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Abstract

In this article a method is proposed for the efficient simulation of reac-
tive systems or reactive transport problems including (equilibrium) mineral
precipitation-dissolution. The difficulty lies in the fact that for larger systems
it is usually a priorily not known for which mineral the fluid is saturated and
for which it is undersaturated. Currently wide-spread algorithms use some
trial-and-error strategy requiring repeated computations, or an approxima-
tion of equilibrium precipitation-dissolution by a kinetic description. In this
article we propose to formulate the problem as a so-called complementarity
problem (CP) and to solve it with the semismooth Newton method, a solution
strategy well known in the field of optimization theory. The CP formulation
of the mineral reactions is then combined with a reformulation for the full
multicomponent reactive transport problem which leads to a reduction of the
number of unknowns. The reactive transport problem is tackled in the sense
of a one step (global implicit) method.

Keywords: reactive transport, minerals, complementarity problems,
semismooth Newton method

1. Introduction

In reactive system where equilibrium precipitation-dissolution reactions
are present, often the following difficulty occurs: It is in general not a priori
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clear which of the minerals are present in the system and which minerals are
completely dissolved. The presence of a mineral means that the fluid is sat-
urated with respect to the corresponding precipitation-dissolution reaction,
and if the fluid is undersaturated, then the corresponding mineral is fully
dissolved.

In cases where there is some a priori knowledge that all minerals are
present, the equilibrium condition can simply be expressed as a system of
(nonlinear) algebraic equations which may be solved (together with mass
balance equations) by some standard Newton method. However, in practice
this knowledge is not available, and standard algorithms try to determine the
correct mineral assemblage by some kind of ’trial and error’ strategy. In the
literature (see Sec. 2.2) the most common approach is to make an assumption
as to which of the minerals are present and which are fully dissolved, then
compute if the resulting algebraic system has a physically meaningful solu-
tion. If not, then the assumption is modified with respect to some heuristic
rule, and the procedure with modified assumption is repeated until a physical
solution is obtained.

In this article we present the mineral equilibrium conditions as a so-called
complementarity condition (CC) which unifies both cases of presence and of
full dissolution of a mineral. The benefit of this formulation is that problems
containing CCs (so-called complementarity problems, CPs) are well known
in the field of optimization theory. In this field, it is a well known strategy to
solve CPs with the semismooth Newton method. The intention of this article
is the application of this theory and this modern algorithm to the mineral
problem. The advantage of this procedure is a reduction in computation
time by replacing a sequence of nested Newton iteration by just one level of
iterations. When one considers batch problems (closed systems), the question
of efficiency of the numerical solution might be not so prominent. However,
as soon as we want to solve reactive transport problems (in 2-D or 3-D) with
many species, the question of computational efficiency becomes essential.

The article is structured as follows. In Sec. 2.1 we introduce the mineral
precipitation-dissolution problem in the setting of a batch problem. We dis-
cuss the available solution techniques and we introduce the complementarity
formulation and the semismooth Newton algorithm.

In Sec. 3 we couple the reaction system with transport (linear dispersion
and advection), and we also generalize our reaction system so that it may
contain other equilibrium reactions (aqueous reactions, sorption reactions)
or kinetic reactions. The reactive transport system consists of partial and of
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ordinary differential equations (PDEs, ODEs) coupled to algebraic equations
and CCs. We demonstrate how to eliminate the equilibrium reaction rates
from the CP formulation of the problem.

In Sec. 4 we reformulate the system arising from the CP formulation of
Sec. 3 using a method described in [17, 18] in order to obtain a stronger
reduction of the number of unknowns and equations, compared to the tech-
nique of Sec. 3. Some results on the regularity of the system matrix are
derived in Sec. 4.3, 4.4, and Appendix A.

Finally, in Sec. 5 we give some numerical results.

2. The mineral problem in a batch situation: The semismooth
Newton method and other solution strategies

In this section we want to introduce our algorithm in the context of a
reduced complexity situation. In Sec. 2.1 we give the governing equations
and in Sec. 2.2 we discuss some solution strategies, including the semismooth
Newton method.

2.1. The governing equations

We consider a closed system of Ī minerals X̄i with concentration vec-
tor c̄ = (c̄1, ..., c̄Ī) and I aqueous species Xi with concentration vector c =
(c1, ..., cI), and we assume that all reactions are mineral precipitation-dissolution
reactions which are at equilibrium, one for each mineral:

I
∑

i=1

sijXi ←→ X̄j , j = 1, ..., Ī,

which corresponds to a stoichiometric matrix S∈R
(I+Ī)×Ī ,

S =

(

S1

−Id

)

with Id being a Ī× Ī identity matrix and S1 = (sij). The total concentration
(cf. [25]), which reads

T = c + S1c̄ (1)

for this shape of matrix S, is usually given.
If it is known that no complete dissolution of minerals takes place, then

the equilibrium conditions can be expressed by some algebraic equilibrium
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conditions. For the sake of simplicity we assume that the reactions follow
the mass action law with ideal activities for the non-minerals and constant
activities (set to unity without loss of generality) for the minerals. Then the
equilibrium conditions read

I
∏

i=1

c
sij

i = Kj, j = 1, ..., Ī,

or, assuming that all non-mineral concentrations are positive,

I
∑

i=1

sij ln ci = ln Kj, j = 1, ..., Ī, (2)

where Kj > 0 are the equilibrium constants (solubility products). In short,

E(c) := ln K − ST
1 ln c = 0,

where K := (K1, ..., KĪ)
T , and where the application of ’ln’ is performed

componentwise. This condition (2), expressing saturation of the fluid with
respect to the corresponding reaction, has only to be fulfilled if the corre-
sponding mineral is present, i.e., when c̄j > 0. In general we cannot exclude
the possibility that the fluid is undersaturated and the mineral fully dissolved,
i.e.,

Ej(c) = ln Kj −
I
∑

i=1

sij ln ci ≥ 0 and c̄j = 0.

Note that oversaturation (Ej(c) < 0) is only possible in kinetic reaction
models.

A general unified formulation for the saturated and the undersaturated
situation can be expressed as

(Ej(c) = 0 and c̄j ≥ 0) or (Ej(c) ≥ 0 and c̄j = 0), j = 1, ..., Ī . (3)

An equation of this type, or more generally, of type

(f(x) = 0 and x ≥ 0) or (f(x) ≥ 0 and x = 0),

is called a complementarity condition [8]. We have to solve the CP consisting
of (1) and (3).
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2.2. Motivation: The semismooth Newton method and other solution strate-
gies

A well known solution strategy for problem (1), (3) which is proposed
e.g. in [1, 27] and applied e.g. in [7], is to make an assumption as to which
subset of minerals is present, and to solve only the corresponding equations
from (3) together with (1) by a Newton iteration, then check if the solution is
physical. If not (i.e., negative mineral concentrations or oversaturated fluid)
then modify the assumption following certain heuristic rules and repeat the
computation until a physical solution is obtained. The main disadvantage of
this strategy is that instead of one Newton iteration several Newton iterations
are required. In particular if we consider reactions coupled to transport using
a global implicit approach (one-step method), then the whole computation
of a time step has to be done again and again.

For the coupling of mineral reactions to transport, another approach is
proposed in [19, 20]: Here the computational domain is divided into sub-
domains of saturation and of undersaturation with respect to each mineral,
and it is proposed to solve the problem with a front tracking algorithm. This
approach seems to work well in 1-D problems or in problems where the topol-
ogy of the subdomain interfaces is known and does not change in time; for
system with complex/changing topologies of the subdomains front tracking
algorithms are known to be difficult to implement.

Another idea which is used in practice is to approximate the equilibrium
conditions by kinetic descriptions of the reactions. However, if we do this
using large reaction constants (to meet the fact that equilibrium reactions
should be ’fast’) we may increase the stiffness of the problem, and if we use
moderate rate coefficients, we end up with a rather inaccurate approximation
of our problem. Some discussion of this question may be found in [24, 2, 26].

This motivates a search for other approaches. In the field of optimization
theory, CPs are often obtained in the form of the first order optimality con-
ditions (Karush-Kuhn-Tucker-)conditions of constrained optimization prob-
lems. So in that field of mathematics, we can find well-established, efficient
solution strategies, such as the following: The condition (3) is rewritten as

Ej(c) c̄j = 0 and Ej(c) ≥ 0 and c̄j ≥ 0, j = 1, ..., Ī . (4)

Having in mind that we want to apply some Newton-like strategy, it is desir-
able to eliminate the inequalities in (4). For this, a function ϕ : R× R→ R
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with the property

ϕ(a, b) = 0 ⇔ ab = 0 and a ≥ 0 and b ≥ 0 (5)

has to be chosen. A function fulfilling (5) is called complementarity func-
tion or C-function in the literature. Examples for C-functions are the min-
imum function ϕMIN(a, b) = min{a, b} or the Fischer-Burmeister function
ϕFB(a, b) = a+ b−

√
a2 + b2. Introducing a C-function, condition (4) can be

rewritten as
ϕ(Ej(c), c̄j) = 0, (6)

i.e., the inequalities are eliminated, and we can apply a Newton-like strategy
to the system (1), (6). However, we have to note that the regularity of a C-
function is not as high as it is classically assumed for Newton’s method. In
fact, the gradient of ϕ is not everywhere uniquely defined; for the choice ϕ =
ϕMIN we have a set-valued generalized gradient (called the B-subdifferential,
see e.g. [8] or [9])

∇ϕ(a, b) =







{(1, 0)T} , a < b
{(1, 0)T , (0, 1)T} , a = b
{(0, 1)T} , a > b

(7)

The function ϕ belongs to the class of so-called strongly semismooth func-
tions. The semismooth Newton method is the application of Newton’s method
to a semismooth function, where at each Newton step one abitrary element of
the B-subdifferential is used instead of the classical Jacobian. It is known that
strong semismoothness, together with invertibility of the B-subdifferential,
is sufficient for local quadratic convergence. This means that there is a good
theoretical justification if we solve the mineral problem with a semismooth
algorithm for the CP. A proof of the invertibility of the B-subdifferential for
our reactive transport problem is given in Sec. 4.5 and Appendix A. For the
definition of (strong) semismoothness and the convergence result see [22, 8].

