• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Department of Mathematics
  • FAUTo the central FAU website
  • de
  • UnivIS
  • StudOn
  • meincampus
  • CRIS
  • emergency help

Department of Mathematics

Navigation Navigation close
  • Department
    • Chairs and Professorships
    • Organisation
    • Development Association
    • System Administration
    • Contact and Directions
    • Actual
    Portal Department of Mathematics
  • Research
    • Research Projects
    • Publications
    • Preprint Series Applied Mathematics
    Portal Research
  • Study
    • Advice and Services
    • Prospective students
    • Current students
    • International
    Portal Study
  • Events
  1. Home
  2. EDOM
  3. Projects
  4. Energy
  5. Smart Grid Optimization

Smart Grid Optimization

In page navigation: EDOM
  • Overview
  • Team
    • Kevin-Martin Aigner
    • Edeltraud Balser
    • Andreas Bärmann
    • Kristin Braun
    • Jana Dienstbier
    • Patrick Gemander
    • Yiannis Giannakopoulos
    • Lukas Hager
    • Katrin Halbig
    • Beate Kirchner
    • Martina Kuchlbauer
    • Frauke Liers
    • Alexander Martin
    • Alexander Müller
    • Timm Oertel
    • Galina Orlinskaya
    • Florian Rösel
    • Hanno Schülldorf
    • Jonasz Staszek
    • Regine Stirnweiß
    • Sebastian Tschuppik
    • Friedrich Wagner
    • Dieter Weninger
    • Jorge Weston
  • Projects
    • Analytics
      • ADA Lovelace Center
      • Optimal Control of Electrical Distribution Networks with Uncertain Solar Feed-In
      • Optimization of medical care in rural environments
        • HealthFaCT Contents
      • EWave – Water Supply Energy Management System
      • LeOpIn
      • Robust Schedules for Air Traffic Management
      • RobustATM: Robust Optimization of ATM Planning Processes by Modelling of Uncertainty Impact
    • Energy
      • Robustification of Physical Parameters in Gas Networks
      • Adaptive MIP-Relaxations for MINLPs
      • Analysis of the German Electricity Market
      • MIP-based Alternating Direction Methods for High-Detail Stationary Gas Transport MINLPs
      • Decomposition methods for mixed-integer optimal control
      • Optimal allocation of gas network capacities
      • Energy System Analysis
      • Robust Power Load Balancing in Railway Networks
      • Smart Grid Optimization
    • Engineering and Physics
    • Logistics and Production
      • Driver Assistance Systems in Railway Traffic
      • Energy-Efficient Timetable Optimization
      • Joint Locomotive Scheduling and Driver Rostering in Rail Freight Traffic
      • Holistic optimization of trajectrories and runway scheduling
      • Optimized Production in the Tea Industry
      • OPs-TIMAL – Optimized processes for trajectory, maintenance and management of ressources and operations in aviation
      • Process optimization for hospital logistics
      • Expansion of the German Rail Freight Network
    • Mixed Integer Programming
      • Solver for Relaxations in General Mixed Integer Nonlinear Programming (SCIP/NL)
      • Development of new Linear and MIP Techniques for Supply Chain Management
      • Lamatto++
    • TRR 154 (Transregio)
  • Publications
  • PhD Theses
  • Teaching
  • Bachelor and Master Theses
  • Public Relations
  • News and Events
    • G’scheid schlau!
    • Friday@Noon
  • How to find us

Smart Grid Optimization

Smart Grid Optimization

Description

Decentralized power generation requires planning and scheduling for residential microgrids connected to the main public supply grid. We develop highly detailed models for smart grids including a photovoltaic module, a wind energy generator, a combined heat and power unit together with a battery and a heat storage unit. Our goal is to optimize day-ahead operation of this smart grid considering weather forecasts with regard to solar and wind power as well as to the electrical and heat power demand. The objective is minimization of costs to cover energy demand. In case surplus electrical energy is produced it can be sold to the public network operator, and then we aim to maximize profit of the microgrid owner. Possible further questions concern the planning of layouts of such grids.

Mathematically this problem results in a MIP problem, where the discrete aspects deal with switching processes of the combined heat and power unit. The whole problem includes uncertainties which can be handled with techniques of robust optimization.

This project is part of an EnCN Simulation Project at Energie Campus Nürnberg.

Contact

For further details about this project please contact Galina Orlinskaya (galina.orlinskaya[at]fau.de).

Friedrich-Alexander-Universität
Department of Mathematics

Cauerstraße 11
91058 Erlangen
  • Contact and Directions
  • Internal Pages
  • Staff Members A-Z
  • Imprint
  • Privacy
  • EN/DE
Up