• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Department of Mathematics
  • FAUTo the central FAU website
  • de
  • UnivIS
  • StudOn
  • meincampus
  • CRIS
  • emergency help

Department of Mathematics

Navigation Navigation close
  • Department
    • Chairs and Professorships
    • Organisation
    • Development Association
    • System Administration
    • Contact and Directions
    • Actual
    Portal Department of Mathematics
  • Research
    • Research Projects
    • Publications
    • Preprint Series Applied Mathematics
    Portal Research
  • Study
    • Advice and Services
    • Prospective students
    • Current students
    • International
    Portal Study
  • Events
  1. Home
  2. Applied Mathematics 1
  3. Staff Members A-Z
  4. Dr. Daniel Tenbrinck

Dr. Daniel Tenbrinck

In page navigation: Applied Mathematics 1
  • Staff Members A-Z
    • Dr. Rufat Badal
    • Apratim Bhattacharya
    • Astrid Bigott
    • Prof. Dr. Martin Burger
    • Sebastian Czop
    • Prof. Dr. Günther Grün
    • Lea Föcke
    • Prof. Dr. Manuel Friedrich
    • Samira Kabri
    • Lorenz Klein
    • Jonas Knoch
    • Prof. Dr. Serge Kräutle
      • CV
      • Research
    • Prof. Dr. Wilhelm Merz
      • Research
    • Dr. Stefan Metzger
    • PD Dr. Maria Neuss-Radu
      • Research
      • Anne Petzold
    • Dr. Alexander Prechtel
      • Research
      • Teaching
    • Dr. Nadja Ray
    • Doris Schneider
      • Conference Preview
      • Research
    • Dr. habil. Raphael Schulz
      • Research
    • Joscha Seutter
    • Dr. Daniel Tenbrinck
    • Cornelia Weber
    • Lukas Weigand
    • Simon Zech
  • Teaching
    • Lectures, Seminars and Tutorium
    • Scripts
  • Workshop on Recent Developments in Modelling, Analysis, and Simulation of Processes in Porous Media
  • Research
    • Overview of Habilitation and Dissertation Theses
    • Research Group Porous Media
      • Multicomponent reactive transport
      • Multiscale problems in life sciences
      • Geophysical flows
      • Multiphase flow in porous media
      • Emergence in porous media
      • Stochastic modelling of porous media
    • Software
      • Software
        • SiMRX
        • flexBox
    • Richy 1D
    • Richy 2D/3D
    • FESTUNG
    • Projects
    • UTBEST3D
    • EconDrop3D
    • Research group Prof. Dr. Grün
      • Prof. Dr. Günther Grün
      • Research Interests
      • Projects
      • Prof. Dr. Günther Grün
        • Projects and Publications
        • Research interests
  • Former Members
    • Dr. Vadym Aizinger
      • Research
        • Software
    • Dr. Leon Bungert
    • Dr. Tobias Elbinger
    • Dr. Antonio Esposito
    • Dr. Hubertus Grillmeier
      • Research
    • Dr. Alicja Kerschbaum
    • Prof. Dr. Peter Knabner
      • Curriculum Vitae
      • Research
      • Teaching
        • Books
          • Mathematical Modeling
          • Numerical Methods for Elliptic and Parabolic Partial Differential Equations
        • Earlier Lectures
    • Dr. habil. Nicolae Suciu
    • Dr. Markus Knodel
      • Research
    • Alice Lieu, PhD
    • Dr. Balthasar Reuter
      • LaTeX templates
      • Research
      • Teaching
    • Dr. Andreas Rupp
      • Research
    • Dr. Oliver Sieber
    • Dr. Philipp Wacker
    • Dr. Patrick Weiß
    • Dr. Philipp Werner
  • Upcoming events
    • 50 Years Applied Mathematics
    • Math meets Reality
    • Mathematical Modeling of Biomedical Problems
    • PDEs meet uncertainty
    • Short Course: Stochastic Compactness and SPDEs
    • Workshop on Modelling, Analysis and Simulation of Processes in Porous Media
      • Program – Workshop on Modelling, Analysis and Simulation of Processes in Porous Media
      • Program – Workshop Porous Media

