absence of convection, one can also show that (P1-A5) holds true.

Order of convergence estimates. The main result of [P1] is the following theo-
rem, which gives the convergence of the MFEM scheme for Richards’ equation and
saturated/unsaturated flow (both slow and fast diffusion cases are allowed).

Theorem 2.1.1 Assuming (P1-A1)-(P1-A5), for any K = 1, . . . , N we have

K∑
n=1

∫ tn

tn−1

‖b(u(t))− b(unh))‖1+ 1
α

L1+ 1
α (Ω)

dt+

∥∥∥∥∥
K∑
n=1

∫ tn

tn−1

(u(t)− unh)dt

∥∥∥∥∥
2

+

∥∥∥∥∥
K∑
n=1

∫ tn

tn−1

(q(t)− qnh)dt

∥∥∥∥∥
2

≤ C
(
τ + h2τ

−
2(1− α)

1 + α
)
.

(2.11)

Remark 2.1.3 If we allow above only the slow diffusion case, i.e. b′ ≥ Cinf > 0 we
obtain

K∑
n=1

∫ tn

tn−1

‖b(u(t))− b(unh))‖1+ 1
α

L1+ 1
α (Ω)

dt+

∥∥∥∥∥
K∑
n=1

∫ tn

tn−1

(u(t)− unh)dt

∥∥∥∥∥
2

+

∥∥∥∥∥
K∑
n=1

∫ tn

tn−1

(q(t)− qnh)dt

∥∥∥∥∥
2

≤ C
(
τ 2 + h2τ

−
2(1− α)

1 + α
)
.

For τ = h
1 + α

2 this gives a convergence of order h1+α.

Numerical experiments are presented in [P1] to sustain the theoretical results.

2.2 Convergence of the MPFA-scheme for variably sat-
urated flow: [P2]

The MPFA method (see [1] for the description of the method) can be seen as modified
MFEM, when the Raviart-Thomas space Vh is replaced by the broken Raviart-Thomas
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spaceRT 1/2
h (see [P2] p. 1331 for the definition) and the scalar product 〈q,v〉 is com-

puted by a quadrature formula, with the resulting discrete scalar product being denoted
by ah(·, ·) : RT 1/2

h × RT 1/2
h → IR. The corresponding finite element space RT 1/2

h

is still in H(div; Ω), giving the continuity of the fluxes over edges. The canonical de-
grees of freedom for the spaceRT 1/2

h are v · n of each half edge, with n denoting the
outer normal. The definition of ah depends on the chosen MPFA variant. We refer to
[43] for MPFA on quadrilateral grids and to [P2] for triangular grids.

Fully discrete MPFA variational formulation. Let n = 1, . . . , N and un−1
h be

given. Find (unh,q
n
h) ∈ Wh ×RT 1/2

h such that

〈b(unh), wh〉+ τ〈
n∑
j=1

∇ · qj
h, wh〉 = 〈b(u0

h), wh〉, (2.12)

ah(q
n
h,vh)− 〈unh,∇ · vh〉+ ah(k(b(unh))ez,vh) = 0, (2.13)

for all wh ∈ Wh and vh ∈ RT 1/2
h .

Assumptions. Assumptions (P2-A1), (P2-A3) and (P2-A4) are the same as in Sec-
tion 2.1 above. (P1-A2) and (P1-A5) are now replaced by

(P2-A2) b(·) ∈ C1 is non-decreasing and Lipschitz-continuous.

(P2-A5) qn ∈ H1(Ω)d for all n ∈ {1, . . . , N}.

Order of convergence estimates. We prove in [P2] the convergence of the MPFA
schemes for Richards’ equation, for both quadrilateral and triangular grids. Satu-
rated/unsaturated flow is allowed (fast diffusion case), so the equation is degenerate.
The main result of [P2] is the following theorem.

Theorem 2.2.1 Assuming (P2-A1)-(P2-A5), for any K = 1, . . . , N there holds∥∥∥∥∥
K∑
n=1

∫ tn

tn−1

(u(t)− unh) dt

∥∥∥∥∥
2

+

∥∥∥∥∥
K∑
n=1

∫ tn

tn−1

(q(t)− qnh)dt

∥∥∥∥∥
2

≤ C(τ + h2). (2.14)

The paper [P2] is concluded by numerical experiments.

2.3 Convergence of the MFEM-scheme for strictly un-
saturated flow: [P3]

In [P3] we prove the optimal convergence of a MFEM-scheme for the Richards equa-
tion (2.1) for strictly unsaturated flow. This time we do not make use of the Kirchhoff
transformation. The proof combines the techniques used in [6] with the specific ones
for MFEM (as presented in [6, 68, 70]).
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Fully discrete mixed variational formulation. Let n ∈ {1, . . . , N} and ψn−1
h ∈

Wh be given. Find (ψnh ,q
n
h) ∈ Wh × Vh such that

〈Θ(ψnh)−Θ(ψn−1
h )

τ
, wh〉+ 〈∇ · qnh, wh〉 = 0, (2.15)

〈k−1(Θ(ψnh))qnh,vh〉 − 〈ψnh ,∇ · vh〉+ 〈ez,vh〉 = 0, (2.16)

for all wh ∈ Wh and vh ∈ Vh. We take at time t = 0: ψ0
h = PhψI . The discrete scheme

is implemented in the software package UG [13].
Assumptions. The following assumptions are defining the framework of paper

[P3].

(P3-A1) There exists some constants ΘS,ΘR, LΘ, lΘ, LΘ′ ∈ IR such that there holds for
all x ∈ IR

0 < ΘR ≤ Θ(x) < ΘS ≤ 1

and
0 < lΘ ≤ Θ′(x) ≤ LΘ <∞,

and |Θ′′(x)| ≤ LΘ′ .

(P3-A2) There exists some constants K0, K1 ∈ IR such that there holds for all x ∈ IR

0 < K0 ≤ K(x) ≤ K1 <∞.

Moreover, K(·) is assumed to be Lipschitz-continuous.

(P3-A3) The initial function ψI is essentially bounded; furthermore, ψI ∈ H1(Ω).

(P3-A4) The solution of the continuous problem (ψ,q) has the following regularity:
∂tΘ(ψ) ∈ L2(0, T ;H1(Ω)), ∂ttΘ(ψ) ∈ L2(0, T ;L2(Ω)), ψ ∈ L∞(0, T ;H1(Ω)),
∂tψ ∈ L∞((0, T ) × Ω) ∩ L2(0, T ;H1(Ω)), and q ∈ L∞(0, T ; (H1(Ω))d) ∩
(L∞((0, T )× Ω))d.

A very important tool in the proof of the convergence of the scheme (2.15) – (2.16)
is given by the following lemma, which was first first presented in [5]. The proof,
which is elementary, can be also found in [6], p. 1685.

Lemma 2.3.1 Let un, vn be real numbers, n ∈ {1, . . . N}. Suppose that |un−un−1| ≤
Cuτ and Θ : IR→ IR is such that 0 ≤ Θ′ ≤ CΘ′ <∞ and |Θ′′| ≤ CΘ′′ . Then

Θ(un)−Θ(vn)−Θ(un−1) + Θ(vn−1)

τ
(un − vn)

=

∫ un

vn
Θ(µ)−Θ(vn)dµ−

∫ un−1

vn−1

Θ(µ)−Θ(vn−1)dµ

τ
− E,



CHAPTER 2. FLOW IN POROUS MEDIA 17

where
E ≤ C{(un − vn)2 + (un−1 − vn−1)2 + τ 2},

for some C depending on Cu, CΘ′ and CΘ′′ .

Corollary 2.3.1 Assuming that Θ and ψ satisfy (P3-A1) and (P3-A4), there holds

N∑
n=1

〈Θ(ψ(tn))−Θ(ψ(tn−1))−Θ(ψnh) + Θ(ψn−1
h )

τ
, ψ(tn)− ψnh〉

≥ C1
‖ψ(tN)− ψNh ‖2

τ
− C2

‖ψI − PhψI‖2

τ
− C3

N∑
n=1

‖ψ(tn)− ψnh‖2 − C4τ,

(2.17)
with C1, C2, C3 and C4 strict positive constants, not depending on the discretization
parameters h or τ .

Order of convergence estimates. The following optimal order of convergence
estimates are proved in [P3].

