• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Department of Mathematics
  • FAUTo the central FAU website
  • de
  • UnivIS
  • StudOn
  • meincampus
  • CRIS
  • emergency help

Department of Mathematics

Navigation Navigation close
  • Department
    • Chairs and Professorships
    • Organisation
    • Development Association
    • System Administration
    • Contact and Directions
    • Actual
    Portal Department of Mathematics
  • Research
    • Research Projects
    • Publications
    • Preprint Series Applied Mathematics
    Portal Research
  • Study
    • Advice and Services
    • Prospective students
    • Current students
    • International
    Portal Study
  • Events
  1. Home
  2. EDOM
  3. Projects
  4. Analytics
  5. RobustATM: Robust Optimization of ATM Planning Processes by Modelling of Uncertainty Impact

RobustATM: Robust Optimization of ATM Planning Processes by Modelling of Uncertainty Impact

In page navigation: EDOM
  • Overview
  • Team
    • Kevin-Martin Aigner
    • Edeltraud Balser
    • Andreas Bärmann
    • Kristin Braun
    • Jana Dienstbier
    • Patrick Gemander
    • Yiannis Giannakopoulos
    • Lukas Hager
    • Katrin Halbig
    • Beate Kirchner
    • Martina Kuchlbauer
    • Frauke Liers
    • Alexander Martin
    • Alexander Müller
    • Timm Oertel
    • Galina Orlinskaya
    • Florian Rösel
    • Hanno Schülldorf
    • Jonasz Staszek
    • Regine Stirnweiß
    • Sebastian Tschuppik
    • Friedrich Wagner
    • Dieter Weninger
    • Jorge Weston
  • Projects
    • Analytics
      • ADA Lovelace Center
      • Optimal Control of Electrical Distribution Networks with Uncertain Solar Feed-In
      • Optimization of medical care in rural environments
        • HealthFaCT Contents
      • EWave – Water Supply Energy Management System
      • LeOpIn
      • Robust Schedules for Air Traffic Management
      • RobustATM: Robust Optimization of ATM Planning Processes by Modelling of Uncertainty Impact
    • Energy
      • Robustification of Physical Parameters in Gas Networks
      • Adaptive MIP-Relaxations for MINLPs
      • Analysis of the German Electricity Market
      • MIP-based Alternating Direction Methods for High-Detail Stationary Gas Transport MINLPs
      • Decomposition methods for mixed-integer optimal control
      • Optimal allocation of gas network capacities
      • Energy System Analysis
      • Robust Power Load Balancing in Railway Networks
      • Smart Grid Optimization
    • Engineering and Physics
    • Logistics and Production
      • Driver Assistance Systems in Railway Traffic
      • Energy-Efficient Timetable Optimization
      • Joint Locomotive Scheduling and Driver Rostering in Rail Freight Traffic
      • Holistic optimization of trajectrories and runway scheduling
      • Optimized Production in the Tea Industry
      • OPs-TIMAL – Optimized processes for trajectory, maintenance and management of ressources and operations in aviation
      • Process optimization for hospital logistics
      • Expansion of the German Rail Freight Network
    • Mixed Integer Programming
      • Solver for Relaxations in General Mixed Integer Nonlinear Programming (SCIP/NL)
      • Development of new Linear and MIP Techniques for Supply Chain Management
      • Lamatto++
    • TRR 154 (Transregio)
  • Publications
  • PhD Theses
  • Teaching
  • Bachelor and Master Theses
  • Public Relations
  • News and Events
    • G’scheid schlau!
    • Friday@Noon
  • How to find us

RobustATM: Robust Optimization of ATM Planning Processes by Modelling of Uncertainty Impact

RobustATM: Robust Optimization of ATM Planning Processes by Modelling of Uncertainty Impact

Description:

Air Traffic Management (ATM) systems are driven by economic interests of the participating stakeholders and, therefore, are performance oriented. As possibilities of enlarging airport capacities are limited, one has to enhance the utilization of existing capacities to meet the continuous growth of traffic demand. The runway system is the main element that combines airside and groundside of the ATM System. Therefore, it is crucial for the performance of the whole ATM System that the traffic on a runway is planned efficiently. Such planning is one of the main challenges in ATM. Uncertainty, inaccuracy and non-determinism almost always lead to deviations from the actual plan or schedule. A typical strategy to deal with these changes is a regular re-computation or update of the schedule. These adjustments are performed in hindsight, i.e. after the actual change in the data occurred. The challenge is to incorporate uncertainty into the initial computation of the plans so that these plans are robust with respect to changes in the data, leading to a better utilization of resources, more stable plans and a more efficient support for ATM controllers and stakeholders. Incorporating uncertainty into the ATM planning procedures further makes the total ATM System more resilient, because the impact of disturbances and the propagation of this impact through the system is reduced.

In this research project, we investigate the problem of optimizing runway utilization focusing on the pre-tactical planning phase (i.e. we assume the actual planning time to be several hours, or at least 30 minutes, prior to actual arrival/departure times). We develop an appropriate mathematical optimization model for this particular planning phase and analyze the effect of disturbances on our solutions. Further, we incorporate uncertainties into the initial plan in order to retain its feasibility despite changes in the data. Therefore, we use techniques from Robust Optimization and Stochastic Optimization.

Partners/Sponsors:

DLR, German Aerospace Center, Institute of Flight Guidance in Braunschweig.
This project is a SESAR WP E project funded by EUROCONTROL.

Contact:

For further details about this project, please contact Manu Kapolke (manu.kapolke[at]fau.de).

Friedrich-Alexander-Universität
Department of Mathematics

Cauerstraße 11
91058 Erlangen
  • Contact and Directions
  • Internal Pages
  • Staff Members A-Z
  • Imprint
  • Privacy
  • EN/DE
Up