Let us mention that the semismooth Newton method is not the only
technique for solving CPs [9]. In [23], an interior point method is applied to
a mineral precipitation-dissolution problem. However, different from Sec. 3-
5, a splitting technique is applied to the reactive transport problem in [23],
i.e., local problems with CCs being not any more coupled to PDEs are to be
solved.
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3. Extension to reactive transport

Of course the idea to express equilibrium conditions with minerals as
a CC and to eliminate inequalities in the way of Sec. 2 can also be ap-
plied in more complicated settings. In this section we extend the model to
transient reactive transport, and we also increase the complexity of the re-
active network by allowing different types of reactions. Let us assume we
have Jkin kinetic reactions and Jeq reactions in local equilibrium, i.e., a sto-

ichiometric matrix S = (Seq|Skin) =

(

S1
eq S1

kin

S2
eq S2

kin

)

∈ R
(I+Ī)×(Jeq+Jkin). For

the equilibrium reactions we assume that there are Jmob aqueous reactions,
Jsorp heterogeneous (non-mineral) reactions and Jmin reactions with minerals,
Jmob + Jsorp + Jmin = Jeq. More precisely, we assume that the stoichiometric
matrix has the shape

S =

(

S1
eq S1

kin

S2
eq S2

kin

)

=





S1
mob S1

sorp S1
min S1

kin

0 S2
sorp 0 S2,1

kin

0 0 −Id 0



 (8)

where the rows correspond to a sorting of the species starting with mobile
ones c ∈ R

I (dissolved in the water), then immobile non-mineral (sorbed)
species c̄sorp ∈ R

Īsorp and finally (immobile) mineral species c̄min ∈ R
Īmin,

Īsorp + Īmin = Ī, Īmin = Jmin, c̄ = (c̄sorp, c̄min).
For reactive transport problems in porous media with mobile and immo-

bile species and kinetic and equilibrium reactions, the mass balance equations
for the species read
(

∂tθc + Lc
∂tc̄

)

= θSR = θ(SeqReq + SkinRkin) = θ

(

S1
eqReq + S1

kinRkin

S2
eqReq + S2

kinRkin

)

.(9)

Q(c, c̄) = 0.

Here L is a linear transport (advection-dispersion) operator with
Lc = (L1ci, ..., LIcI) and L1 = ... = LI , Rkin = Rkin(c, c̄) is a vector of
kinetic rate laws, Q is a vector of Jeq equilibrium conditions, which read, if
we assume mass action law,

Q(c, c̄) = S1
eq

T
ln c + S2

eq
T

ln c̄− lnKeq,

and Req ∈ R
Jeq is the vector of equilibrium reactions rates. So (9) is a

system of I + Ī + Jeq equations for the unknowns c, c̄, Req. For the model
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under consideration we obtain the mass balance equations

∂tθc + Lc = θ(S1
eqReq + S1

kinRkin(c, c̄sorp))
= θ(S1

mobRmob + S1
sorpRsorp + S1

minRmin + S1
kinRkin(c, c̄sorp))

∂tc̄sorp = θ(S2
sorpRsorp + S2,1

kinRkin(c, c̄sorp))

∂tc̄min = −θRmin

(10)
where we have split Req = (Rmob, Rsorp, Rmin). Splitting also Q into Q =
(Qmob, Qsorp) and Keq = (Kmob, Ksorp), the equations (10) have to be solved
together with the equilibrium conditions

Qmob(c) := S1
mob

T
ln c− ln Kmob = 0,

Qsorp(c, c̄sorp) := S1
sorp

T
ln c + S2

sorp
T

ln c̄sorp − ln Ksorp = 0,

ϕ(E(c), c̄min) = 0, where E(c) := ln Kmin − S1
min

T
ln c,

(11)

for the aqueous, the sorption, and the mineral reactions, having the equi-
librium constants (Kmob, Ksorp, Kmin) ∈ R

Jmob+Jsorp+Jmin

+ . The unknowns are
c, c̄sorp, c̄min and Req = (Rmob, Rsorp, Rmin). Note that we have already re-
placed the equilibrium condition of type (3) by the equivalent formulation
of type (6). Also note that we have again, just for the sake of simplicity,
assumed ideal activities for the mobile and the sorbed species.

Some Newton-like strategy might be directly applied to the system (10)-
(11). However, it is common practice to transform the system by eliminating
the Req. There are many different strategies; however, the standard strategy
is to find I + Ī − Jeq many linear combinations of the equations of (10)
which are void of Req, see, e.g., [10, 25, 28, 21]. The size of the resulting
system then usually is I + Ī. We show in the following that this problem size
reduction can also be applied when the systems contains CCs. By taking
linear combinations of columns of the given Seq and possibly by changing
the order of the species within their blocks we can assume without loss of
generality the shape

Seq =















S̃1
mob S̃1

sorp S̃1
min

−Id 0 0

0 S̃2
sorp 0

0 −Id 0
0 0 −Id














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where the columns have as before the size Jmob, Jsorp, Jmin, resp., and the rows
have the size I − Jmob, Jmob, Īsorp− Jsorp, Jsorp, Jmin, resp. For this reformula-
tion, the usual assumption that the columns of Seq are linearly independent,
is applied. Obviously the matrix

UT =

(

Id S̃1
mob 0 S̃1

sorp S̃1
min

0 0 Id S̃2
sorp 0

)

has the property UT Seq = 0. Hence, a multiplication of the mass balance
equations in (9)/(10) by UT leads to

(

∂t(θ(cα + S̃1
mobcβ) + S̃1

sorpc̄sorp,β + S̃1
minc̄min) + L(cα + S̃1

mobcβ)

∂t(c̄sorp,α + S̃2
sorpc̄sorp,β)

)

= θS̃kinRkin(c, c̄sorp),

(12)

i.e., an elimination of Req. Here S̃kin = UT Skin, and we split the vectors
of unknowns c = (cα, cβ), c̄sorp = (c̄sorp,α, c̄sorp,β). Note that cα, c̄sorp,α are
sometimes called primary variables, and cβ, c̄sorp,β, c̄min secondary variables.
System (12) consists of I + Ī−Jeq mass balance equations, which have to be
solved together with the Jeq equilibrium conditions

Q̃mob(c) := (S̃1
mob)

T ln cα − ln cβ − ln K̃mob = 0,

Q̃sorp(c, c̄sorp) := (S̃1
sorp)

T ln cα + (S̃2
sorp)

T ln c̄sorp,α − ln c̄sorp,β − ln K̃sorp = 0,

ϕ(Ẽ(c), c̄min) = 0, where Ẽ(c) := ln K̃min − (S̃1
min)

T ln cα.
(13)

The size of the system (12)-(13) is I + Ī. In general situations, one cannot
expect a decoupling of some of the mass balance equation, except in the
special case that there are no equilibrium sorption reactions [21]. A way
to reduce the size of the system further more would be a substitution of
the equilibrium conditions Q̃mob, Q̃sorp, solved for cβ, c̄sorp,β, into the mass
balance equations, but this has the drawback of nonlinear coupling terms
appearing under the spatial derivatives of L. This motivates the use of the
reformulation proposed in the following section which will lead to a smaller
number of equations than (12)-(13). We will show how the reformulation can
be combined with the complementarity formulation, and we will investigate
its performance in that combination.

9



4. Application of the complementarity formulation in combination
with a size reduction strategy

4.1. The reformulation technique

In [17, 18] a technique was introduced to enable the reformulation of a
given reactive transport problem in porous media in such a way that some
linear conservative equations decouple so that a nonlinear problem smaller
than (12)-(13) remains to be solved. The method allows rather general sys-
tems containing mobile and immobile species and kinetic and equilibrium
reactions. Compared to other approaches such as [21], this approach does
not require any additional assumptions such as the absence of equilibrium
sorption reactions. However, in [17, 18] the model did not contain any min-
erals. The purpose of this section is to demonstrate that the reformulation
technique can also be applied when minerals are involved. A model with
minerals, but without kinetic and sorption reactions is considered in [4].