Theorem 2.3.1 Assuming that (P3-A1)-(P3-A4) hold, we have for any K = 1, . . . , N

‖ψ(tK)− ψKh ‖2 +
K∑
n=1

τ‖q(tn)− qnh‖2 ≤ C(τ 2 + h2), (2.18)

with the constant C not depending on discretization’s parameters τ and h.

Numerical simulations of Richards’ equation with the scheme (2.15)-(2.16) are pre-
sented in [P3]. Examples with known analytical solution are used. The numerical
results clearly sustain the optimal convergence of the scheme.



Chapter 3

Reactive solute transport in porous
media

In this chapter we consider multicomponent, reactive transport in saturated/unsaturated
porous media. The first part of the chapter is devoted to the description of the problem,
of the state of the art in the field and a brief overview over our contribution. Then
each of the papers of the thesis concerning this topic, i.e. [P4]-[P8] will be detailed
summarized.

A mathematical model for transport and reaction ofNS species including the effects
of advection, dispersion, sorption and degradation is described by the set of equations

∂t(Θci) + ρb∂tsi −∇ · (Di∇ci −Qci) = −ΘRi in (0, T )× Ω , (3.1)

with i ∈ {1, . . . , NS}, where ci, si denote the concentration of the dissolved and the
adsorbed species, respectively, Di is the diffusion-dispersion coefficient, ρb [ML−3]
is the bulk density and Ri denotes the reaction rate of the ith species. The water
content Θ and the water flux Q are determinated by solving the Richards equation
(2.1). For the sake of simplicity we consider only homogeneous Dirichlet boundary
conditions in the sequel. For other types of boundary conditions we refer to [67].
Additionally we formulate a mass balance for the ith microbial or other immobile
species, i ∈ {NS + 1, . . . , NS +M}, that are only subject to reactions:

∂tci + kdici = Ri . (3.2)

Here kdi denotes the decay rate of species i. Equations (3.1) and (3.2) have to be
supplemented with initial conditions ci(x, 0) = ci0(x) for x ∈ Ω, i ∈ {1, . . . , NS+M}.

The sorption may be of equilibrium or kinetic (non-equilibrium) type

si = φ(ci) or ∂tsi = ki(φ(ci)− si) , (3.3)

with φ being an arbitrary sorption isotherm and ki a rate parameter. The sorption
isotherm φ can be linear, of Freundlich, Langmuir or Freundlich-Langmuir type, see

18
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e.g. [67] or a form free function resulting from an experimental study or a parameter
identification process. Of a special interest from the mathematical point of view, and
also for this thesis, is the Freundlich type isotherm: φ(x) = xα, with α ∈ (0, 1). In
this case the sorption isotherm is only Hölder continuous (not Lipschitz-continuous)
and this makes the design and analysis of efficient numerical schemes for equations
(3.1) - (3.3) more challenging. The Freundlich isotherm has an infinite derivative in
zero, therefore one needs a regularization in order to can apply the Newton method for
linearization.

Several papers are considering numerical schemes for transport equations. We
mention [11, 12, 15] for a conformal FEM discretization, [44, 59] for finite volume
schemes, and [79, 80] for discontinuous Galerkin methods. Furthermore, the method
of characteristics is studied in [40] and a characteristic - mixed method in [7], upwind
MFEM are considered in [26, 27], whereas combined finite volume-mixed hybrid fi-
nite elements are employed in [35]. Typically either a constant Θ is assumed, which
corresponds to a saturated flow (see [11, 12, 26, 35]), or a Θ that does not depend
on time (see [7, 79, 80]). Another possible simplification is to incorporate the term
c∂tΘ in the reactive term r(·) and to assume that the resulting rate remains Lipschitz-
continuous [15]. In the general case of a saturated-unsaturated flow this assumption is
not satisfied since the factor ∂tΘ(ψ) needs not to be essentially bounded.

An interesting situation is considered in [27], where the term c∂tΘ is replaced by
Ac, with A a positive constant. Error estimates are obtained without using the Gron-
wall lemma. A similar situation appears in [35] where the divergence of the water flux
is assumed non-negative: ∇ ·Q = r ≥ 0. However, in a general saturated-unsaturated
porous media flow such an assumption is not necessary true and we do not assume it
here either.

All the papers above are considering the discretization error and assume that the
nonlinear systems at each time step are solved exactly, which is in practice not the
case. The resulting fully discrete nonlinear problems are commonly solved by differ-
ent methods: the Newton scheme, which is locally quadratic convergent, some robust
first-order linearization schemes (see [63, 93]), or the Jäger-Kačur scheme [38, 39].
The convergence of the Newton method applied to the system provided by a MFEM
discretization of an elliptic problem is studied in [60]. Concerning the systems pro-
vided by the MFEM discretization of degenerate parabolic equations we mention [63]
for a robust linear scheme and [69] for the Newton method.

We present in [67, 71] a numerical scheme based on MFEM for the spatial dis-
cretization and backward Euler for the temporal discretization. The Raviart-Thomas
lowest order elements are used. The scheme is analyzed for one component reactive
transport in porous media in [P4], where order of convergence estimates are derived.
The order of convergence naturally depends on the accuracy of the numerical scheme
for the flow equation. The low regularity of the flow equation was considered in the
analysis. The analysis is continued in [P5] and [P6], where also the linearization er-
ror is considered. The Newton method, which is locally but quadratic convergent is
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used. A regularization step is necessary when dealing with non-Lipschitz-continuous
sorption isotherms. The main benefit of the type of analysis performed in [P5, P6]
is that a priori constraints on the discretization parameters are derived to ensure the
convergence of the whole scheme (including the quadratic convergence of the Newton
method). An important hint for the proof was to use that the starting choice for the
Newton iteration is the solution at the last time step, which can not be ’too far away’
from the actual solution (which is shown by a priori estimates).

In [P7] we studied the numerical diffusion for different discretization schemes for
transport problems. We considered Galerkin FEM, MFEM and FVM, including higher
order Galerkin FEM and FVM, and higher order temporal discretization. Also upwind
schemes were considered. A systematic study was performed using both an academical
example and a realistic case one. Although the problem of numerical diffusion is well-
recognized, such a comparative study was missing in the literature. The results in [P7]
can be used by researchers to test new numerical schemes and/or codes.

It is well-known that for convection-dominated problems one needs stabilization
techniques to avoid an unphysical solutions. Although there is a rich literature on sta-
bilization methods for Galerkin FEM, see e.g. [48], much less is done for MFEM. The
implementation of MFEM schemes is done in most cases by hybridizing, so MHFEM
schemes are arising [18]. The Lagrange multipliers are used in MHFEM schemes to
enforce the continuity of the fluxes over the edges (sides) of the triangulations. They
are furnishing a second order approximation for the concentration [18]. Based on this,
we proposed in [P7] a more robust MHFEM for RT0, and an upwind variant of it,
where the Lagrange multipliers are used to discretize the convective term. The same
idea is used in [20] for the BDM1 and tested for various examples. The numerical tests
have shown that the new scheme for BDM1 is now optimal, which is not the case for
the classical BDM1 scheme [28]. The convergence for the upwind MHFEM scheme
for lowest-order Raviart-Thomas elements has been analyzed in [21]. The analysis for
the new scheme for BDM1 is ongoing.

Further, fully coupled flow and reactive transport was considered in the frame of
concrete carbonation in [P8]. There are plenty of papers concerning analysis of dis-
cretization methods for flow [8, 68, 70, 81, 92, 42, 34, 35, 58, 62, 93, 5, 6] and reactive
solute transport in porous media [7, 11, 12, 15, 31, 2, 35, 36, 39, 38, 54, 71, 72, 73, 79],
but none of them is considering the fully coupled situation (when the flow is affected
by the transport). In [P8] we consider a model where water is produced by the re-
action and there is a variable porosity, which gives a back-coupling of the transport
to flow equation. We proposed a semi-implicit MFEM scheme for the discretization
and performed analysis for the strictly unsaturated flow case and a constant porosity.
The model for concrete carbonation presented in [P8] can be seen as a special case of
dissolution-precipitation models.

We consider also more general dissolution-precipitation models, as in [46, 88, 87],
where these processes are modeled by a multi-valued function. As basis model we
considered the one in [46]. We set and analyzed a Galerking FEM formulation for this
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model in [49] and for a MFEM formulation in [50]. The convergence of the schemes
was proved in both cases by compactness arguments. More exactly, we first proved
stability estimates in L2, then used the Eberlein-Smuljan theorem to get the weak con-
vergence and finally apply the Fréchet-Kolmogorov theorem to get the convergence
for a sub-sequence. A special effort had to be invested in proving the translation esti-
mates which are needed in the Fréchet-Kolmogorov theorem. Nevertheless, the papers
[49, 50] are not part of this thesis.