Dr. Daniel Tenbrinck

Dr. Daniel Tenbrinck (Akad. Rat)

Dr. Daniel Tenbrinck, Akad. Rat

Dr. Daniel Tenbrinck

Department of Mathematics
Chair of Applied Mathematics (Modeling and Numerics) (Prof. Dr. Burger)

Room: Raum 04.376
Cauerstr. 11
91058 Erlangen
  • Phone number: +49 9131 85-67233
  • Fax number: +49 9131 85-67225
  • Email: daniel.tenbrinck@fau.de

Résumé

  • Grundwehrdienst bei der Luftwaffe, Budel (Niederlande), 2004 – 2005.
  • Studium in Informatik mit Nebenfach Mathematik an der Westfälischen Wilhelms-Universität (WWU) Münster, 2005 – 2009, Diplom 2009.
  • Doktor der Naturwissenschaften in Informatik an der WWU Münster, 2013.
  • Wissenschaftlicher Mitarbeiter und Postdoc im SFB 656 “Molekulare Bildgebung” an der WWU Münster, 2009 – 2013.
  • Postdoc an der École Nationale Ecole Nationale Supérieure d’Ingénieurs de Caen (ENSICAEN), Frankreich, 2014.
  • Postdoc am Institut für Angewandte Mathematik, Prof. Burger, WWU Münster, 2014 – 2018.
  • Postdoc am Lehrstuhl für Angewandte Mathematik, Prof. Burger, FAU Erlangen-Nürnberg, 2018 – 2019.
  • Akademischer Rat auf Zeit am Lehrstuhl für Angewandte Mathematik, Prof. Burger, FAU Erlangen-Nürnberg, seit 2019.

Publications

2022

  • Bungert L., Roith T., Tenbrinck D., Burger M.:
    A Bregman Learning Framework for Sparse Neural Networks
    In: Journal of Machine Learning Research (2022)
    ISSN: 1532-4435
    Open Access: https://www.jmlr.org/papers/v23/21-0545.html
    BibTeX: Download

2021

  • Bergmann R., Herzog R., Silva Louzeiro M., Tenbrinck D., Vidal-Núñez J.:
    Fenchel Duality Theory and a Primal-Dual Algorithm on Riemannian Manifolds
    In: Foundations of Computational Mathematics (2021)
    ISSN: 1615-3375
    DOI: 10.1007/s10208-020-09486-5
    BibTeX: Download
  • Bungert L., Raab R., Roith T., Schwinn L., Tenbrinck D.:
    CLIP: Cheap Lipschitz Training of Neural Networks
    International Conference on Scale Space and Variational Methods in Computer Vision
    In: Abderrahim Elmoataz, Jalal Fadili, Yvain Quéau, Julien Rabin, Loïc Simon (ed.): SSVM 2021: Scale Space and Variational Methods in Computer Vision, Cham: 2021
    DOI: 10.1007/978-3-030-75549-2_25
    URL: https://arxiv.org/abs/2103.12531
    BibTeX: Download
  • Schwinn L., Nguyen A., Raab R., Bungert L., Tenbrinck D., Zanca D., Burger M., Eskofier B.:
    Identifying untrustworthy predictions in neural networks by geometric gradient analysis
    Conference on Uncertainty in Artificial Intelligence (UAI) (Online, 27-07-2021 - 30-07-2021)
    URL: https://arxiv.org/abs/2102.12196
    BibTeX: Download
  • Schwinn L., Nguyen A., Raab R., Zanca D., Eskofier B., Tenbrinck D., Burger M.:
    Dynamically Sampled Nonlocal Gradients for Stronger Adversarial Attacks
    International Joint Conference on Neural Networks (IJCNN) (Online, 18-07-2021 - 22-07-2021)
    BibTeX: Download

2020

  • Gross-Thebing S., Truszkowski L., Tenbrinck D., Sanchez-Iranzo H., Camelo C., Westerich KJ., Singh A., Maier P., Prengel J., Lange P., Huewel J., Gaede F., Sasse R., Vos BE., Betz T., Matis M., Prevedel R., Luschnig S., Diz-Munoz A., Burger M., Raz E.:
    Using migrating cells as probes to illuminate features in live embryonic tissues
    In: Science Advances 6 (2020)
    ISSN: 2375-2548
    DOI: 10.1126/sciadv.abc5546
    BibTeX: Download