We assume that the reactive system has the shape (8). Without loss of
generality we can assume that the columns of S2

sorp are linearly independent
(if necessary we take linear combinations of columns of Seq and increase
Jmob and decrease Jsorp). For the sake of simplicity we assume that the
columns of S1

eq are linearly independent (this condition can be weakened).
The following transformation is very similar to the one in [17, 18], except
that there is an additional block of mineral species and reactions. Therefore
we summarize the main steps and refer to [17, 18] for more details. We define
S∗

1 as the matrix consisting of a maximal set of linear independent columns
of matrix S1 = (S1

eq|S1
kin) containing all columns of S1

eq, and a matrix S∗
2

consisting of a maximal set of linear independent columns of S2 = (S2
eq|S2

kin),
containing at least all the (linear independent) nonzero columns of S2

eq. Let
J∗

i be the number of columns of S∗
i , i = 1, 2 (i.e., Jeq ≤ J∗

1 ≤ J , Jsorp +
Jmin ≤ J∗

2 ≤ Jsorp + Jmin + Jkin). Since the columns of S∗
i are linearly

independent, ((S∗
i )

T S∗
i )

−1 exist, i = 1, 2. We find Ai such that Si = S∗
i Ai.

(It is Ai = (S∗
i

T S∗
i )

−1 S∗
i

T Si.) For some applications (such as the example
in Sec. 5/Appendix B) the columns of S1 are already linear independent. In
this case simply S∗

1 = S1 and A1 = Id, J∗
1 = J holds. Furthermore, often S∗

2

just coincides with S2 after the Jmob zero columns of the aqueous reactions
are dropped. Then J∗

2 = Jsorp + Jmin + Jkin holds.
Next, we introduce a matrix U1 ∈ R

(I−J∗

1 )×I and a matrix U2 ∈ R
(Ī−J∗

2 )×Ī

such that the columns of Ui are linearly independent and orthogonal to the
columns of S∗

i , i = 1, 2. This means that UT
i S∗

i = 0. We multiply the PDE
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block of (9)/(10) by (S∗
1

T S∗
1)

−1S∗
1

T and by (U1
T U1)

−1U1
T , and we multiply

the ODE block of (9)/(10) by (S∗
2

T S∗
2)

−1S∗
2

T and by (U2
T U2)

−1U2
T . After a

substitution

ξ = (S∗
1

T S∗
1)

−1S∗
1

T c ∈ R
J∗

1 , η = (U1
T U1)

−1U1
T c ∈ R

I−J∗

1

ξ̄ = (S∗
2

T S∗
2)

−1S∗
2

T c̄ ∈ R
J∗

2 , η̄ = (U2
T U2)

−1U2
T c̄ ∈ R

Ī−J∗

2 ,

which can be inverted by

c = S∗
1ξ + U1η

c̄ = S∗
2 ξ̄ + U2η̄,

(14)

we obtain the transformed I + Ī − Jeq mass balance equations

∂t θη +L η = 0 (I−J∗
1 eq.)

∂t η̄ = 0 (Ī−J∗
2 eq.)

∂t θξkin +L ξkin −f1(ξ, ξ̄) = 0 (J∗
1−Jeq eq.)

∂t (θξsorp−ξ̄sorp) +L ξsorp −f2(ξ, ξ̄) = 0 (Jsorp eq.)

∂t (θξmin−ξ̄min) +L ξmin −f3(ξ, ξ̄) = 0 (Jmin eq.)

∂t ξ̄kin −f4(ξ, ξ̄) = 0 (J∗
2−Jsorp−Jmin eq.)

(15)

which have to be solved together with the Jeq equilibrium conditions (11),
where all c, c̄ have to be replaced through (14) by ξ, η, ξ̄, η̄. The terms fi

contain the kinetic rates:

f1 = θA1
kinRkin(c, c̄sorp), f2 = θAsorpRkin(c, c̄sorp),

f3 = θAminRkin(c, c̄sorp), f4 = θA2
kinRkin(c, c̄sorp),

where the matrices A1
kin, A

2
kin, Asorp, Amin can be computed from A1, A2. The

vectors ξ ∈ R
J∗

1 and ξ̄ ∈ R
J∗

2 were split into ξ = (ξmob, ξsorp, ξmin, ξkin) of size
Jmob, Jsorp, Jmin, J

1′

kin and ξ̄ = (ξ̄sorp, ξ̄min, ξ̄kin) of size Jsorp, Jmin, J
2′

kin, where we
set J1′

kin = J∗
1 − Jeq, J2′

kin = J∗
2 − Jsorp − Jmin.

Due to the definition of Ui, the columns of Ui span the orthogonal com-
plement space of the columns of Si, i.e., the formulas (14) describe a decom-
position of the mobile species vector c and of the immobile species vector c̄
into a direct sum with respect to two orthogonal subspaces of R

I , R
Ī , respec-

tively. ξ and η are linear combinations of only mobile entities, and ξ̄ and η̄
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are linear combinations of only immobile entities. For later use we give the
transformation (14) in terms of the blocks of Si:

c = S∗
1ξ+U1η =S1

mobξmob+S1
sorpξsorp+S1

minξmin+S1′

kinξkin+U1η,

c̄ =

(

c̄sorp

c̄min

)

= S∗
2 ξ̄+U2η̄ =

(

S2
sorpξ̄sorp + S2′

kinξ̄kin

−ξ̄min

)

+ U2η̄,

(16)

where Si′

kin contains the columns of Si
kin chosen for the construction of S∗

i from
Si, i = 1, 2. In particular, (16) shows that ξ̄min = −c̄min; for the non-mineral
species the transformation is not so simple.

The main advantage of the formulation (15), (11) lies in the fact that the
equations for η and η̄ are decoupled and linear. Hence, it remains to solve a
smaller nonlinear system for ξ, ξ̄, when compared to formulation (12)-(13). So
in the following we may suppress the equations for η, η̄, and we also suppress
any dependence of functions on η, η̄, as we already did for the terms fi, since
η, η̄ can be considered to be known when computing ξ, ξ̄.

Comparing with the model in [18], we have basically the same structure,
except that we now have two different types of heterogeneous reactions, lead-
ing to two blocks of equations and unknowns ξsorp, ξ̄sorp and ξmin, ξ̄min instead
of only ξsorp, ξ̄sorp in [18].

In the following we discretize the CP (15), (11). For the sake of simplicity
we assume that θ = 1 is constant from now on; it is obvious how to proceed
with general θ. We apply an implicit discretization in time, let us say, the
implicit Euler method, and we apply an arbitrary spatial discretization by
finite elements or finite volumes. If finite elements are used, then we apply
mass lumping in order to avoid any artificial spatial couplings in the rate
terms or the accumulation terms. We apply a scaling with the size of the
element/cell such that the mass matrix becomes the identity matrix. We
denote the time step size by τ and the discrete version of L by Lh and obtain
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the nonlinear system of equations

G1 := ξkin +τ Lhξkin −τf1(ξmob, ξsorp, ξmin, ξkin, ξ̄sorp, ξ̄kin)− ξold
kin = 0

G2 := ξsorp−ξ̄sorp +τ Lhξsorp−τf2(ξmob, ξsorp, ξmin, ξkin, ξ̄sorp, ξ̄kin)− ξold
sorp + ξ̄old

sorp = 0

G3 := ξmin−ξ̄min +τLhξmin −τf3(ξmob, ξsorp, ξmin, ξkin, ξ̄sorp, ξ̄kin)− ξold
min + ξ̄old

min = 0

G4 := ξ̄kin −τf4(ξmob, ξsorp, ξmin, ξkin, ξ̄sorp, ξ̄kin)− ξ̄old
kin = 0

G5 := Qsorp(ξmob, ξsorp, ξmin, ξkin, ξ̄sorp, ξ̄kin) = 0

G6 := −ϕ(E(ξmob, ξsorp, ξmin, ξkin),−ξ̄min) = 0

G7 := Qmob(ξmob, ξsorp, ξmin, ξkin) = 0

(17)
The superscript ’old’ indicates values from the previous time-step. Though
all the variables are now discrete, we do not change the notation. The minus
sign in front of ϕ is chosen in order to simplify the proof in Sec. 4.3.

Now, we want to apply a semismooth Newton method. The resulting
linearized system reads

J





















∆ξkin

∆ξsorp

∆ξmin

∆ξ̄kin

∆ξ̄sorp

∆ξ̄min

∆ξmob





















= −





















G1

G2

G3

G4

G5

G6

G7





















(18)

for the Newton update, where the block matrix J is given in Table 1, left
part, where ϕa, ϕb denote the partial derivatives of ϕ and Λ(x) denotes a
diagonal matrix with entries from a vector x.

4.2. Choice of the CP function and further size reduction

The usage of the reformulation techniques in Sec. 4.1 and in Sec. 3 is
driven by the intention to reduce the size of the system to be solved at each
time step. Pursuing this maxim, we want to reduce the size of the linear
system (18) by a specific choice of the complementarity function ϕ and by
exploiting the special structure of the linear system.

