• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Department of Mathematics
  • FAUTo the central FAU website
  • de
  • UnivIS
  • StudOn
  • meincampus
  • CRIS
  • emergency help

Department of Mathematics

Navigation Navigation close
  • Department
    • Chairs and Professorships
    • Boards and Commissions
    • Organisation
    • Development Association
    • System Administration
    • Contact and Directions
    • Actual
    Portal Department of Mathematics
  • Research
    • Research Projects
    • Publications
    • Preprint Series Applied Mathematics
    Portal Research
  • Study
  • Events
  1. Home
  2. EDOM
  3. Projects
  4. Energy
  5. MIP-based Alternating Direction Methods for High-Detail Stationary Gas Transport MINLPs

MIP-based Alternating Direction Methods for High-Detail Stationary Gas Transport MINLPs

In page navigation: EDOM
  • Overview
  • Team
    • Edeltraud Balser
    • Beate Kirchner
    • Frauke Liers
    • Timm Oertel
    • Regine Stirnweiß
    • Dieter Weninger
  • Projects
    • Analytics
      • ADA Lovelace Center
      • Optimal Control of Electrical Distribution Networks with Uncertain Solar Feed-In
      • Optimization of medical care in rural environments
        • HealthFaCT Contents
      • EWave – Water Supply Energy Management System
      • LeOpIn
      • Robust Schedules for Air Traffic Management
      • RobustATM: Robust Optimization of ATM Planning Processes by Modelling of Uncertainty Impact
    • Energy
      • Robustification of Physical Parameters in Gas Networks
      • Adaptive MIP-Relaxations for MINLPs
      • Analysis of the German Electricity Market
      • MIP-based Alternating Direction Methods for High-Detail Stationary Gas Transport MINLPs
      • Decomposition methods for mixed-integer optimal control
      • Optimal allocation of gas network capacities
      • Energy System Analysis
      • Robust Power Load Balancing in Railway Networks
      • Smart Grid Optimization
    • Engineering and Physics
    • Logistics and Production
      • Driver Assistance Systems in Railway Traffic
      • Energy-Efficient Timetable Optimization
      • Joint Locomotive Scheduling and Driver Rostering in Rail Freight Traffic
      • Holistic optimization of trajectrories and runway scheduling
      • Optimized Production in the Tea Industry
      • OPs-TIMAL – Optimized processes for trajectory, maintenance and management of ressources and operations in aviation
      • Process optimization for hospital logistics
      • Expansion of the German Rail Freight Network
    • Mixed Integer Programming
      • Solver for Relaxations in General Mixed Integer Nonlinear Programming (SCIP/NL)
      • Development of new Linear and MIP Techniques for Supply Chain Management
      • Lamatto++
    • TRR 154 (Transregio)
  • Publications
  • PhD Theses
  • Teaching
  • Bachelor and Master Theses
  • Public Relations
  • News and Events
    • G’scheid schlau!
    • Friday@Noon
  • How to find us

MIP-based Alternating Direction Methods for High-Detail Stationary Gas Transport MINLPs

MIP-based Alternating Direction Methods for High-Detail Stationary Gas Transport MINLPs

Description

The goal of this project is to develop problem-tailored alternating direction methods (ADMs) for highly detailed stationary gas transport models. The theoretical and practical achievements should be used to solve mixed-integer nonlinear models incorporating mixing models for specific gas quality parameters and, especially, highly detailed models of compressor stations (see, e.g., Schmidt et al. 2015).

In recent years, significant advances in the algorithmic optimization of mixed-integer nonlinear and non convex models of stationary gas transport have been made (see, e.g., Koch et al. 2015 or Pfetsch et al. 2015). These advances are mainly based on the decoupling of discrete and nonlinear aspects of the models.

The discrete aspects are typically addressed by using mixed-integer linear (MILP) approaches that are capable of handling switching decisions of the active network elements (like valves, control valves, and compressor stations) as well as of handling approximating formulations of nonlinear functions via piecewise linear modeling techniques. The advances of the last years in this area made it possible to solve MILP models of networks of national scale in a reasonable time limit (see, e.g., Geißler et al. 2013, Geißler et al. 2012, or Domschke et al 2010).

On the other hand, highly detailed nonlinear models (NLPs) have been developed for the description of gas flows in pipes and for the description of compressor stations including compressor drives. These models can also be solved efficiently.

The coupling of these two approaches has been mainly realized by a single-stage approach that does not incorporate a reasonable feedback loop between the MILP and NLP models. To be more specific, the MILP models yield discrete controls of the active network elements together with an approximation of the resulting physical gas flow. These outcomes are then fixed and serve as input for the highly detailed NLP models that are then able to validate the physical and technical feasibility of the given discrete controls. After a positive validation this yields a feasible solution of the underlying highly detailed mixed-integer nonlinear model. Unfortunately, there are only a few strategies of how to proceed if this is not the case.

The strategy of this project is the coupling of the MILP and NLP models by using ADMs. However, in order to use these kinds of methods it is necessary to reformulate the underlying MINLP model in an appropriate way.

People involved

Björn Geißler
Antonio Morsi
Lars Schewe
Martin Schmidt

Contact

For further details about this project please contact Lars Schewe (lars.schewe[at]math.uni-erlangen.de).

Supported by

Deutsche Forschungsgemeinschaft, Sonderforschungsbereich/Transregio 154

Publications

Solving power-constrained gas transportation problems using an MIP-based alternating direction method. Björn Geißler, Antonio Morsi, Lars Schewe, and Martin Schmidt. In Computers & Chemical Engineering, 2015, Vol. 82, pages 303-317. DOI: 10.1016/j.compchemeng.2015.07.005. Preprint (11/2014): Optimization Online.

Friedrich-Alexander-Universität
Department of Mathematics

Cauerstraße 11
91058 Erlangen
  • Contact and Directions
  • Internal Pages
  • Staff Members A-Z
  • Imprint
  • Privacy
  • EN/DE
  • RSS Feed
Up