3.1 Convergence analysis of a MFEM scheme for
transport problems: [P4]

In paper [P4] we consider one component solute transport equation without sorption:

∂t(Θ(ψ)c)−∇ · (D∇c−Qc) = Θ(ψ)r(c) in (0, T )× Ω, (3.4)

with c denoting the concentration of the solute, D the diffusion-dispersion coefficient
and r(·) a non-linear reaction term. The initial condition is given by c(t = 0) = cI
and ψ(t = 0) = ψI . The water content Θ and water flux Q are obtained by solving
the Richards equation (2.1). In [P4] we analyze the discretization error for a MFEM
scheme. The discretization in time is done by using the backward Euler method. The
aim of paper [P4] is to prove order of convergence estimates in a very general frame-
work, and especially by considering the low regularity of the flow equation. Moreover,
we take in account that the Richards equation is also solved numerically, so approx-
imations Θh and Qh of the water content and water flux have to be considered. In
spite of a rich literature regarding convergence of discretization schemes for transport
equation, see e.g. [7, 11, 12, 15, 26, 27, 35, 40, 44, 59, 79, 80] and the brief description
in section above, the analysis for the MFEM scheme for the transport equation in this
general framework was still missing. For the proofs we employ techniques that are
similar to those used in [8, 68, 81].

Fully discrete MFEM scheme. Let n ∈ {1, . . . , N}, and Θ(ψnh), Θ(ψn−1
h ), Qn

h, as
well as cn−1

h be given. Find (cnh,q
n
h) ∈ Wh × Vh such that

〈Θ(ψnh)cnh −Θ(ψn−1
h )cn−1

h , wh〉+ τ〈∇ · qnh, wh〉 = τ〈Θ(ψnh)r(cnh), wh〉, (3.5)

〈qnh,vh〉 − 〈cnh,∇ · vh〉 − 〈cnhQn
h,vh〉 = 0, (3.6)

for all wh ∈ Wh and vh ∈ Vh. Initially we take c0
h =

Ph(Θ(ψI)cI)

Ph(Θ(ψI))
. The discrete

scheme is implemented in the software package UG [13].

Remark 3.1.1 The existence and uniqueness of the problem above is proved in [P4],
p. 329 (in [P4], p. 326 is also proved the existence and uniqueness for the continuous
variational formulation of equation (3.4), which is not given here).
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Assumptions. The following assumptions are made on coefficient functions and reg-
ularity of solution.

(P4-A1) The rate function r : IR → IR is Lipschitz-continuous with the constant Lr;
furthermore, r(c) = 0 for all c ≤ 0.

(P4-A2) The diffusion coefficient D does not depend on ψ or Q. For simplicity, let
D = 1.

(P4-A3) 1 ≥ ΘS ≥ Θ(x) ≥ ΘR > 0, ∀x ∈ IR.

(P4-A4) The initial concentration cI is essentially bounded and positive; furthermore,
ΨI ∈ L2(Ω).

(P4-A5) Q ∈ L∞((0, T )× Ω) ∩ L2(0, T ;H1(Ω)).

(P4-A5′) Qn
h ∈ L∞(Ω) for all n ∈ {1, . . . , N}.

Remark 3.1.2 For the ease of presentation we takeD = 1. The extension to a positive
definite tensor is immediate.

Remark 3.1.3 In (P4-A3) we assume that Θ(·) is uniformly bounded by a strictly
positive constant. Since Θ stands for the water content, the boundedness of Θ(·) is
a reasonable assumption. However, by taking the lower bound strictly positive we
disregard the case of a completely dry (fully unsaturated) medium. For commonly
used porous media models (see e.g. [17]) such an assumption holds, for example,
in the case of a homogeneous medium if the initial and boundary saturation (where
prescribed) also exceed the lower limit. Furthermore, (A5) also implies that ∂tΘ(ψ) ∈
L2((0, T ) × Ω). Since Θ(ψ) is essentially bounded, we immediately obtain Θ(ψ) ∈
C([0, T ];L2(Ω)).

Remark 3.1.4 (P4-A5) is also assumed in recent papers referring to the discretization
of porous media flow models (see also [15, 35]). Previous results are under stronger
assumptions: a constant divergence of the flux ([79, 80, 27]), a constant sign for the
water flux ([26]), or a a constant water flux [11, 12, 31].

Theorem 3.1.1 Assuming that (P4-A1)-(P4-A5′) hold true we have

N∑
n=1

∫ tn

tn−1

‖c(t)− cnh‖2 dt+

∥∥∥∥∥
N∑
n=1

∫ tn

tn−1

q(t)− qnh dt

∥∥∥∥∥
2

≤ C
{
τ 2 + h2

+
N∑
n=1

τ‖Θ(ψ(tn))−Θ(ψnh)‖2 +

∫ tn

tn−1

‖Θ(ψ)−Θ(ψnh)‖2 dt

+
N∑
n=1

τ

∥∥∥∥1

τ

∫ tn

tn−1

Q(t)dt−Qn
h

∥∥∥∥2
}
.

(3.7)
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We clearly see in the theorem above that the order of convergence depends on the
accuracy of the scheme for water flow. In particular, this implies that it does not make
much sense to use a higher order finite element scheme for the transport equation when
the flow is discretized by a lower order scheme. Numerical results are presented in [P4]
to confirm the theoretical estimates. We especially have there an example where one
obviously see the influence of the accuracy of the flow scheme in the transport. We
also mention that the results in Theorem 3.1.1 are optimal.

3.2 Newton method for reactive solute transport with
equilibrium sorption in porous media: [P5]

In this paper we consider again one component reactive transport with equilibrium
sorption in porous media. The paper is a continuation of [P4] and [71]. The mathe-
matical model is given by (the notations are the same as in previous section):

∂t(Θ(ψ)c) + ρb∂tφ(c)−∇ · (D∇c−Qc) = Θ(ψ)r(c) in (0, T )× Ω. (3.8)

For sorption we consider in [P5] two situations: Lipschitz-continuous isotherms, as
well as the commonly used Freundlich-type isotherm

φ(c) = cα, with α ∈ (0, 1]. (3.9)

In the latter case, i.e. α ∈ (0, 1), the derivative of φ(·) is singular at c = 0, so φ(·) is
not Lipschitz-continuous. In the summary of [P4] below we treat only the intersting
case, i.e. α ∈ (0, 1). To apply the Newton method for Freundlich type isotherms we
then employ a regularization step. The reaction rate is assumed Lipschitz-continuous.

The fully discrete MFEM variational formulation for equation (3.8) reads as:
Fully discrete scheme. Let Θ(ψnh),Θ(ψn−1

h ), cn−1
h ∈ Wh and Qn

h ∈ Vh be given.
Find (cnh,q

n
h) ∈ Wh × Vh such that for all wh ∈ Wh there holds

〈Θ(ψnh)cnh −Θ(ψn−1
h )cn−1

h , wh〉+ ρb〈φ(cnh)− φ(cn−1
h ), wh〉

+τ〈∇ · qnh, wh〉 = τ〈Θ(ψnh)r(cnh), wh〉,
(3.10)

and for all vh ∈ Vh we have

〈qnh,vh〉 − 〈cnh,∇ · vh〉 − 〈cnhQn
h,vh〉 = 0. (3.11)

Having in mind that we want to use the Newton method for linearization we intro-
duce a regularized sorption isotherm φε defined by

φε(x) =

{
φ(x) if x 6∈ [0, ε],
(α− 1)εα−2x2 + (2− α)εα−1x if x ∈ [0, ε].
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Lemma 3.2.1 The regularized sorption isotherm is nondecreasing. Further, φε(·) and
φ′ε(·) are Lipschitz-continuous on [0,∞) with the Lipschitz constants Lφε = αεα−1,
respectively Lφ′ε = α(1− α)εα−2. Finally, we have

0 ≤ φε(x)− φ(x) ≤ (1− α)εα (3.12)

if x ∈ (0, ε), whereas φ(x) = φε(x) whenever x /∈ (0, ε).