As already noted in [16], the choice of the Fischer-Burmeister function
ϕ = ϕFB leads to entries in the Jacobian (Table 1, left part) which are close
to zero, but not equal zero, when a or b is close to zero. When the Newton
iteration converges, then always at least one of the arguments a = Ei(c)
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







































Id+τLh− τ ∂f1

∂ξkin
− τ ∂f1

∂ξsorp
− τ ∂f1

∂ξmin
− τ ∂f1

∂ξ̄kin

− τ ∂f1

∂ξ̄sorp

0 − τ ∂f1

∂ξmob

− τ ∂f2

∂ξkin
Id+τLh− τ ∂f2

∂ξsorp
− τ ∂f2

∂ξmin
− τ ∂f2

∂ξ̄kin

−Id− τ ∂f2

∂ξ̄sorp

0 − τ ∂f2

∂ξmob

− τ ∂f3

∂ξkin
− τ ∂f3

∂ξsorp
Id+τLh− τ ∂f3

∂ξmin
− τ ∂f3

∂ξ̄kin

− τ ∂f3

∂ξ̄sorp

−Id − τ ∂f3

∂ξmob

− τ ∂f4

∂ξkin
− τ ∂f4

∂ξsorp
− τ ∂f4

∂ξmin
Id− τ ∂f4

∂ξ̄kin

− τ ∂f4

∂ξ̄sorp

0 − τ ∂f4

∂ξmob

∂Qsorp

∂ξkin

∂Qsorp

∂ξsorp

∂Qsorp

∂ξmin

∂Qsorp

∂ξ̄kin

∂Qsorp

∂ξ̄sorp

0
∂Qsorp

∂ξmob

−Λ(ϕa) ∂E
∂ξkin

−Λ(ϕa) ∂E
∂ξsorp

−Λ(ϕa) ∂E
∂ξmin

0 0 Λ(ϕb) −Λ(ϕa) ∂E
∂ξmob

∂Qmob

∂ξkin

∂Qmob

∂ξsorp

∂Qmob

∂ξmin
0 0 0 ∂Qmob

∂ξmob























































































Id+τLh− τ ∂f1

∂ξkin
− τ ∂f1

∂ξsorp
− τ ∂f1

∂ξA
min

− τ ∂f1

∂ξ̄kin

− τ ∂f1

∂ξ̄sorp

0 − τ ∂f1

∂ξI
min

− τ ∂f1

∂ξmob

− τ ∂f2

∂ξkin
Id+τLh− τ ∂f2

∂ξsorp
− τ ∂f2

∂ξA
min

− τ ∂f2

∂ξ̄kin

−Id− τ ∂f2

∂ξ̄sorp

0 − τ ∂f2

∂ξI
min

− τ ∂f2

∂ξmob

− τ ∂f3

∂ξkin
− τ ∂f3

∂ξsorp

IdA+τLAA
h − τ ∂f3A

∂ξA
min

τLIA
h − τ ∂f3I

∂ξA
min

− τ ∂f3

∂ξ̄kin

− τ ∂f3

∂ξ̄sorp

−IdA 0
0 −IdI

τLAI
h − τ ∂f3A

∂ξI
min

IdI+τLII
h −

τ ∂f3I

∂ξI
min

− τ ∂f3

∂ξmob

− τ ∂f4

∂ξkin
− τ ∂f4

∂ξsorp
− τ ∂f4

∂ξA
min

Id− τ ∂f4

∂ξ̄kin

− τ ∂f4

∂ξ̄sorp

0 − τ ∂f4

∂ξI
min

− τ ∂f4

∂ξmob

∂Qsorp

∂ξkin

∂Qsorp

∂ξsorp

∂Qsorp

∂ξA
min

∂Qsorp

∂ξ̄kin

∂Qsorp

∂ξ̄sorp

0
∂Qsorp

∂ξI
min

∂Qsorp

∂ξmob

0
−∂EI

∂ξkin

0
−∂EI

∂ξsorp

0
−∂EI

∂ξ
minA

0 0
IdA 0
0 0

0
−∂EI

∂ξI
min

0
−∂EI

∂ξmob

∂Qmob

∂ξkin

∂Qmob

∂ξsorp

∂Qmob

∂ξA
min

0 0 0 ∂Qmob

∂ξI
min

∂Qmob

∂ξmob















































T
a
b
le

1
:

L
eft

p
a
rt:

M
a
trix

J
fro

m
(1

8
).

R
ig

h
t

p
a
rt:

M
a
trix

J
fro

m
(2

0
).
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or b = c̄min,i approaches zero, so we have almost zero entries even on the
diagonal of the system, while in the same columns/rows of the system, other
entries may be much larger. In order to avoid the possibility that this effect
may deteriorate the condition number of the system when approaching the
solution, we proceed as follows: We choose the minimum function ϕ = ϕMIN

since this complementarity function does not show this effect, cf. (7). Next
we partition the set of degrees of freedom:

Let us denote the set of m spatial discretization points by Ωh. The vari-
ables ξmin and ξ̄min consist of Jmin×m degrees of freedom each. We partition
the set M := {1, ..., Jmin}×Ωh into

A := {(i, xk) ∈ {1, ..., Jmin} × Ωh | Ei(c(xk)) > c̄min,i(xk)}
I := {(i, xk) ∈ {1, ..., Jmin} × Ωh | Ei(c(xk)) ≤ c̄min,i(xk)} (19)

A is the set of active degrees of freedom in the sense of an active set method.
Restricted to one species i we can define the set of active/inactive degrees

of freedom
Ai := {xk ∈ Ωh | (i, xk)∈A},
Ii := {xk ∈ Ωh | (i, xk)∈I},

i = 1, ..., Jmin.
Let us emphasize that this partition into active and inactive degrees of

freedom due to condition (19) is based on the evaluation of the current
Newton iterate and is renewed after each Newton step. So for the choice
ϕ=ϕMIN , the index set illustrates which of the two cases holds:

ϕ(Ei(c), c̄min,i) =

{

c̄min,i, x ∈ Ai

Ei(c), x ∈ Ii

The Semismooth Newton method with ϕMIN as a CP-function can thus be
regarded as an active set strategy, a fact that has been stated in [16] and
in [12]. Now we decompose the vector ξ̄min ∈R

|M | into a vector ξ̄Imin living
on I and a vector ξ̄Amin living on A. The same decomposition is applied to
vector ξmin. By reordering the entries of vector ξ̄min, starting with the ’active’
components and then proceeding with the inactive, we can write

ξ̄min =

(

ξ̄Amin

ξ̄Imin

)

, ξmin =

(

ξAmin

ξImin

)

.

The same reordering can be applied to the equations. The rows within the
third and within the sixth set of equations of the linear system (18) reordered,
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starting with those equations acting on active nodes, followed by those equa-
tions acting on inactive nodes. That means that we decompose f3, Lhξmin,
G3, G6, E into the components f3A, LA

h ξmin, G3A, G6A, EA, and f3I , LI
hξmin,

G3I , G6I , EI :

f3 =

(

f3A

f3I

)

, Lhξmin =

(

LA
h ξmin

LI
hξmin

)

, E =

(

EA

EI

)

, S1
min =(S1

minA|S1
minI),

etc. The discrete differential operators can be split into a part acting on
the variables with A-subscript and a part acting on the variables with I-
subscript:

LA
h ξmin = LAA

h ξAmin + LAI
h ξImin,

LI
hξmin = LIA

h ξAmin + LII
h ξImin

With these definitions and restructuring, exploiting (7), the linear system
(18) reads

J

































∆ξkin

∆ξsorp

∆ξAmin

∆ξ̄kin

∆ξ̄sorp

∆ξ̄Amin

∆ξ̄Imin

∆ξImin

∆ξmob

































= −





























G1

G2

G3A

G3I

G4

G5

ξ̄Amin

−EI

G7





























(20)

where J is displayed in Table 1, right part. Note that, for later use, we
moved the ∆ξImin part of the vector of unknowns to the lower part of that
vector, which obviously requires a shift of the corresponding columns of the
matrix of Table 1. We emphasize that the zeros in this matrix and one of
the IdA-blocks are due to the specific choice ϕ = ϕMIN for the C-function.
The presence of these blocks can be exploited to decouple some equations:
The upper part of the sixth block of equations simply reads

∆ξ̄Amin = −ξ̄Amin,

where on the right-hand side the old Newton iterate is meant; subscripts
denoting the Newton iterates are suppressed here and in the following. Hence,
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the update for the variable ξ̄Amin just reads

ξ̄Amin := 0, (21)

i.e., active mineral degrees of freedom are directly set to zero within a New-
ton step. Hence, the linear system (20) can be diminished by these equa-
tions/unknowns. Another decoupling is possible since the unknowns ∆ξ̄Imin

only occur in the lower part of the third block of equations. This block of
equations can be written as

∆ξ̄Imin = −G3I

−τ
∂f3I

∂ξkin
∆ξkin − τ

∂f3I

∂ξsorp
∆ξsorp +

(

IdI + τLI
h − τ

∂f3I

∂ξmin

)

∆ξmin

−τ
∂f3I

∂ξ̄kin

∆ξ̄kin − τ
∂f3I

∂ξ̄sorp

∆ξ̄sorp − τ
∂f3I

∂ξmob
∆ξmob.

This block of equations can be solved a posteriori after the rest of the sys-
tem has been solved for the other unknowns. That means that the mineral
concentrations (in the linear problem) are expressed as a function of the
non-mineral concentrations.

After these two decouplings the remaining linear system reads

J





















∆ξkin

∆ξsorp

∆ξAmin

∆ξ̄kin

∆ξ̄sorp

∆ξImin

∆ξmob





















=−





















G1

G2

G3A

G4

G5

−EI

G7





















(22)

with system matrix J as it is displayed in Table 2.
The lower right part of the system matrix does not contain any spatial

couplings. Hence, a Schur complement technique can be applied to this
system, which requires only the solution of local problems. It is worthwile to
check if a proof of solvability of the local problem can be found. This is done
in the following section.

