• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Department of Mathematics
  • FAUTo the central FAU website
  • de
  • UnivIS
  • StudOn
  • meincampus
  • CRIS
  • emergency help

Department of Mathematics

Navigation Navigation close
  • Department
    • Chairs and Professorships
    • Organisation
    • Development Association
    • System Administration
    • Contact and Directions
    • Actual
    Portal Department of Mathematics
  • Research
    • Research Projects
    • Publications
    • Preprint Series Applied Mathematics
    Portal Research
  • Study
    • Advice and Services
    • Prospective students
    • Current students
    • International
    Portal Study
  • Events
  1. Home
  2. EDOM
  3. Projects
  4. Energy
  5. Analysis of the German Electricity Market

Analysis of the German Electricity Market

In page navigation: EDOM
  • Overview
  • Team
    • Kevin-Martin Aigner
    • Edeltraud Balser
    • Andreas Bärmann
    • Kristin Braun
    • Jana Dienstbier
    • Patrick Gemander
    • Yiannis Giannakopoulos
    • Lukas Hager
    • Katrin Halbig
    • Beate Kirchner
    • Martina Kuchlbauer
    • Frauke Liers
    • Alexander Martin
    • Alexander Müller
    • Timm Oertel
    • Galina Orlinskaya
    • Florian Rösel
    • Hanno Schülldorf
    • Jonasz Staszek
    • Regine Stirnweiß
    • Sebastian Tschuppik
    • Friedrich Wagner
    • Dieter Weninger
    • Jorge Weston
  • Projects
    • Analytics
      • ADA Lovelace Center
      • Optimal Control of Electrical Distribution Networks with Uncertain Solar Feed-In
      • Optimization of medical care in rural environments
        • HealthFaCT Contents
      • EWave – Water Supply Energy Management System
      • LeOpIn
      • Robust Schedules for Air Traffic Management
      • RobustATM: Robust Optimization of ATM Planning Processes by Modelling of Uncertainty Impact
    • Energy
      • Robustification of Physical Parameters in Gas Networks
      • Adaptive MIP-Relaxations for MINLPs
      • Analysis of the German Electricity Market
      • MIP-based Alternating Direction Methods for High-Detail Stationary Gas Transport MINLPs
      • Decomposition methods for mixed-integer optimal control
      • Optimal allocation of gas network capacities
      • Energy System Analysis
      • Robust Power Load Balancing in Railway Networks
      • Smart Grid Optimization
    • Engineering and Physics
    • Logistics and Production
      • Driver Assistance Systems in Railway Traffic
      • Energy-Efficient Timetable Optimization
      • Joint Locomotive Scheduling and Driver Rostering in Rail Freight Traffic
      • Holistic optimization of trajectrories and runway scheduling
      • Optimized Production in the Tea Industry
      • OPs-TIMAL – Optimized processes for trajectory, maintenance and management of ressources and operations in aviation
      • Process optimization for hospital logistics
      • Expansion of the German Rail Freight Network
    • Mixed Integer Programming
      • Solver for Relaxations in General Mixed Integer Nonlinear Programming (SCIP/NL)
      • Development of new Linear and MIP Techniques for Supply Chain Management
      • Lamatto++
    • TRR 154 (Transregio)
  • Publications
  • PhD Theses
  • Teaching
  • Bachelor and Master Theses
  • Public Relations
  • News and Events
    • G’scheid schlau!
    • Friday@Noon
  • How to find us

Analysis of the German Electricity Market

Analysis of the German Electricity Market

Description

The German energy turnaround results in many challenging mathematical and economical questions. The strong emphasis on renewable energy leads to high needs of investment in all areas of the energy system like investment in new network facilities or the storage of energy. All these areas are coupled by a energy market design that determines the way of how energy is traded between producers and consumers. The main question in this context is how the energy market should be designed to give the correct investment incentives that pave the way to a successful energy turnaround.
In order to model the market in an appropriate way, different agents like regulated transport system operators or profit maximizing private firms have to be described. This leads to multilevel optimization problems. In addition, all energy forms like electricity or gas have to be transported through corresponding networks leading to – on top of the multilevel model structure – (non)linear mixed-integer optimization problems.
In this interdisciplinary project we analyze the current energy market design of Germany, compare it to the designs of other countries and try to make proposals for improvement. To this end, we study relevant mathematical models of the system under consideration and develop theory and problem-specific algorithms for solving the multilevel mixed-integer (non)linear optimization problems.

People involved

Frauke Liers
Alexander Martin

Contact

For further details about this project please contact Martin Schmidt (mar.schmidt[at]fau.de).

Partners

This project is part of the Energie Campus Nürnberg. Collaborative researchers in this project are

Prof. Dr. Veronika Grimm (FAU, Chair of Economic Theory)
Prof. Dr. Gregor Zöttl (FAU, Chair of Regulation and Energy Markets)

Publications

Veronika Grimm, Alexander Martin, Martin Schmidt, Martin Weibelzahl, Gregor Zöttl: Transmission and Generation Investment in Electricity Markets: The Effects of Market Splitting and Network Fee Regimes. 2015. Preprint
Lars Schewe, Martin Schmidt: The Impact of Physics on Pricing in Energy Networks. 2015. Preprint
Veronika Grimm, Lars Schewe, Martin Schmidt, Gregor Zöttl: Peak-Load Pricing on a Network. 2015. Preprint

Veronika Grimm, Alexander Martin, Martin Weibelzahl, Gregor Zöttl: More Price Zones May Lead to Worse Locational Price Signals. 2015. In Preparation.

Friedrich-Alexander-Universität
Department of Mathematics

Cauerstraße 11
91058 Erlangen
  • Contact and Directions
  • Internal Pages
  • Staff Members A-Z
  • Imprint
  • Privacy
  • EN/DE
Up