2019

  • Bungert L., Burger M., Tenbrinck D.:
    Computing Nonlinear Eigenfunctions via Gradient Flow Extinction
    SSVM 2019 (Hofgeismar, 30-06-2019 - 04-07-2019)
    DOI: 10.1007/978-3-030-22368-7_23
    URL: https://arxiv.org/abs/1902.10414
    BibTeX: Download

2018

  • Bergmann R., Tenbrinck D.:
    A Graph Framework for Manifold-valued Data
    In: Siam Journal on Imaging Sciences 11 (2018)
    ISSN: 1936-4954
    DOI: 10.1137/17M1118567
    BibTeX: Download

2017

  • Bergmann R., Tenbrinck D.:
    Nonlocal Inpainting of Manifold-Valued Data on Finite Weighted Graphs
    International Conference on Geometric Science of Information (Mines ParisTech, Paris, 07-11-2017 - 09-11-2017)
    URL: https://arxiv.org/abs/1704.06424
    BibTeX: Download

2016

  • Tenbrinck D., Jiang X.:
    Image segmentation with physical noise models
    In: Ayman El-Baz, Xiaoyi Jiang, Jasjit S. Suri (ed.): Biomedical Image Segmentation
    Advances and Trends
    , CRC Press, 2016, p. 461-484

    BibTeX: Download

2015

  • Elmoataz A., Toutain M., Tenbrinck D.:
    On the p-Laplacian and ∞-Laplacian on Graphs with Applications in Image and Data Processing
    In: Siam Journal on Imaging Sciences 8 (2015), p. 2412-2451
    ISSN: 1936-4954
    DOI: 10.1137/15M1022793
    BibTeX: Download
  • Tenbrinck D., Jiang X.:
    Image Segmentation with Arbitrary Noise Models by Solving Minimal Surface Problems
    In: Pattern Recognition 48 (2015), p. 3293-3309
    ISSN: 0031-3203
    DOI: 10.1016/j.patcog.2015.01.006
    BibTeX: Download
  • Tenbrinck D., Lozes F., Elmoataz A.:
    Solving Minimal Surface Problems on Surfaces and Point Clouds
    International Conference on Scale Space and Variational Methods in Computer Vision (Bordeaux)
    BibTeX: Download

2014

  • Burger M., Modersitzki J., Tenbrinck D.:
    Mathematical methods in biomedical imaging
    In: GAMM-Mitteilungen 37 (2014), p. 154-183
    ISSN: 0936-7195
    DOI: 10.1002/gamm.201410008
    BibTeX: Download
  • Law Y., Tenbrinck D., Jiang X., Kuhlen T.:
    Software Phantom with Realistic Speckle Modeling for Validation of Image Analysis Methods in Echocardiography
    SPIE Medical Imaging 2014: Ultrasonic Imaging and Tomography
    BibTeX: Download
  • Suhr S., Tenbrinck D., Burger M., Modersitzki J.:
    Registration of noisy images via maximum a-posteriori estimation
    In: Lecture Notes in Computer Science 8545 LNCS (2014), p. 231-240
    ISSN: 0302-9743
    DOI: 10.1007/978-3-319-08554-8_24
    BibTeX: Download
  • Ungru K., Tenbrinck D., Jiang X., Stypmann J.:
    Automatic Classification of Left Ventricular Wall Segments in Small Animal Ultrasound Imaging
    In: Computer Methods and Programs in Biomedicine 117 (2014), p. 2-12
    ISSN: 0169-2607
    DOI: 10.1016/j.cmpb.2014.06.015
    BibTeX: Download