4.3. Schur complement technique, solvability of the local equations

As already done in [18], appendix, for the system without minerals, we
want to investigate the solvability of the local problem in the extended model
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









































Id+τLh− τ ∂f1

∂ξkin
− τ ∂f1

∂ξsorp
− τ ∂f1

∂ξA
min

− τ ∂f1

∂ξ̄kin

− τ ∂f1

∂ξ̄sorp

− τ ∂f1

∂ξI
min

− τ ∂f1

∂ξmob

− τ ∂f2

∂ξkin
Id+τLh− τ ∂f2

∂ξsorp
− τ ∂f2

∂ξA
min

− τ ∂f2

∂ξ̄kin

−Id− τ ∂f2

∂ξ̄sorp

− τ ∂f2

∂ξI
min

− τ ∂f2

∂ξmob

−τ
∂f3A

∂ξkin
−τ

∂f3A

∂ξsorp
IdA+τLAA

h − τ ∂f3A

∂ξA
min

−τ
∂f3A

∂ξ̄kin

−τ
∂f3A

∂ξ̄sorp

τLAI
h −

τ ∂f3A

∂ξI
min

− τ ∂f3A

∂ξmob

− τ ∂f4

∂ξkin
− τ ∂f4

∂ξsorp
− τ ∂f4

∂ξA
min

Id− τ ∂f4

∂ξ̄kin

− τ ∂f4

∂ξ̄sorp

− τ ∂f4

∂ξI
min

− τ ∂f4

∂ξmob

∂Qsorp

∂ξkin

∂Qsorp

∂ξsorp

∂Qsorp

∂ξA
min

∂Qsorp

∂ξ̄kin

∂Qsorp

∂ξ̄sorp

∂Qsorp

∂ξI
min

∂Qsorp

∂ξmob

−∂EI

∂ξkin

−∂EI

∂ξsorp

−∂EI

∂ξA
min

0 0 −∂EI

∂ξI
min

−∂EI

∂ξmob

∂Qmob

∂ξkin

∂Qmob

∂ξsorp

∂Qmob

∂ξA
min

0 0 ∂Qmob

∂ξI
min

∂Qmob

∂ξmob











































T
a
b
le

2
:

L
in

ea
r

sy
stem

(2
2
)

a
fter

d
eco

u
p
lin

g
o
f
a

p
o
sterio

ri
eq

u
a
tio

n
s.
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containing minerals. Let us write system (22) as

(

A B
C D

)(

∆ξglob

∆ξloc

)

=

(

Gglob

Gloc

)

(23)

with

∆ξglob :=





∆ξkin

∆ξsorp

∆ξAmin



, ∆ξloc :=









∆ξ̄kin

∆ξ̄sorp

∆ξImin

∆ξmob









, Gglob :=





G1

G2

G3A



, Gloc :=









G4

G5

−EI

G7









,

and (cf. Table 2)

D =

















Id− τ ∂f4

∂ξ̄kin

− τ ∂f4

∂ξ̄sorp
− τ ∂f4

∂ξImin

− τ ∂f4

∂ξmob

∂Qsorp

∂ξ̄kin

∂Qsorp

∂ξ̄sorp

∂Qsorp

∂ξImin

∂Qsorp

∂ξmob

0 0 − ∂EI

∂ξI
min

− ∂EI

∂ξmob

0 0 ∂Qmob

∂ξI
min

∂Qmob

∂ξmob

















. (24)

The size of the square matrix D, and as well the size of the corresponding

vector of ’local’ unknowns ∆ξloc, is m · (J2′

kin +Jsorp +Jmob)+
m
∑

i=1

JI
min,i, where

m is the number of mesh points and JI
min,i is the number of inactive (i.e.,

’present’) minerals at mesh point xi. Due to the lack of spatial derivaties
there are no couplings between the mesh points. Hence, by sorting the un-
knowns and equations with respect to the mesh points, the matrix D has
a block-diagonal structure D = diag(D1, ..., Dm), consisting of i = 1, ..., m
square blocks Di of size J2′

kin +Jsorp +Jmob +JI
min,i, i.e., the block sizes are less

than or equal to the number of reactions. An inversion of D requires only
the inversion of the small local blocks Di. If we know that the block matrix
D is invertible, then it is possible and reasonable to solve the smaller system
(Schur complement system)

(A− BD−1C) ∆ξglob = Gglob − BD−1Gloc (25)

and get ∆ξloc by ∆ξloc = D−1(Gloc−C ∆ξglob). In [4] a numerical experiment
displayed a condition number of system (25) being more than one thousand
times lower than the condition number of the system (22)/(23) (even if a
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diagonal scaling is applied to (22)/(23)). Hence, the efficiency of iterative
solvers is increased, thus motivating the Schur approach.

For the invertibility of D we can state the following theoretical result:

Theorem. If the discrete values of all non-minerals ci, c̄sorp,i are strictly
positive at each mesh point, if Rkin is continuous and if the time step size τ >0
is sufficiently small, then the matrix D is regular, i.e., problem (22)/(23) is
equivalent to the (smaller, and better conditioned) problem (25). If J2′

kin =0
(which in particular holds if all reactions are equilibrium reactions), then the
statement even holds for arbitrarily large τ > 0.

Proof. As explained above, it is sufficient to prove the regularity of each
local block Di of D. To keep the notation simple, we will omit the subscript
i from now on und denote the local matrix at an arbitrary mesh point just
by D. Using (11) and (16) we obtain

D = D(τ) =

















Id−O(τ) O(τ) O(τ) O(τ)

S2
sorp

T
Λ̃S2′

kin S2
sorp

T
Λ̃S2

sorp S1
sorp

T
ΛS1

minI S1
sorp

T
ΛS1

mob

0 0 S1
min

T
IΛS1

minI S1
min

T
IΛS1

mob

0 0 S1
mob

T
ΛS1

minI S1
mob

T
ΛS1

mob

















=:

(

D11 D12

0 D22

)

(26)

with Λ̃ := diag(1/c̄sorp,i) ∈ R
Īsorp×Īsorp and Λ = diag(1/ci) ∈ R

I×I .
It is sufficient to prove the regularity of the blocks D11 and D22. We can

write
D22 = (S1

minI |S1
mob)

T Λ (S1
minI |S1

mob).

Due to the assumption of linear independence of the columns of matrix
(S1

minI |S1
mob) and the positivity of the ci, matrix D22 is symmetric positive

definite. The entries of D11 depend continuously on the time step size τ , and
for τ =0 matrix D11 becomes

D11(0) =

(

Id 0

S2
sorp

T
Λ̃S2′

kin S2
sorp

T
Λ̃S2

sorp

)

Matrix D11(0) is obviously regular, since its lower right block is symmet-
ric positive definite. Then there is a neighbourhood around D11(0) where
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all matrices are regular. Since the matrix depends continuously on τ , for
sufficiently small τ , D11 is regular.

The τ -depending terms in D11 are nonexistent, if J2′

kin = 0. In this case,
the regularity holds for arbitrarily large time steps.

Note that the practical solution of the local problem at each mesh point
can be split into two even smaller problems, exploiting the block structure,
by solving problems related to the blocks D22, D11.

4.4. The structure of the global system

From the previous section we know that we can solve the smaller linear
system (25) instead of the larger system (22)/(23), since the ’local’ matrix D
is invertible. The question may be posed if we can find out anything about
the invertibility of the matrix (25) and hence, of matrix (22)/(23). Note that
the invertibility of the matrix is of course required for the applicability of the
semismooth Newton method, see end of Sec. 2.2. While the term A in (25)
is basically the discretization of standard advection-diffusion equations, it is
not a priorily clear which effect the additional term −BD−1C, coming from
the local equations, has on the whole system. Note that while for standard
advection-diffuction equations, the system matrix approaches the identity
matrix when τ → 0 (for h = const, or for τ = o(h2)), this is not the case for
problems including ’infinitely fast’ equilibrium reactions, i.e., for the term
−BD−1C in our case. In particular is seems reasonable to investigate the
structure of the system for the limit case τ = 0 in order to find out about
the system for sufficiently small τ > 0. We state the following facts:

Let the current Newton iterate of the global problem be such that the

corresponding concentration values in terms of c, c̄sorp, c̄min lies in R
I+Īsorp
+ ×

R
Īmin at each of the m ∈ N mesh points. Then the system matrix of the

global problem, after the local equations have been eliminated, (25), has the
structure

Jglob = Jglob(τ) = Id + Jequil + τ Jtransp + τJbdry + τ Jkinet

where Jtransp contains the transport terms Lh, where Jbdry contains the terms
containing LAI

h , where Jkinet contains terms from kinetic reactions. The τ -
independent part, i.e., the system matrix in the limit case τ = 0, (coming
from the accumulation term and the equilibrium reactions) has the structure

Jglob(0) = Id + Jequil (27)
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where Jequil is a matrix which has a complete system of eigenvectors (i.e.,
can be diagonalized) with only nonnegative eigenvalues. As a consequence,
Jglob(0) has a complete system of eigenvectors with strictly positive eigen-
values, i.e., is regular. With a continuity argument it follows that Jglob(τ) is
invertible for sufficiently small τ > 0.

The proof of this property is more demanding than for the local matrix
in Sec. 4.3 and is postponed in the Appendix A. Let us remark that this
theoretical result is a promising, but not yet satisfactory result and will
require further investigations. From a practical point of view not only the
existence of a positive τ , but also some concrete values for a τ for which the
Jacobian is regular is desirable. Note that Jtransp contains terms of order
τ/h2 due to the discretization of a diffusion/dispersion term, so the given
argument that the τ -depending terms become small works for τ = o(h2),
while in practical computations with global implicit methods usually larger
time steps are used.