The regularized fully discrete MFEM scheme becomes now:
Fully discrete regularized scheme. Given Θ(ψnh),Θ(ψn−1

h ), cn−1,reg
h ∈ Wh and

Qn
h ∈ Vh, find (cn,regh ,qn,regh ) ∈ Wh × Vh such that for all wh ∈ Wh there holds

〈Θ(ψnh)cn,regh −Θ(ψn−1
h )cn−1,reg

h , wh〉+ ρb〈φε(cn,regh )− φε(cn−1,reg
h ), wh〉

+τ〈∇ · qn,regh , wh〉 = τ〈Θ(ψnh)r(cn,regh ), wh〉,
(3.13)

and for all vh ∈ Vh we have

〈qn,regh ,vh〉 − 〈cn,regh ,∇ · vh〉 − 〈cn,regh Qn
h,vh〉 = 0. (3.14)

We choose c0,reg
h such that there holds Θ(ψ0

h)c
0
h + φ(c0

h) = Θ(ψ0
h)c

0,reg
h + φε(c

0,reg
h ).

We can now formulate the Newton method for the nonlinear system given by (3.13)-
(3.14).

The Newton method. Let cn,i−1
h be given, i ≥ 1. Find (cn,ih ,q

n,i
h ) ∈ Wh × Vh such

that for all wh ∈ Wh there holds

〈Θ(ψnh)cn,ih , wh〉+ ρb〈φε(cn,i−1
h ) + φ′ε(c

n,i−1
h )(cn,ih − c

n,i−1
h )− φε(cn−1,reg

h ), wh〉

+τ〈∇ · qn,ih , wh〉 = 〈Θ(ψn−1
h )cn−1,reg

h , wh〉

+τ〈Θ(ψnh)r(cn,i−1
h ) + Θ(ψnh)r′(cn,i−1

h )(cn,ih − c
n,i−1
h ), wh〉,

(3.15)
and for all vh ∈ Vh we have

〈qn,ih ,vh〉 − 〈c
n,i
h ,∇ · vh〉 − 〈c

n,i
h Qn

h,v〉 = 0. (3.16)

Assumptions. The following assumptions are necessary to prove the convergence
of the proposed scheme.

(P5-A1) The rate function r : IR→ IR is differentiable with r′(·) bounded and Lipschitz-
continuous. Furthermore, r(c) = 0 for all c ≤ 0.

(P5-A2) 1 ≥ ΘS ≥ Θ(x) ≥ ΘR > 0, ∀x ∈ IR.

(P5-A3) The initial cI is essentially bounded and positive; furthermore, ΨI ∈ L2(Ω).

(P5-A4) Q ∈ L∞((0, T ) × Ω) ∩ L2((0, T );H1(Ω)) and Qn
h ∈ L∞(Ω) for all n ∈

{1, . . . , N} .
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(P5-A5) The sorption isotherm φ(·) is non-decreasing, non-negative and Hölder continu-
ous with an exponent α ∈ (0, 1], i. e. |φ(a) − φ(b)| ≤ C|a − b|α ∀ a, b ∈ IR.
Moreover, φ(c) = 0 if c ≤ 0.

(P5-A6) Let Ωn,h
ε := {T ∈ Th | 0 < cnh |T < ε}. We assume that

N∑
n=1

σ(Ωn,h
ε ) ≤ Cτ pεqhl. (3.17)

Remark 3.2.1 The inequality in (P5-A6) above holds obviously for p = −1, q =
0, l = 0. Such an inequality is assumed in [12] for the continuous case, where
p = 0, q = 1, l = 0; furthermore, a similar situation is considered in [57] for phase
transition problems. Here we consider a general context and derive the convergence
condition in terms of p, q and l, where p ≤ 0, q ≥ 0, and l ≥ 0.

The analysis in [P5] can be summarized in the following three theorems (the first one
is quantifying the discretization error, the second estimates the error caused by the
regularization and the last one concerns the convergence of the Newton method).

Theorem 3.2.1 Assuming (P5-A1)–(P5-A5) there holds

N∑
n=1

∫ tn

tn−1

‖c(t)− cnh‖2 dt+

∥∥∥∥∥
N∑
n=1

∫ tn

tn−1

q− qnh dt

∥∥∥∥∥
2

≤ C

{
τ

4α
1 + α + h1+α

+
N∑
n=1

1

τ

∥∥∥∥∫ tn

tn−1

Q−Qn
h dt

∥∥∥∥2

+ τ‖Θ(ψ(tn))−Θ(ψnh)‖2 +

∫ tn

tn−1

‖Θ(ψ)−Θ(ψnh)‖2 dt

}
.

(3.18)

Theorem 3.2.2 Assuming (P5-A1)–(P5-A5) there holds

N∑
n=1

‖cnh − c
n,reg
h ‖2 +

N∑
n=1

〈φε(cnh)− φε(cn,regh ), cnh − c
n,reg
h 〉+ τ

N∑
n=1

‖qnh − qn,regh ‖2

≤ Cε1+ατ pεqhl. (3.19)

Theorem 3.2.3 Assuming (P5-A1)–(P5-A5) there holds

‖cn,ih − c
n,reg
h ‖2 + 〈φ′ε(c

n,i−1
h )(cn,ih − c

n,reg
h ), cn,ih − c

n,reg
h 〉+ τ‖qn,ih − qn,regh ‖2

≤ C(τ + L2
φ′ε

)h−d‖cn,i−1
h − cn,regh ‖4.

(3.20)
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The quadratically convergence is ensured if we have (P5-A1)-(P5-A6) and

Cτ 1+pε3α+q−3hl−d < 1. (3.21)

In other words, if either 1 + p > 0, or 3α + q > 3, or l > d, one can correlate the dis-
cretization parameters to ensure the quadratic convergence of the Newton scheme, as
well as the convergence of the regularization scheme. The sufficient condition (3.21)
can be used to tune a priori the discretization parameters in order to ensure the proper
convergence of the scheme. The paper [P5] is concluded by relevant numerical exper-
iments.

3.3 Convergence analysis for a MFEM scheme
with Newton iterations for transport with non-
equilibrium sorption: [P6]

In paper [P6] we consider one component reactive transport with non-equilibrium sorp-
tion in saturated porous media. The paper [P6] extends the work done in [P5], where
equilibrium sorption was considered. The mathematically model is given by:

ΘS∂tc+ ρb∂ts−∇ · (DΘS∇c− cQ) = ΘSr(c) in (0,T)× Ω,(3.22)

∂ts = ks(φ(c)− s) in (0,T)× Ω.(3.23)

The notations are the one introduced in the beginning of this chapter. The sorption
isotherm is again of Freundlich type, see (3.9). A regularization step is needed in
order to apply the Newton method. In paper [P6] we analyze the discretization and the
linearization method together. We derive a sufficient condition on the discretisation
parameters (time step size τ , mesh diameter h and regularization parameter ε) for
the convergence of both methods, including the quadratic convergence of the Newton
method.

We begin by stating the fully discrete mixed variational formulation for (3.22) –
(3.23):

Fully discrete scheme. Let n ∈ {1, . . . , N} and (cn−1
h , sn−1

h ) ∈ Wh× Vh be given.
Find (cnh,q

n
h, s

n
h) ∈ Wh × Vh ×Wh so that for all t ∈ (0, T ] we have

〈cnh − cn−1
h , wh〉+ ρb〈snh − sn−1

h , wh〉+ τ〈∇ · qnh, wh〉 = τ〈r(cnh), wh〉 (3.24)

〈qnh,vh〉 − 〈cnh,∇ · vh〉 − 〈cnhQh,vh〉 = 0 (3.25)

〈snh − sn−1
h , wh〉 = τks(〈φε(cnh), wh〉 − 〈snh, wh〉),

(3.26)

for all wh ∈ Wh and vh ∈ Vh. We take at time t = 0: c0
h = PhcI and s0

h = PhsI .
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To solve the nonlinear system (3.24) –(3.26) we use the Newton method, which is
locally quadratic convergent:

Newton iterations. Let n ∈ {1, . . . , N} and (cn−1
h , sn−1

h ) ∈ Wh × Vh be given and
let cn,0h = cn−1

h , sn,0h = sn−1
h . For i ≥ 1 find (cn,ih ,q

n,i
h , s

n,i
h ) ∈ Wh × Vh ×Wh such that

〈cn,ih − c
n−1
h , wh〉+ ρb〈sn,ih − s

n−1
h , wh〉+ τ〈∇ · qn,ih , wh〉

= τ〈r(cn,i−1
h ) + r′(cn,i−1

h )(cn,ih − c
n,i−1
h ), wh〉

(3.27)

for all wh ∈ Wh,

〈qn,ih ,vh〉 − 〈c
n,i
h ,∇ · vh〉 − 〈c

n,i
h Qh,vh〉 = 0 (3.28)

for all vh ∈ Vh and

〈sn,ih −s
n−1
h , wh〉 = τks(〈φε(cn,i−1

h )+φ′ε(c
n,i−1
h )(cn,ih −c

n,i−1
h ), wh〉−〈sn,ih , wh〉), (3.29)

for all wh ∈ Wh.
To fix the notations: n ∈ {1, . . . , N} always indexes the time step, while i is used

to index the iteration. Accordingly, {cnh,qn
h, s

n
h} denotes the solution of (3.24)–(3.26)

at the nth time step and {cn,ih ,q
n,i
h , s

n,i
h } stands for the solution triple at iteration i ≥ 1.