2013

  • Jiang X., Dawood M., Gigengack F., Risse B., Schmid S., Tenbrinck D., Schäfers KP.:
    Biomedical Imaging: A Computer Vision Perspective
    International Conference on Computer Analysis of Images and Patterns (York, 27-08-2013 - 29-08-2013)
    BibTeX: Download
  • Sawatzky A., Tenbrinck D., Jiang X., Burger M.:
    A Variational Framework for Region-Based Segmentation Incorporating Physical Noise Models
    In: Journal of Mathematical Imaging and Vision 47 (2013), p. 179-209
    ISSN: 0924-9907
    DOI: 10.1007/s10851-013-0419-6
    BibTeX: Download
  • Tenbrinck D.:
    Variational Methods for Medical Ultrasound Imaging (Dissertation, 2013)
    URL: http://cvpr.uni-muenster.de/organisation/tenbrinck-diss.pdf
    BibTeX: Download
  • Tenbrinck D., Jiang X.:
    Discriminant Analysis Based Level Set Segmentation for Ultrasound Imaging
    International Conference on Computer Analysis of Images and Patterns (York, 27-08-2013 - 29-08-2013)
    BibTeX: Download
  • Tenbrinck D., Schmid S., Jiang X., Schaefers K., Stypmann J.:
    Histogram-based Optical Flow for Motion Estimation in Ultrasound Imaging
    In: Journal of Mathematical Imaging and Vision 47 (2013), p. 138-150
    ISSN: 0924-9907
    DOI: 10.1007/s10851-012-0398-z
    BibTeX: Download
  • Tenbrinck D., Ungru K., Jiang X., Stypmann J.:
    Regional Classification of Left Ventricular Wall in Small Animal Ultrasound Imaging
    International Conference on Biomedical Informatics and Technology
    BibTeX: Download

2012

  • Tenbrinck D., Sawatzky A., Jiang X., Burger M., Haffner W., Willems P., Paul M., Stypmann J.:
    Impact of physical noise modeling on image segmentation in echocardiography
    3rd Eurographics Workshop on VisualComputing in Biology and Medicine, EG VCBM 2012 (Norrkoping, swe)
    DOI: 10.2312/VCBM/VCBM12/033-040
    BibTeX: Download

2011

  • Schmid S, Tenbrinck D, Jiang X, Schäfers K, Tiemann K, Stypmann J:
    Histogram-Based Optical Flow for Functional Imaging in Echocardiography
    International Conference on Computer Analysis of Images and Patterns (Sevilla, 29-08-2011 - 31-08-2011)
    BibTeX: Download

Teaching

Exercise (UE)

  • Übungen zur Einführung in die Numerik

    • 2 SWS
    • Date:
      • Thu 12:00-14:00, Room Übung 5 / 01.254-128 (exclude vac) ICS
      • Wed 16:00-18:00, Room 04.363 (exclude vac) ICS
      • Mon 16:00-18:00, Room Übung 2 / 01.251-128 (exclude vac) ICS
  • Matlab-Kurs zur Einführung in die Numerik

    • Date:
      • Time and place on appointment
  • Matlab-Kurs zur Einführung in die Numerik

    • Date:
      • Time and place on appointment
  • Matlab-Kurs zur Einführung in die Numerik

    • Date:
      • Time and place on appointment
  • Matlab-Kurs zur Einführung in die Numerik

    • Date:
      • Time and place on appointment
  • Matlab-Kurs zur Einführung in die Numerik

    • Date:
      • Time and place on appointment
  • Tutorium zur Einführung in die Numerik

    • 1 SWS
    • Date:

    Lecture (VORL)

    • Einführung in die Numerik (= Numerische Mathematik)

      Die Vorlesung findet in Präsenz statt, wenn nötig wird auf Online-Lehre ausgewichen.

      Die Module Analysis, Lineare Algebra, MATLAB-Kenntnisse.
      Empfohlen wird die Teilnahme am MATLAB-Kurs Einführung in Matlab/Octave.

      Geeignet als Wahlpflichtmodul für Angewandte Mathematik (AMLA). Die Anmeldung erfolgt über StudOn.

      • 4 SWS
      • Date:
        • Mon 14:00-16:00, Room H12 (exclude vac) ICS
        • Wed 12:00-14:00, Room H12 (exclude vac) ICS
    Friedrich-Alexander-Universität
    Erlangen-Nürnberg

    Schlossplatz 4
    91054 Erlangen
    • Contact and Directions
    • Internal Pages
    • Staff Members A-Z
    • Imprint
    • Privacy
    • EN/DE
    Up