4.5. A variant: Elimination on the nonlinear level

In Sec. 4.2, 4.3 local equations were eliminated from the linearized system
of equations. A variant of this idea is to reduce the size of the nonlinear
system. The motivation for this variant is that most of the nonlinearities
are moved from global to local problems at each mesh point; see end of this
section.

The nonlinear discrete system (17) reads, after choosing ϕ = ϕMIN and
after the splitting of the degrees of freedom of Sec. 4.2 is applied,

G1 := ξkin +τ Lhξkin −τf1 − ξold
kin = 0

G2 := ξsorp−ξ̄sorp +τ Lhξsorp −τf2 − ξold
sorp + ξ̄old

sorp= 0

G3A := ξAmin−ξ̄Amin +τLAA
h ξAmin + LAI

h ξImin−τfA
3 − ξold

min + ξ̄old
min= 0

G3I := ξImin−ξ̄Imin +τLIA
h ξAmin + LII

h ξImin −τfI
3 − ξold

min + ξ̄old
min = 0

G4 := ξ̄kin −τf4 − ξ̄old
kin = 0

G5 := Qsorp(ξmob, ξsorp, ξmin, ξkin, ξ̄sorp, ξ̄kin) = 0

G6A := ξ̄Amin = 0
G6I := −EI(ξmob, ξsorp, ξmin, ξkin)) = 0

G7 := Qmob(ξmob, ξsorp, ξmin, ξkin) = 0

(28)

The (decoupled) equations for η, η̄ were omitted again as well as any de-
pendence of functions on these variables. the fi are functions of ξmob, ξsorp,
ξmin, ξkin, ξ̄sorp, ξ̄kin (arguments are omitted in (28)). The decomposition of
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the degrees of freedom ξmin, ξ̄min and the discrete equations G3, G6 has been
performed based on the evaluation of the variables of the current Newton
iteration; a subscript indicating the Newton iterate is suppressed. As in
Sec. 4.2, the equation G6A allows the elimination of the unknown ξ̄Amin from
the system, and the equation G3I can be used for an a posteriori computa-
tion of ξ̄Imin, since this unknown does not occur in any of the other equations.
Hence, we obtain the nonlinear system

(i) ξkin +τ Lhξkin −τf1 − ξold
kin = 0

(ii) ξsorp−ξ̄sorp+τ Lhξsorp −τf2 − ξold
sorp+ξ̄old

sorp = 0

(iii) ξAmin +τLAA
h ξAmin+τLAI

h ξImin−τfA
3 − ξold

min
A
+ξ̄oldA

min = 0

(iv) ξ̄kin −τf4 − ξ̄old
kin = 0

(v) Qmob(ξmob, ξsorp, ξmin, ξkin) = 0

(vi) Qsorp(ξmob, ξsorp, ξmin, ξkin, ξ̄sorp, ξ̄kin) = 0

(vii) −EI(ξmob, ξsorp, ξmin, ξkin) = 0

(29)

with the decoupled equations

ξ̄Imin = ξmin + τLI
hξmin − τf3I − ξold,I

min + ξ̄old,I
min ,

ξ̄Amin = 0.

The ODE (iv) and the algebraic equations (v)-(vii) are local equations. As
in [18], a reduction of the problem size can be achieved by solving the local
equation with respect to local unknowns ξloc = (ξmob, ξ

I
min, ξ̄sorp, ξ̄kin) and by

eliminating these unknowns from the remaining equations. The algorithmic
treatment leads to a local Newton iteration for the local unknowns nested in
the global Newton iteration for the global unknowns ξglob = (ξkin, ξsorp, ξ

A
min),

since the solution of the local equations with respect to the local variables,
for a given set of global variables, cannot be given explicitely. The possibility
to solve the local equations w.r.t. to ξloc, or more precisely, the existence of
a solving function, is guaranteed by the implicit function theorem, provided
that the Jacobian of the local equations w.r.t. ξloc is invertible. Note that the
structure of this matrix is exactly the same as in (26). Hence, the proof in
Sec. 4.3 also guarantees the existence of the solving function. Note that also
the structure of the global Jacobian is exactly the same as the one considered
in Sec. 4.4 and in the appendix; all results apply also in the case of elimination
on the nonlinear level.

The motivation for the substitution on the lonlinear level is that most
of the nonlinearities are now handled in local subproblems. On the local
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level, nonlinearities are more efficient to be solved than on the global, since
the computations at the mesh points are independent of each other. So for
simulations where the reactions are concentrated to certain reaction fronts
there are usually many mesh points where not much computation is required,
while at other mesh points several iterations are required; on a global level
this situation would require many solves over the whole domain. However,
from the theoretical point of view, some aspects of the variant of Sec. 4.4
might be more difficult to investigate, since the nonlinear system (29) (even
its size) for which the Newton step is performed, varies from Newton step to
Newton step.

The remaining global nonlinear discrete problem reads

ξkin +τ Lhξkin −τf1(ξglob, ξloc(ξglob))− ξold
kin = 0

ξsorp−ξ̄sorp(ξglob)+τ Lhξsorp−τf2(ξglob, ξloc(ξglob))− ξold
sorp+ξ̄old

sorp = 0

ξAmin + τLAA
h ξAmin− τfA

3 (ξglob, ξloc(ξglob))− ξold
min

A
+ξ̄oldA

min +τLAI
h ξImin(ξglob)= 0

5. A numerical application

5.1. The problem setting

In order to demonstrate that the proposed algorithms works in practice
we have chosen a reactive transport problem with several minerals, displaying
precipitation-dissolution fronts and changes of topology of the subdomains
of total dissolution (i.e., of the sets Ai).

We use the following generic simplified set of chemical reactions that
contains a principal mechanism which may take place in subsurface CO2

storage sites:

CO2
(aq) + H2O

R1←→ HCO−
3 + H+

Calcite + H+ R2←→ Ca2+ + HCO−
3

MS + 3 H+ R3←→ Me3+ + SiO2
(aq)

MC + 2 H+ R4←→ Me3+ + HCO−
3

Z+ + H+ R5←→ Z0 + Ca2+

Z− + H2O
R6←→ Z0 + Ion2− + H+

(30)

It consists of three minerals (calcite and MC are carbonates, MS is a silicate),
three surface species Z0, Z+, Z−, seven aqueous reacting species plus H2O and
one conservative tracer. We assume that R1 to R4 are at local equilibrium
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and that the sorption reactions R5, R6 are kinetic. R2, R3, R4 are mineral
precipitation-dissulution reactions which are expressed by complementarity
conditions. All six reaction are assumed to follow the law of mass action.
We assume that the CO2 is dissolved in the ground water and that there
is no gas phase present. The first two reactions allow a transition of the
carbon into HCO−

3 (mobile) and calcite (mineral). These reactions affect
(and are affected by) the pH, i.e., the concentration of H+. The silicate MS,
present in the initial state, dissolves at high H+-concentrations. Thereby, it
releases metal ions Me3+. These ions can initiate the precipitation of the
carbonate MC, storing the carbon. In order to demonstrate the capability
of combining different types of reactions, we assume the presence of sorpion
places Z0, Z+, Z− concentrated in one layer of the computational domain.

The problem, including the concentrations and the reaction constants
chosen for this simulation, is fully generic. The most interesting point in this
model is that, due to the way the Me3+ ions are incorporated, the dissolution
of one mineral can cause an immediate precipitation of another mineral (i.e.,
the dissolution front of one mineral coincides with the precipitation front of
another mineral).

The parameters are given in dimensionless form. The computational do-
main is Ω = (0, 10)× (0, 6), the length of the time interval is T = 400,
the transport operator is Lici = −∇ · (D∇ci − qci), the Darcy velocity is
q=(0.015, 0)T , the water content θ=0.3, (i.e., pore velocity |q|/θ=0.05), the
dispersion tensor is according to Bear-Scheidegger D = βt |q| Id+ βl−βt

|q|
qqT ,

with longitudinal/transversal dispersion length (βl, βt) = (0.3, 0.03). The
equilibrium constant of the first reaction is K1 = 0.1, where the activity of
H2O is already incorporated; i.e., cH+cHCO−

3
/cCO2

=0.1. The solubility prod-
ucts of the three mineral reactions are K2 = 100, K3 = 10, K4 = 1.25; i.e.,
cCa2+cHCO−

3
/cH+ =100 (if cCalcite >0), etc.; the forward and the backward rate

coefficient of the two kinetic reactions are equal to 0.003333.
The initial values and the Dirichlet boundary values at the inflow bound-

ary are given in Table B.4. The minerals MS and calcite are present in certain
layers D2 and D3-D5 (see Fig. B.4), and the sorption places are concentrated
in the layer D4. In the part B1 of the left boundary, the CO2 enriched water
enters, in the part B2 of the boundary, the boundary values equal the initial
values. At the rest of the boundary, homogeneous Neumann boundary con-
ditions are applied. All initial and boundary values are in compliance with
the equilibrium conditions.
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CO2: Ion2−:

H+: Z+:

HCO−

3 : Z0:

Me3+: Z−:

SiO2: Mineral MS:

Ca2+: Calcite:

Tracer: Mineral MC:

Figure 1: Time t = 100. (The graphics are compressed by a factor of ≈ 2 in vertical
direction.) 26



CO2: Ion2−:

H+: Z+:

HCO−

3 : Z0:

Me3+: Z−:

SiO2: Mineral MS:

Ca2+: Calcite:

Tracer: Mineral MC:

Figure 2: Time t = 200.
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CO2: Ion2−:

H+: Z+:

HCO−

3 : Z0:

Me3+: Z−:

SiO2: Mineral MS:

Ca2+: Calcite:

Tracer: Mineral MC:

Figure 3: Time t = 300.
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The stoichiometric matrix (8) for the system (30) is given in Appendix
B.