The iteration process starts with cn,0h = cn−1
h , sn,0h = sn−1

h . In proving the convergence
of the scheme it is sufficient to show that

‖cn − cnh‖+ ‖qn − qnh‖+ ‖sn − snh‖
ε,τ,h→0→ 0, (3.30)

and
‖cnh − c

n,i
h ‖+ ‖qnh − qn,ih ‖+ ‖snh − s

n,i
h ‖

i→∞→ 0 (3.31)

quadratically. This will be achieved for a sufficiently small time step τ . A suffi-
cient condition on the discretization parameters ε, τ, h is derived to ensure both con-
vergences stated above.

Assumptions. The frame of paper [P5] is given by the following assumptions.

(P6-A1) The rate function r : IR→ IR is differentiable with r′(·) bounded and Lipschitz-
continuous. Furthermore, r(c) = 0 for all c ≤ 0.

(P6-A2) The initial cI , sI are essentially bounded and positive.

(P6-A3) The water flux and its numerical approximation are essentially bounded,
Q,Qh ∈ L∞(Ω).

(P6-A4) The sorption isotherm φ(·) is non-decreasing, non-negative and Hölder continu-
ous with an exponent α ∈ (0, 1], i. e. |φ(a)−φ(b)| ≤ C|a− b|α for all a, b ∈ IR.
Moreover, φ(c) = 0 if c ≤ 0.
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(P6-A5) For the solution of continuous problem (see [P6], p. 434) we have c ∈
L∞((0, T ) × Ω), while ∂tc and ∂ts are Hölder continuous in t with exponent
α/2 and α respectively. Furthermore, there holds

N∑
n=1

τ‖q(tn)‖2 ≤ C. (3.32)

Remark 3.3.1 The regularity assumed in (P6-A5) for ∂tc and ∂ts is the maximal reg-
ularity one can expect for transport problems with non-equilibrium sorption, when
the sorption isotherm is of Freundlich type. According to [45] Chapter II.4, if
the initial and boundary data are compatible and sufficiently smooth we have c ∈
C2+α,1+α/2(Ω × (0, T )) and s ∈ Cα,1+α(Ω × (0, T )). Furthermore, Proposition 1 in
[P6], p. 437 justifies (3.32) in the one dimensional case, when H(div; Ω) = H1(Ω).
For the essential bounds of c one only needs to assume that the data are essentially
bounded. Furthermore, to avoid negative values for c and s - which are non-realistic -
the rates r and φ are extended by 0 in the negative part.

The main results of [P6] are given in the theorems below.

Theorem 3.3.1 Assuming (P6-A1) – (P6-A5), we have

‖Phc(tN)− cNh ‖2 +
N∑
n=1

τ‖φ(c(tn))− φ(cnh)‖
1+α
α

L
1+α
α (Ω)

+
N∑
n=1

τ‖Phc(tn)− cnh‖2

+
N∑
n=1

τ‖q(tn)− qnh‖2 ≤ C(h1+α + τα + ε1+α).

(3.33)
and

‖Phs(tN)− sNh ‖2 +
N∑
n=1

τ‖Phs(tn)− snh‖2 ≤

C(τ
2αr
1−α + τ−r(h1+α + τα + ε1+α)).

(3.34)

for any r ∈ IR.

Remark 3.3.2 In Theorem 3.3.1 we show that the numerical solution converges to
the continuous solution if the nonlinear system (3.24)–(3.26) is solved exactly. This
guarantees that the numerical scheme provides a good approximation of the solution
if the mesh size, as well as the time step and the regularization parameter are small
enough, while the nonlinear system is solved exactly.

Remark 3.3.3 If the sorption φ(·) and its derivative are Lipschitz-continuous (thus
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α = 1), a slightly modified proof leads to optimal error estimates

‖Phc(tN)− cNh ‖2 +
N∑
n=1

τ‖φ(c(tn))− φ(cnh)‖2 +
N∑
n=1

τ‖Phc(tn)− cnh‖2

+
N∑
n=1

τ‖q(tn)− qnh‖2 ≤ C(h2 + τ 2).

(3.35)

Remark 3.3.4 Similar results can be obtained in the strictly unsaturated flow regime,
or for a steady unsaturated flow, where Θ is time independent (as assumed for example
in [12, 25]).

The next theorem shows the local quadratic convergence of the Newton method as
given in (3.27) – (3.29).

Theorem 3.3.2 Assuming (P6-A1) – (P6-A4), for sufficiently small τ we have

‖cnh − c
n,i
h ‖

2 + τ‖qnh − qn,i‖2 ≤ Cτ 2(L2
r′ + L2

φ′ε
)h−d‖cnh − c

n,i−1
h ‖4 (3.36)

and

‖snh − s
n,i
h ‖

2 ≤ Cτ 2(L2
φ′ε

+ τ 2L2
φε(L

2
r′ + L2

φ′ε
))h−d‖cnh − c

n,i−1
h ‖4. (3.37)

Lr′ and Lφ′ε are denoting the Lipschitz constants for the functions r′(·) and φ′ε(·),
respectively. We derive a sufficient condition, guaranteeing the convergence of the
scheme, see (3.39) below. This means that by a suitable choice of the time step (de-
pending on the mesh size and regularization parameter) one ensures the quadratic con-
vergence of the Newton method and the convergence of the approximation solution to
the continuous one. On the other hand, it is easy to find parameters violating this con-
dition, for which the Newton scheme diverges. From (3.36) we have that the quadratic
convergence of the Newton scheme is ensured by

Cτ 2ε2α−4h−d‖cnh − cn−1
h ‖2 ≤ 1. (3.38)

With the stability estimate
N∑
n=1

‖cnh − cn−1
h ‖2 ≤ C

τ

ε2(1−α)

proved in Proposition 2 in [P6], p. 439 this condition becomes

Cτ 3ε4α−6h−d ≤ 1. (3.39)

Using (3.39) and Theorem 3.3.1, one can choose a priori the time step, the regular-
ization parameter and the mesh size in such a way that the optimal convergence is
guaranteed. In this sense numerical examples are provided in [P6]. Referring to [3],
where the Newton-error is controlled adaptively with respect to the total error, condi-
tion (3.39) can provide useful information for the initial tuning of the discretization
parameters for adaptive methods.
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Remark 3.3.5 The condition (3.39) is derived under pessimistic conditions. In this
sense we mention the stability estimates in Theorem 3.3.2, bounding to the sum∑N

n=1 ‖cnh − c
n−1
h ‖2. We used to obtain (3.39) the bound for the whole sum for bound-

ing just one term ‖cnh − cn−1
h ‖2, which means a clear room for improvements. In case

all the terms have similar orders, this would provide ‖cnh − cn−1
h ‖2 ≤ C(τ 2ε2α−2),

implying
Cτ 4ε4α−6h−d ≤ 1. (3.40)

In the performed numerical calculations, (3.40) was always enough for quadratic con-
vergence.

The paper [P6] is concluded by numerical experiments showing the quadratic con-
vergence of the Newton method.

3.4 A new MHFEM for convection-diffusion problems
and a study on the numerical diffusion for different
schemes for transport problems: [P7]

While the papers [P1]-[P6] have all focused on convergence proofs for the different
numerical schemes considered, the paper [P7] is devoted to quantifying the numerical
diffusion for an one component transport problem and various discretization schemes.
Numerical diffusion is a very important artifact that may lead to erroneous solutions
and therefore to false prognoses [15, 51, 52, 59]. Although this is well recognized, it
does not exist any systematical study to quantify the numerical diffusion for the most
used discretization schemes. We propose in [P7] a systematic comparative study of the
numerical diffusivity of various numerical schemes, including higher order in space
and time, upwind schemes, finite element, finite volume and mixed finite elements.
The method we use to quantify the numerical diffusion for discretization schemes for
the transport equation is very simple to implement and therefore very attractive from a
practical view. The results obtained can be used by researchers as a reference (bench-
mark) to test their numerical schemes or stabilization techniques.