5.2. Numerical results and discussion

We apply the reduction method of Sec. 4.5, i.e., the local equations are
eliminated on the nonlinear level. Note that the versions without elimination
and with elimination on the linear level (Sec. 4.3) are applied in [4]. We
obtain I − J∗

1 = 8− 6 = 2 decoupled linear scalar PDEs for the ηi, Ī − J∗
2 =

6−5 = 1 constant η̄i, and a remaining nonlinear system consisting of Jkin = 2
discretized PDEs for the ξkin,i and Jmin=3 PDEs for ξAmin,i, each living on the
active domain of the corresponding mineral ξ̄min,i; the local problems have a
size between Jmob+Jsorp+J2′

kin = 1+0+2 = 3 and Jmob +Jsorp+Jmin+J2′

kin =
1 + 0 + 3 + 2 = 6, depending on the number of minerals present.

Figs. 1-3 show the computational results for time step size τ = 0.1, corre-
sponding to 4000 time steps with the implicit Euler method, and a P1 finite
element discretization with 48,000 triangles, corresponding to about 24,321
mesh points and a mesh size of about h = 0.05, i.e., about 340,000 degrees
of freedom in terms of the concentrations ci, c̄i on the mesh points per time
step. The code was implemented by J. Hoffmann using the software platform
M++ (Meshes, multigrid and more). The CO2 entering the domain from the
left affects the pH, which leads to a dissolution of calcite and a release of
Ca2+ and HCO−

3 (Fig. 1). The increasing HCO−
3 concentration triggers the

dissolution of MS and the precipitation of MC (Figs. 1-3). In the layer with
the sorption places, slowly some Z− turns into Z0 and Z0 into Z+, releasing
small amounts of Ion2− and H+.

The figures show that the propagation of the fronts, in particular of the
precipitation-dissolution front between MS and MC, is reproduced well by the
complementarity based Semismooth Newton code. Also the discontinuities
of the mineral concentrations are handled in a stable and robust way.

We use a stopping criterion with ǫnonlin = 10−8 for the L2-norm of the
residual for the nonlinear problem and ǫlin = 10−10 for the iterative linear
solver GMRES(100) with Jacobi preconditioner, and ǫloc = 10−12 for the local
Newton iterations. Though rather severe stopping criteria are applied, only
a moderate number of Newton steps for the global problem of 3.61 per time
step (average over the time steps) are required (Table 3, row 1). The number
of nested local Newton steps is given per mesh point per global Newton step.
This number, 0.77, is extraordinary small, since in each time step there are
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Table 3: Performance data.
triangles time step glob. Newton steps loc. Newton steps cpu time (min)
48,000 0.1 3.61 0.77 768
12,000 0.1 2.99 0.87 128
12,000 0.2 3.36 0.88 102
12,000 0.4 4.05 0.84 45
4,196 0.4 3.60 0.93 13.1
1,024 0.4 3.07 1.03 2.75

parts of the computational domain where the system is already in equilib-
rium, at least after one or two global Newton steps have been performed.
The whole simulation required less than 13 hours on an average notebook
computer. In order to give an impression of the potential dependence of the
number of Newton steps and the cpu time on the discretization, we give some
results for different discretization parameters in the table. For a decreasing
time step, the number of global Newton steps decreases. This is caused by
the fact that the initial value for the Newton iteration, i.e., the value of the
previous time step, is of course closer to the solution then. Note that, since
there are equilibrium reactions, the principal part of the time step solution
operator does not approach the identity operator (cf. (27)), as it would be
the case for a pure kinetic problem, so the impact of the nonlinearity is not
significantly decreasing for τ → 0. Concerning a finer spatial mesh, we see a
rather moderate increase of the number of Newton steps when τ is fixed. To
answer the question thoroughly whether the number of Newton steps can be
bounded independendly of h→ 0, further investigations, either by extended
numerical tests or by theoretical investigations such as in [13], would be re-
quired. The average number of local iteration steps per global iteration step
is reduced by refining the mesh. This may be explained by the fact that the
fraction of grid points close to reaction interfaces becomes smaller then.

The question of global convergence is not addressed in this paper. How-
ever, it is well known that even for (local) speciation problems without any
minerals involved, the convergence of a method when no good starting point
is known (which is usually the case when large time steps are used and/or
concentrations vary over many magnitudes) is delicate; see, e.g., [7]. Pop-
ular strategies to improve robustness are line search or chemically allowed
intervals. For the local Newton iteration the Armijo line search rule was im-
plemented, and for the global Newton iteration componentwise cut-offs are
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used to avoid the quitting of the positive range for non-mineral concentra-
tions. Beyond that, globalization strategies specially adapted to semismooth
methods and their theoretical investigation can be found in [11, 15].

Finally, let us emphasize here that the proposed method does not involve
any slow fixed-point type iterations (which are typical for iterative splitting
methods). Direct efficiency comparisons of the reformulation method with
other numerical geoscientific codes are given in [6] for the MoMaS benchmark
problem on reactive transport [3, 5].

Appendix A. Proof of the regularity results of Sec. 4.4

Theorem. Let the current Newton iterate of the global problem (25) be
positive (’physical’) in the sense that the corresponding value in terms of c,

c̄sorp, c̄min lies in R
I+Īsorp
+ ×R

Īmin at each of the m∈N mesh points.
(a) Then the Jacobian of the global problem, after the local equations have
been eliminated, (25), has the structure

Jglob = Id + Jequil + τ Jtransp + τJbdry + τ Jkinet

∈ R
(mJ1′

kin
+mJsorp+|A|)×(mJ1′

kin
+mJsorp+|A|)

where1 the τ -independent part Jequil has the structure

Jequil =





0 0 0
U1 U2 U3

0 0 0



 ,

and where

Jtransp =





Lh 0 0
0 Lh 0

0 0 LAA
h



 , Jbdry =





0 0 0
0 0 0

LAI
h V1 LAI

h V2 LAI
h V3





with the blocks

U1 = H0 S1
sorp

T
Λ1/2P(Λ1/2(S1

minI
|S1

mob
))⊥Λ1/2S1′

kin ∈ R
(mJsorp)×(mJ1′

kin
),

U2 = H0 S1
sorp

T
Λ1/2P(Λ1/2(S1

minI
|S1

mob
))⊥Λ1/2S1

sorp ∈ R
(mJsorp)×(mJsorp),

U3 = H0 S1
sorp

T
Λ1/2P(Λ1/2(S1

minI
|S1

mob
))⊥Λ1/2S1

minA ∈ R
(mJsorp)×|A|,

1Jkinet may depend on τ due to the substitution of the local solving function, but only
as O(1) for τ → 0.

31



where PX , for a matrix X with maximal column rank, is the orthogonal pro-
jection onto the space spanned by the columns of X; PX = X(XT X)−1XT ,
PX⊥ = Id− PX . H0 is the positive definite matrix

H0 = (S2
sorp

T
Λ̃S2

sorp)
−1,

and Λ, Λ̃ are defined as in the proof of the Theorem in Sec. 4.3.
(b) Matrix U2 has a full system of eigenvectors with eigenvalues all being
strictly positive, and the Jacobian in the limit case τ = 0, (27), has a complete
system of eigenvectors with eigenvalues all greater than or equal to one, and
is nonsingular, hence. Matrix Id + Jequil, i.e., the matrix Jglob in the limit
case τ = 0, is therefore invertible.
(c) Matrices V1, V2, V3 can be expressed as

(V1|V2|V3) = H−1
1 H2 (S1

kin|S1
sorp|S1

minA)

with

H1 := S1
minI

T
Λ1/2P(Λ1/2S1

mob
)⊤Λ1/2S1

minI

H2 := [S1
minI

T − S1
minI

T
ΛS1

mob(S
1
mob

T
ΛS1

mob)
−1S1

mob
T
] Λ

= S1
minI

T
Λ1/2 [Id− Λ1/2S1

mob(S
1
mob

T
ΛS1

mob)
−1S1

mob
T
Λ1/2] Λ1/2

= S1
minI

T
Λ1/2P(Λ1/2S1

mob
)⊤Λ1/2.

Proof.
Part (i). Computation of U1, U2, U3:
For later use we state that for the inversion of a block matrix with square
regular blocks M11, M22 the following formulas hold:

(

M11 M12

0 M22

)−1

=

(

M−1
11 −M−1

11 M12M
−1
22

0 M−1
22

)

(A.1)

(

M11 0
M21 M22

)−1

=

(

M−1
11 0

−M−1
22 M21M

−1
11 M−1

22

)

(A.2)

The system (22)/(23) (see Table 2) can be written as




















Id+τLh 0 0
0 Id+τLh 0

0 0 IdA+τLAA
h

0 0 0 0
0 −Id 0 0
0 0 0 0

C D










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+τ











0

0 0 0 0
0 0 0 0

0 0 LAI
h 0

0 0











+ kinetic terms































∆ξkin

∆ξsorp

∆ξAmin

∆ξ̄kin

∆ξ̄sorp

∆ξImin

∆ξmob





















= r.h.s.

where the kinetic terms (containing derivatives of f1, ..., f4) are O(τ). We
rewrite this system as

(Id +τLh) ∆ξglob −





0
∆ξ̄sorp

0



 + τ





0
0

LAI
h ∆ξImin



+ kin.terms = r.h.s.(A.3)

C ∆ξglob + D ∆ξloc + kin.terms = r.h.s.,(A.4)

where ∆ξglob = (∆ξkin, ∆ξsorp, ∆ξAmin), ∆ξloc = (∆ξ̄kin, ∆ξ̄sorp, ∆ξImin, ∆ξmob).
Looking up C and D in Table 2 and using (11) and (16) we find

C =

(

0

(S1
sorp|S1

minI |S1
mob)

T Λ(S1′

kin|S1
sorp|S1

minA)

)

,

D =







Id 0 0 0

S2
sorp

T
Λ̃S2′

kin S2
sorp

T
Λ̃S2

sorp S1
sorp

T
ΛS1

min,I S1
sorp

T
ΛS1

mob

0 (S1
minI |S1

mob)
T Λ (S1

minI |S1
mob)






.

(A.5)
In order to obtain the Schur complement system (25), we have to solve (A.4)
for ∆ξloc and substitute its components ∆ξ̄sorp, ∆ξImin in (A.3). We get

∆ξloc = −D−1C∆ξglob + O(τ) + r.h.s.

= −
(

D−1
11 −D−1

11 D12D
−1
22

0 D−1
22

)

C ∆ξglob + term (A.6)

where we have applied the inversion formula (A.1) to D, and where the ’term’
contains the O(τ) terms and the terms independent of the unknowns. From
the vector equation (A.6) we drop the lower components and get

(

∆ξ̄kin

∆ξ̄sorp

)

= D−1
11 (−Id|D12D

−1
22 ) C ∆ξglob + term. (A.7)
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We obtain the inverse of D11, the upper left block in (A.5), by formula (A.2):

D−1
11 =

(

Id 0

S2
sorp

T
Λ̃S2′

kin S2
sorp

T
Λ̃S2

sorp

)−1

=

(

Id 0

−(S2
sorp

T
Λ̃S2

sorp)
−1 S2

sorp
T
Λ̃S2′

kin (S2
sorp

T
Λ̃S2

sorp)
−1

)

(A.8)
We substitute D−1

11 in (A.7) and drop the upper part of the vector equation.
We get

∆ξ̄sorp = (S2
sorp

T
Λ̃S2

sorp)
−1 (−S2

sorp
T
Λ̃S2′

kin|Id) (−Id|D12D
−1
22 ) C ∆ξglob + term

where by exploiting first the structure of D12 and then of C (cf. (A.5))

(−S2
sorp

T
Λ̃S2′

kin|Id) (−Id|D12D
−1
22 ) C

= (−S2
sorp

T
Λ̃S2′

kin|Id)

(

−Id 0 0 0

0 −Id S1
sorp

T
ΛS1

min,ID
−1
22 S1

sorp
T
ΛS1

mobD
−1
22

)

C

= ( S2
sorp

T
Λ̃S2′

kin| − Id|S1
sorp

T
ΛS1

min,ID
−1
22 |S1

sorp
T
ΛS1

mobD
−1
22 ) C

= (−Id |S1
sorp

T
ΛS1

min,ID
−1
22 |S1

sorp
T
ΛS1

mobD
−1
22 ) (S1

sorp|S1
minI|S1

mob)
T Λ (S1′

kin|S1
sorp|S1

minA)

=
[

−S1
sorp

T
+ S1

sorp
T
Λ(S1

min,I|S1
mob) D−1

22 (S1
min,I|S1

mob)
T
]

Λ (S1′

kin|S1
sorp|S1

minA)

= −S1
sorp

T
Λ1/2

[

Id− Λ1/2(S1
minI |S1

mob)D
−1
22 (S1

minI|S1
mob)

T Λ1/2
]

Λ1/2 (S1′

kin|S1
sorp|S1

minA)

= −S1
sorp

T
Λ1/2 P(Λ1/2(S1

minI
|S1

mob
))⊥Λ1/2 (S1′

kin|S1
sorp|S1

minA)

holds. The desired structure of the Ui follows by substituting ∆ξ̄sorp in (A.3).
Part (ii). We prove that U2 is a product of two symmetric positive definite
matrices:
Matrix S2

sorp
T
Λ̃S2

sorp is symmetric positiv definite, since the columns of S2
sorp

are linearly independend and Λ̃ is a diagonal matrix with positive entries.
Hence, also its inverse, H0, is symmetric positive definite. The other factor
of U2, W := S1

sorp
T

Λ1/2P(Λ1/2(S1
minI

|S1
mob

))⊥Λ1/2S1
sorp, is obviously symmetric

positive semidefinite, since any orthogonal projection is semidefinite.
By exploiting the linear independence of the columns of (S1

minI |S1
mob|S1

sorp),
the existence of a zero eigenvalue of W can be excluded: Let x be a member of
the nullspace of W . By introducing y = Λ1/2S1

sorpx we obtain 0 = 〈Wx, x〉 =
〈P(Λ1/2(S1

minI
|S1

mob
))⊥y, y〉 = 〈P(Λ1/2(S1

minI
|S1

mob
))⊥y, P(Λ1/2(S1

minI
|S1

mob
))⊥y〉 where the

property P = P 2 = P T P of orthogonal projections was used in the last
step. So the norm of P(Λ1/2(S1

minI
|S1

mob
))⊥y must be zero, i.e., y lies in the
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nullspace of P(Λ1/2(S1
minI

|S1
mob

))⊥ . Therefore y is a member of the range of ma-

trix Λ1/2(S1
minI |S1

mob). On the other hand, by its definition, y lies in the range
of Λ1/2S1

sorp. Since the columns of (S1
minI |S1

mob|S1
sorp) are assumed to be lin-

early independent, we obtain y = 0. Therefore S1
sorpx = 0, which results in

x = 0 since the columns of S1
sorp are linearely independent. As a result, W

must be strictly positive definite.
Part (iii). From (ii) we know that matrix H

1/2
0 WH

1/2
0 is symmetric posi-

tive definite, and U2 = H0W is similar to this matrix. Therefore U2 has a
complete basis of eigenvectors with eigenvalues strictly positive. Hence Jequil

has a complete basis of eigenvectors (consisting of the eigenvector basis of
U2, extended by zeros, and a basis of the nullspace of Jequil) with eigenvalues
all being nonnegative. Therefore all eigenvalues of Id + Jequil are estimated
from below by one.
Part (iv). The formulas for the matrices V1, V2, V3 can be derived in a
similar way as the Ui by dropping the upper components instead of the lower
ones in (A.6) to obtain a formula for ∆ξImin which is then substituted in (A.3).

Appendix B. Stoichiometric matrix, initial and boundary values of
the numerical simulation

The matrix (8) for the problem (30) reads (the sorption blocks are lacking):

S =







S1
mob S1

sorp S1
min S1

kin

0 S2
sorp 0 S2,1

kin

0 0 −Id 0






=



















































−1 0 0 0 0 0
1 −3 −1 −2 1 −1
1 0 1 1 0 0
0 1 0 1 0 0
0 1 0 0 0 0
0 0 1 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 −1

0 0 0 0 1 0
0 0 0 0 −1 −1
0 0 0 0 0 1

0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0



















































The dimensions are I = 8, Ī = 6, J∗
1 = rank(S1) = 6 (hence S∗

1 = S1), J∗
2 =

rank(S2)=5, Jmob =1, Jsorp =0, Jmin =3, Jkin =2, Jeq =Jmob+Jsorp+Jmin =4,
J1′

kin =J∗
1 − Jeq =2, J2′

kin =J∗
2−Jsorp−Jmin =2.
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Table B.4: Initial values in the layers D1, ..., D5 (see Fig. B.4) and Dirichlet boundary
values at the inflow boundary B1, B2.

Species initial value boundary value
all zones D1, ..., D5: bdry B1: bdry B2:

c1 CO2 1 3.7870 1
c2 H+ 0.1 0.3124 0.1
c3 HCO−

3 1 1.2120 1
c4 Me3+ 0.01 0.01
c5 SiO2 1 1
c6 Ca2+ 10 10
c7 tracer 1 3.787 1
c8 Ion2− 1 1

D1, D2, D3: D4: D5:

c̄1 Z+ 0.01 0.1 0.01
c̄2 Z0 0.1 1 0.1
c̄3 Z− 0.01 0.1 0.01

D1: D2: D3, D4, D5:

c̄4 MS 0 0 0.2
c̄5 calcite 0 0.2 0
c̄6 MC 0 0 0

0 1 6 8 9 10

0

1.5

4.5

6

flow
D1 D2 D3 D4 D5B1

B2

B2

Figure B.4: Zoning of the computational domain.
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[17] S. Kräutle, P. Knabner, A new numerical reduction scheme for fully cou-
pled multicomponent transport-reaction problems in porous media, Water
Resour. Res. 41 (2005), W09414, doi:10.1029/2004WR003624.
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