The second objective of [P7] is to present a new MHFEM method, and an upwind
variant of it, which are more robust for convection-dominated problems. Although
for Galerkin finite elements many stabilization methods are proposed and analyzed in
the literature, see e.g. the overview paper [48], there is not much done in the field of
MHFEM. We shortly describe below the new method (for more details we refer to [P7]
and [71]). The results regarding numerical diffusion are presented afterwards.

We consider again a MFEM - Euler implicit discretization of an one component
transport problem without sorption or reaction:
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Fully discrete MFEM scheme. For n = 1, . . . , N let Θn
h,Θ

n−1
h ,Qn

h, c
n−1
h be given

and find (cnh,q
n
h) ∈ Wh × Vh such that there holds

〈Θn
hc
n
h −Θn−1

h cn−1
h , wh〉+ τ〈∇ · qn

h, wh〉 = 0, (3.41)

〈D−1qn
h,vh〉 − 〈D−1Qn

h c
n
h,vh〉 − 〈cnh,∇ · vh〉 = 0, (3.42)

for all wh ∈ Wh and vh ∈ Vh. The water content Θn
h and water flux Qn

h above are
obtained by using also a MFEM scheme (2.15)–(2.16).

Unfortunately, the MFEM formulation (3.41)–(3.42) leads to a linear system of
equations with an indefinite matrix such that standard iterative solvers cannot be ap-
plied. To overcome this difficulty, one often uses a hybridization technique (see [18]).
Its basic idea is to relax firstly the continuity constraint of the normal components of
the fluxes over inter-element faces that is implied by v ∈ H(div; Ω). The continu-
ity constraint is then ensured by means of an additional variational equation involving
Lagrange multipliers. Precisely, the space Vh is replaced by

Ṽh := {q ∈ L2(Ω)|q|T (x) = a + bx, a ∈ IRd, b ∈ IR for all T ∈ Th}.

We consider below only the 2D case, i. e. d = 2, but the extension to 3D is straight-
forward. The discrete space for the Lagrange multiplier is defined by

Λh,0 = {λ ∈ L2(Eh) | λ|E = constant on E ∀E ∈ Eh and λ|E = 0 ∀E ∈ ∂Ω}.

We denoted above by Eh the set of edges of the triangulation Th. The fully discrete
mixed hybrid variational formulation of the overall system (3.41)–(3.42) then reads as
follows:

Fully discrete MHFEM scheme. For n = 1, . . . , N let Θn
h,Θ

n−1
h ,Qn

h, c
n−1
h be

given and find (cnh, λ
n
h,q

n
h) ∈ Wh × Λh,0 × Ṽh such that there holds

〈Θn
hc
n
h −Θn−1

h cn−1
h , wh〉+ τ〈∇ · qn

h, wh〉 = 0, (3.43)

〈D−1qn
h,vh〉 − 〈cnh,∇ · vh〉+

∑
T∈Th

〈λnh,vh · n〉∂T = 〈D−1Qn
h c

n
h,vh〉 , (3.44)

∑
T∈Th

〈µh,qn
h · n〉∂T = 0 (3.45)

for all wh ∈ Wh, vh ∈ Ṽh, µh ∈ Λh,0.
Let now Θn

T and cnT denote the water content and concentration, respectively, on
the element (triangle in our case) T , {qnTE}E⊂T , {Qn

TE}E⊂T the components of the
flux of contaminant and water, respectively, in the local Raviart-Thomas space basis

{wTE}E⊂T (x) = x− xE
d |T | (cf. [18]), BTEE′ :=

∫
T

(D−1wTE′) · wTE dx, and λnE be

the constant Lagrange multiplier on the edge E. We denote by |T | :=
∫
T
dx the area
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(volume) of element T and by xE the corner of T which is not on E. We obtain from
(3.43)–(3.45) the following system of nonlinear equations:

Mass conservation equation:

Θn
T c

n
T −Θn−1

T cn−1
T +

τ

|T |
∑
E⊂T

qnTE = 0 ∀ T ∈ Th . (3.46)

Equation for the flux:∑
E′⊂T

BTEE′q
n
TE′ =

∑
E′⊂T

BTEE′Q
n
TE′c

n
T + cnT − λnE ∀ T ∈ Th, E ⊂ T . (3.47)

Continuity of the flux over edges:∑
T⊃E

qnTE = 0 ∀ E ∈ EIh . (3.48)

The system of equations (3.46)–(3.48) gives the classical MHFEM scheme for
solute transport in porous media. A new MHFEM scheme is obtained by using the
Lagrange multipliers, instead of the piecewise constant concentrations, for discretizing
the convective term in (3.4). This approach is based on the observation that the La-
grange multipliers furnish a second order approximation of the concentration [15, 18].
Moreover, in the linear case, the Lagrange multiplier on edge E between two triangles
T and T ′ is approximately the average between cT and cT ′ . The idea is now to dis-
cretize the convection term by multiplying the component of the water flux over edge
E, i.e. QTE by λE instead cT , which seems to be more naturally. The same idea was
similarly used in [91]. Instead of (3.47), this yields∑

E′⊂T

BTEE′q
n
TE′ =

∑
E′⊂T

BTEE′Q
n
TE′λ

n
E′ + cnT − λnE ∀ T ∈ Th, E ⊂ T. (3.49)

The equations (3.46) and (3.48) remain unchanged. The new MHFEM scheme (re-
ferred to as MHFEM 1 from now on) is given by (3.46), (3.48) and (3.49). Numer-
ical results show that the MHFEM 1 scheme is much more robust for convection-
dominated problems and has the same convergence properties as the classical scheme.

We also propose a full upwind MHFEM scheme (referred to as MHFEM 2 from
now on) given by (3.46), (3.48) and∑

E′⊂T

BTEE′q
n
TE′ =

∑
E′⊂T

BTEE′Q
n
TE′αE′ + cnT − λnE ∀ T ∈ Th, E ⊂ T. (3.50)

with

αE =

{
cnT , if Qn

TE ≥ 0

2λnE − cnT , otherwise
.
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The idea is the following: QTE is the normal component of the flux (velocity) over
the edge E between two elements (triangles) T and T ′, as one looks from the center
of T . If this component is positive, we take αE = cT the (local) concentration on T ,
if not we take αE = 2λE − cT ≈ cT ′ the concentration on T ′. This is the reason we
call it an upwind scheme. The MHFEM 2 scheme is suitable for highly convection-
dominated problems. We also refer to [19] where our MHFEM 2 scheme was tested
for multicomponent reactive transport, example from [15, 59]. The problem there is
highly convection-dominated. It was found that the new scheme has less numerical
diffusion as a stabilized linear FVM scheme or the SUPG stabilized scheme for linear
Galerkin finite elements, see [P7].

Remark 3.4.1 The convergence of the new schemes was analyzed in [21]. We have
shown that the schemes have the same convergence order like the classical scheme.
The proof is based on techniques from [29, 30].

Remark 3.4.2 We applied the same idea of using the Lagrange multipliers when dis-
cretizing the convection term also for the BDM1 (Brezzi-Douglas-Marini lowest order
elements) and also for nonlinear problems in [20, 14]. We again remarked that the
new scheme is more robust as the classical one. Moreover, the new scheme for BDM1

has now an optimal order of convergence, which is not the case for the classical BDM1

scheme (see [28]).

As previously mentioned, the main aim of [P7] is to quantify the numerical dif-
fusion of different discretization methods: FEM, FVM and MHFEM when they are
applied to advective-diffusive transport of a solute in porous media. We start with
linear and quadratic Galerking finite elements with or without upwinding. As next,
FVM, including higher order ones are involved. We then consider local mass conser-
vative MHFEM schemes, based on RT0. For the temporal discretization we consider
two implicit schemes: backward Euler and BDF(2) (second order backward differenti-
ation formula). As mentioned before, a systematic comparative study of the numerical
diffusivity of these methods was missing in the literature at that time. We formulate
two tests:

• A problem with an analytical solution: a two-dimensional Gauss bell. We vary
the Péclet number (by changing the magnitude of water velocity and/or the di-
ameter of the mesh) to see its influence on numerical diffusion.

• A realistic solute transport problem in a heterogeneous soil. The hydraulic con-
ductivity is stochastically generated (log-normal distributed). The water flux is
obtained by solving the flow equation.

We quantify the artificial diffusion by numerically computing the slope of the cen-
tral second spatial moment of the solute concentration. In the first example we deal
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with a deterministic problem and it can be elementarily shown, that, for a big-enough
domain, the half-slope of the second moment gives exactly the diffusion coefficient.
For the second example, where we conduct stochastic simulations, the ensemble dis-
persion coefficients are estimated by the half-slope of the second moments of the en-
semble mean concentration (see e.g. [41, 9, 85]). The ensemble dispersion coeffi-
cients can be derived theoretically by homogenization methods or by stochastic up-
scaling (see e.g. [10, 9, 85, 84]). For the purposes of this study, we also estimated
the ensemble dispersion coefficients through numerical simulations with the Global
Random Walk (GRW) algorithm, a superposition of Particle Tracking procedures, free
of numerical diffusion, which yields highly accurate results by managing very large
numbers of particles [90, 82, 83]. The deviation from such reference estimates of the
numerically computed half-slope of the second moment of the mean concentration is
then used to characterize the numerical diffusion of the methods evaluated, see [P7]
for details.

The conclusions of our tests in [P7] are summarized below.

• The numerical diffusion increases with the Péclet number for all discretiza-
tion schemes under consideration. When dealing with a convection-dominated-
problem one has two possibilities to obtain accurate solutions: (1) to decrease
the size of the discretization parameters (time step and mesh diameter) till the
numerical oscillations disappear or (2) apply certain stabilization techniques.
The first method can be very time costly; the second one may have too much
numerical diffusion. The compromise normally is to find a balance of the two
methods.

• The local Péclet number is not always (or not alone) relevant for estimating
numerical diffusion. The results show that for the same local Péclet number but
on different meshes and different convective fluxes the schemes are also showing
different numerical diffusion (for the same type of problem).

• Higher order FVM schemes in space show just a bit lower numerical diffusion
for homogeneous problems, whereas the quadratic FEM produces almost the
same results like the linear FEM. The higher order method in time, i.e. BDF(2)
was clearly improving the backward Euler method for both FEM and FVM. The
cost for better accuracy is a larger computational expense. For more realistic
problems (i.e. heterogeneity in parameter distribution) the differences between
lower and higher order schemes are negligible but the computational cost are
much higher for higher order schemes.

3.5 Fully coupled flow and transport: [P8]

As mentioned before, there is a rich literature on numerical methods for flow [8, 68,
70, 81, 92, 42, 34, 35, 58, 62, 93, 5, 6] and reactive solute transport in porous media
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[7, 11, 12, 15, 31, 2, 35, 36, 39, 38, 54, 71, 72, 73, 79], but none of them is considering
the fully coupled situation (when the flow is affected by the transport). Moreover, the
analysis of the schemes for transport in porous media considers mostly a saturated
flow regime and the water flux to be given analytically, e.g. [11, 12]. A MFEM based
discretization for flow and transport in variably saturated porous media is analyzed in
[P4] by taking explicitly into account the low regularity of the solution of Richards’
equation.

The paper [P8] is considering fully coupled flow and reactive transport. The re-
active transport is influencing now the flow by two means: on the one hand water is
produced by the reaction and therefore the mass balance equation is changed and on
the other hand the porosity of the porous medium is varaiable because of dissolution
and precipitation processes. The changes in porosity affect also the permeability of the
medium, and we may even have pore clogging.

Concrete carbonation is one of the most important processes limiting the service
life of reinforced concrete. Due to carbonation, the pH of reinforced concrete drops
below the passivization threshold of steel and this affects the strength of the concrete
structure, with possible dramatic consequences. As common applications of reinforced
concrete we mention buildings, bridges or dams (among many others). The process of
concrete carbonation is given by

Ã(g→ aq) + B̃(s→ aq)→ C̃(aq→ s) + H2O, (3.51)

where Ã, B̃, and C̃ are CO2, Ca(OH)2, and respectively, CaCO3. The equation (3.51)
summarizes the following: gaseous CO2 penetrates a non-saturated porous medium
via the air phase of its pore space and quickly dissolves in the pore water where CO2

reacts very fast with calcium hydroxide Ca(OH)2. Then Ca(OH)2 becomes available
from the solid matrix by a dissolution mechanism. The reaction produces calcium
carbonate CaCO3 which precipitates to the porous matrix.

By considering Henry-type transfer at air-liquid interface, we derive the following
mathematical model.

(φφw)t +∇ · q =
φφw
ρ
rAB, (3.52)

q = −KSφk(φw)∇(p+ z), (3.53)
(φφwA)t +∇ · (−DAφφw∇A+ qA) = −P (HφφwA− φφga)− rφφwmAAB,(3.54)

(φφga)t +∇ · (−Daφφg∇a) = P (HφφwA− φφga), (3.55)
(φφwB)t +∇ · (−DBφφw∇B + qB) = fDissφφw − rφφwmBAB, (3.56)

(φsb)t = −fDissφs, (3.57)
(φφwC)t +∇ · (−DCφφw∇C + qC) = −fPrecφφw + rφφwmCAB, (3.58)

(φsc)t = fPrecφs, (3.59)

φt = s(φ− δ) 1− φ
Zφ + (1− φ)

(φwfDiss − φwfPrec),(3.60)
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where a, A, b, B, c, and C the molar concentrations of the species Ã(g), Ã(aq), B̃(s),
B̃(aq), C̃(s), and C̃(aq), ρ is the density of water, δ > 0 and Zφ > 0 are two regular-
ization parameters and fDiss = SDiss(Beq − B) and fPrec = SPrec(C − Ceq). Further,
φ is the porosity, φw, φs, φg the volume fractions of water, solid and gas, respectively,
KS the saturated hydraulic conductivity, DX the diffusion coefficient of the speciesX ,
mX the molar mass of the species X , P is a mass-transfer coefficient, which is in most
cases unknown and needs to be identified for instance via a homogenization approach,
and H is the Henry constant. The water fraction φw(·) and hydraulic conductivity k(·)
are given in terms of the van Genuchten-Mualem parametrization [89, 56]. Initial and
boundary conditions complete the model. We point out also that the hydraulic con-
ductivity depends on porosity, so pore clogging will induce a zero conductivity. In this
case the flow equation degenerates. In [P8] we assumed that the hydraulic conductivity
depends linearly on porosity.

The model (3.52) – (3.60) can be further simplified by assuming that the mass
transfer across liquid-air interfaces is very fast, i.e. P →∞ enforcing that

HφwA ≈ φga. (3.61)

By this (3.55) decouples from the rest of the system and can be therefore ignored
in what follows. We remark that also the equations (3.57) and (3.59) are decoupled
from the rest of the system and will be not considered in the next. Consequently, we
solve the equations for the water flow (3.52)-(3.53), for A,B and C (3.54), (3.56) and
(3.58) and for the porosity (3.60). We discretize the resulting system of equations by
using again the MFEM, RT0 in space and a semi-implicit Euler scheme in time. The
following discrete schemes was obtained:

Fully discrete scheme. Let n ∈ {1, . . . , N}, and pn−1
h , An−1

h , Bn−1
h , Cn−1

h , φn−1
h be

given. Find pnh, A
n
h, B

n
h , C

n
h , φ

n
h ∈ Wh and qnh,qA

n
h,qB

n
h,qC

n
h ∈ Vh such that for all

wh ∈ Wh and vh ∈ Vh there holds

〈φnhφwnh − φn−1
h φw

n−1
h , wh〉+ τ〈∇ · qnh, wh〉 = τ〈r

ρ
φn−1
h φw

n−1
h An−1

h Bn−1
h , wh〉,

(3.62)

〈K−1(φnhφw
n
h)qnh,vh〉 − 〈pnh,∇ · vh〉+ 〈∇z,vh〉 = 0,

(3.63)

and

〈φnhφwnhAnh − φn−1
h φw

n−1
h An−1

h , wh〉+ τ〈∇ · qAnh, wh〉 = τ〈−mArφ
n
hφw

n
hA

n
hB

n
h , wh〉,

(3.64)

〈 1

DAφnhφw
n
h

qA
n
h,vh〉 − 〈Anh,∇ · vh〉 − 〈Anhqnh,vh〉 = 0,

(3.65)
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〈φnhφwnhBn
h − φn−1

h φw
n−1
h Bn−1

h , wh〉+ τ〈∇ · qBnh, wh〉 = −τ〈mBrφ
n
hφw

n
hA

n
hB

n
h , wh〉

+τ〈φnhφwnhfDiss
n
h, wh〉,(3.66)

〈 1

DBφnhφw
n
h

qB
n
h,vh〉 − 〈Bn

h ,∇ · vh〉 − 〈Bn
hq

n
h,vh〉 = 0, (3.67)

〈φnhφwnhCn
h − φn−1

h φw
n−1
h Cn−1

h , wh〉+ τ〈∇ · qCnh, wh〉 = τ〈mCrφ
n
hφw

n
hA

n
hB

n
h , wh〉

−τ〈φnhφwnhfPrec
n
h, wh〉,(3.68)

〈 1

DCφnhφw
n
h

qC
n
h,vh〉 − 〈Cn

h ,∇ · vh〉 − 〈Cn
hq

n
h,vh〉 = 0, (3.69)

and

〈φnh − φn−1
h , wh〉 = τs〈(φ

n−1
h − δ)(1− φn−1

h )

Zφ + (1− φn−1
h )

(φw
n−1
h fDiss

n−1
h − φwn−1

h fPrec
n−1
h ), wh〉,

(3.70)
where φwkh := φw(pkh), fDiss

k
h = SDiss(Beq − Bk

h) and fPrec
k
h = SPrec(C

k
h − Ceq),

k = 0, . . . , N .
Initially we take φ0

h = PhφI , p0
h so that the following hold true: φ0

hφw
0
h =

Ph(φIφw,I) and A0
h =

Ph(φIφw,IAI)

φ0
hφw

0
h

, B0
h =

Ph(φIφw,IBI)

φ0
hφw

0
h

and C0
h =

Ph(φIφw,ICI)

φ0
hφw

0
h

.

The particular form of the initial data is allowed by the lower bound on φφw and was
used in the proof of Theorem 3.5.1 below. The discrete scheme is implemented in the
software package UG [13].

Throughout paper [P8] we make use of the following assumptions.

(P8-A1) The conductivity function k : [0, 1] → R is strictly increasing, positive and
Lipschitz-continuous.

(P8-A2) The initial concentrations AI , BI , and CI are bounded and non-negative. The
initial pressure pI is bounded.

(P8-A3) For both continuous and discrete cases there holds 1 ≥ φφw ≥ β > 0, and φw is
Lipschitz-continuous.

(P8-A4) q,qA,qB,qC ∈ L∞(J ×Y )∩L2(J ;H1(Y )) and ∂tp, ∂tA, ∂tB, ∂tC ∈ L∞(J ×
Y ).

(P8-A5) The reaction rates are Lipschitz-continuous.

The convergence of the scheme presented in (3.62)-(3.70) can be shown for con-
stant porosity (i.e. s = 0) and strictly unsaturated flow (when φ′w > 0) or fully satu-
rated flow (when φw = φw,max everywhere). We give below the convergence result for
the unsaturated case, for the saturated case as well as other details we refer to [P8].
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Theorem 3.5.1 (Strictly unsaturated flow) Let s = 0. Assuming (P8-A1) – (P8-A5),
there holds

‖p(T )− pnh‖2 +
N∑
n=1

τ‖qn − qnh‖2 +
N∑
n=1

τ‖An − Anh‖2

+
N∑
n=1

τ‖Bn −Bn
h‖2 +

N∑
n=1

τ‖Cn − Cn
h‖2 +

N∑
n=1

τ‖qAn − qA
n
h‖2

+
N∑
n=1

τ‖qBn − qB
n
h‖2 +

N∑
n=1

τ‖qCn − qC
n
h‖2 ≤ c(τ 2 + h2).

(3.71)

The proof of Theorem 3.5.1 is based on techniques from [6] and [72]. The results
above can be extended to the case with a variable porosity at least for the non-
degenerate case (no pore clogging and strictly unsaturated flow). The general, de-
generate case needs further investigations.

The paper [P8] is concluded by numerical experiments: one academical example
to check the convergence also numerically and one example with real case parameters.
In the former we considered fully coupled nonlinear flow and transport, but a constant
porosity and strictly unsaturated flow conditions. In this regime we were able to derive
an analytical solution for the problem and test the convergence of the MFEM approx-
imations. The observed order of convergence sustains the theoretical results. The
latter experiment was conducted in the general case: saturated/unsaturated flow and
a variable porosity. Realistic parameters have been chosen. The preliminary results
have shown no significant differences between the model with and without a variable
porosity. Further tests will follow.
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Chapter 4

Conclusions and Outlook

We considered in this thesis flow and reactive solute transport with sorption in porous
media. We concentrated on numerical methods for solving these problems and their
analysis. Most of the proposed schemes are based on MFEM, lowest-order Raviart-
Thomas elements. We set and proved the convergence for a MFEM scheme for the
Richards equation in the strictly unsaturated flow case. For the saturated/unsaturated
case, when Richards’ equation becomes degenerate, we used the Kirchhoff transfor-
mation. We proved the convergence of the resulting scheme in a very general frame-
work: both slow and fast diffusion being allowed. We proved also the convergence
for a MPFA scheme (O-method) for unsaturated/saturated flow, this time but only fast
diffusion being allowed. The convergence proof will be extended to include the slow
diffusion case and the MPFA L-method. The convergence for the MFEM scheme with-
out Kirchhoff’s transformation and saturated/unsaturated flow is still an open prob-
lem. There are two possibilities to close this gap: quantify the differences between
the schemes with and without the Kirchhoff transformation at the discrete level (at
the continuous level the schemes are equivalent) or capture the interfaces between the
saturated and unsaturated regions as lower dimensional manifolds and prove the con-
vergence on each side (where the equation is regular). This will be the subject of a
further research.

A MFEM scheme for reactive transport in saturated/unsaturated porous media was
then presented and analyzed. The analysis considers the low regularity of the solution
of the flow equation and, moreover, includes that the flow equation is solved also
numerically. Error estimates have been proven. The order of convergence for the
MFEM scheme for the transport equation depends as expected on the accuracy of
numerical scheme for the flow equation.

The nonlinear systems arising after the MFEM discretization are solved by a New-
ton method. For this a regularization step was considered. The convergence of the
schemes is analyzed for transport with equilibrium or non-equilibrium sorption. A
priori constrains on the discretization parameters are derived to ensure the quadratic
convergence of the Newton scheme and of the MFEM scheme. These constraints are
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of a relevant practical interest, because they enable the a priori tunning of the dis-
cretization parameters (time step size, mesh diameter and regularization parameter) to
ensure the convergence of the scheme.

We also analyzed the numerical diffusion for different discretization schemes for
the transport equation, including higher order schemes in space (FVM and FEM) and
in time. We concluded that for realistic problems all the schemes perform similar with
respect to numerical diffusion as long as upwind was not used. We especially did not
see any significant improvement when using the higher order schemes for numerical
diffusion. The upwind schemes have shown, as expected, high numerical diffusion.
For convection-dominated problems we proposed to new MHFEM schemes. The up-
wind MHFEM have shown less numerical diffusion as the FEM upwind schemes.

Finally we considered fully coupled flow and reactive solute transport: not only that
the transport is affected by the flow, but also the flow is influenced by the transport.
Concrete carbonation was the underlying application for such reactive flows. Water
is now produced by the reaction and besides we have a variable porosity, so the flow
and transport equations are fully coupled. A semi-implicit MFEM was proposed and
analyzed for the strictly unsaturated flow case and a constant porosity. This analy-
sis can be extended more or less straightforward to the case with variable porosity as
long as the equations remain regular (no degeneracies). The degenerate cases (satu-
rated/unsaturated flow, pore clogging) are the subject of a further analysis.

In the future we will also analyze other type of reactive flow couplings, e. g. when
the water content is concentration depend as in the case of surfactant transport. Also
more general dissolution-precipitation models (where a multi-valued function is in-
volved for describing the dissolution/precipitation) will be considered and analyzed.
For these type of models the convergence is normally shown by compactness argu-
ments (Fréchet-Kolmogorov theorem). The existing works for saturated flow should
now be extended to saturated/unsaturated flow. Another long term project will be to
consider heat conduction in porous media in the view of application to geo-thermal
energy. In that case we have a fully coupled flow-transport-heat system.
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