

The theoretical and practical use of the turnpike property for Model Predictive Control

Chair of Applied Mathematics Department of Mathematics University of Bayreuth

17.10.2019 Turnpike in a Nutshell, Chair of Applied Analysis, Erlangen

Lars Grüne, Manuel Schaller and Anton Schiela

Connection of MPC and Turnpike

2 Turnpike and exponential decay of discretization errors

Goal oriented error estimation for MPC

Connection of MPC and Turnpike

三日 のへの

(日) (周) (三) (三)

Infinite horizon optimal control problem

Consider a state $y \in Y$ und control $u \in U$ and a system

$$\dot{y} = f(y, u) \qquad y(0) = y_0$$
 (1)

we want to control optimally w.r.t. a running cost $f^0: Y \times U \to \mathbb{R}$.

Infinite horizon optimal control problem

Consider a state $y \in Y$ und control $u \in U$ and a system

$$\dot{y} = f(y, u) \qquad y(0) = y_0$$
 (1)

we want to control optimally w.r.t. a running cost $f^0: Y \times U \to \mathbb{R}$.

$$\hookrightarrow \qquad \min J_{\infty}(y, u) := \int_{0}^{\infty} f^{0}(y(t), u(t)) dt \dot{y} = f(y, u) \qquad y(0) = y_{0}$$

Infinite horizon optimal control problem

Consider a state $y \in Y$ und control $u \in U$ and a system

$$\dot{y} = f(y, u) \qquad y(0) = y_0$$
 (1)

we want to control optimally w.r.t. a running cost $f^0: Y \times U \to \mathbb{R}$.

$$\hookrightarrow \qquad \min J_{\infty}(y, u) := \int_{0}^{\infty} f^{0}(y(t), u(t)) dt \dot{y} = f(y, u) \qquad y(0) = y_{0}$$

solution hard + not robust w.r.t. perturbations

Manua	Schol	
IVIAILLE		

Image: Image:

< 3 > < 3 >

-

< 3 > < 3 >

< 3 > < 3 >

ヨト イヨト

Usually $\tau \ll T < \infty$

Turnpike and MPC

(B)

三日 のへの

<ロト < 団ト < 団ト < 団ト

Black = Open loop

3

A B < A B <</p>

< A

Black = Open loop

 $\mathsf{Red} = \mathsf{MPC} \mathsf{ closed} \mathsf{ loop}$

ъ.

 $\mathsf{Black}=\mathsf{Open}\mathsf{\ loop}$

 $\mathsf{Red} = \mathsf{MPC} \mathsf{ closed} \mathsf{ loop}$

ъ.

 $\mathsf{Black}=\mathsf{Open}\mathsf{\ loop}$

 $\mathsf{Red} = \mathsf{MPC} \mathsf{ closed} \mathsf{ loop}$

ъ.

 $\mathsf{Black}=\mathsf{Open}\mathsf{\ loop}$

 Red = MPC closed loop

ъ.

 $\mathsf{Black}=\mathsf{Open}\mathsf{\ loop}$

 Red = MPC closed loop

ъ.

 $\mathsf{Black}=\mathsf{Open}\mathsf{\ loop}$

 $\mathsf{Red} = \mathsf{MPC} \mathsf{ closed} \mathsf{ loop}$

ъ.

 $\mathsf{Black}=\mathsf{Open}\mathsf{\ loop}$

 $\mathsf{Red} = \mathsf{MPC} \mathsf{ closed} \mathsf{ loop}$

ъ.

 $\mathsf{Black}=\mathsf{Open}\mathsf{\ loop}$

 $\mathsf{Red} = \mathsf{MPC} \mathsf{ closed} \mathsf{ loop}$

ъ.

 $\mathsf{Black}=\mathsf{Open}\mathsf{\ loop}$

 $\mathsf{Red} = \mathsf{MPC} \mathsf{ closed} \mathsf{ loop}$

ъ.

 $\mathsf{Black}=\mathsf{Open}\mathsf{\ loop}$

 $\mathsf{Red} = \mathsf{MPC} \mathsf{ closed} \mathsf{ loop}$

315

 $\mathsf{Black}=\mathsf{Open}\mathsf{\ loop}$

 $\mathsf{Red} = \mathsf{MPC} \mathsf{ closed} \mathsf{ loop}$

315

MPC constructs feedback for infinite horizon problem by iteratively solving finite horizon problems.

Pros:

- Solving on [0,T] not as hard as on $[0,\infty]$.
- Robust w.r.t. external influences, perturbation, no need for full future information
- control and state constraints can be handled easily.

MPC constructs feedback for infinite horizon problem by iteratively solving finite horizon problems.

Pros:

- Solving on [0,T] not as hard as on $[0,\infty]$.
- Robust w.r.t. external influences, perturbation, no need for full future information
- control and state constraints can be handled easily.

Cons:

• Why should the feedback $\mu_T(y_i)$ be optimal for the original problem on infinite horizon?

Turnpike Property

三日 のへの

• • = • • = •

< m

$$\min J_{\infty}(y, u) := \int_0^\infty f^0(y(t), u(t)) dt,$$

s.t. $\dot{y} = f(y, u) \quad y(0) = y_0$

■ $J_K^{cl}(y_0, u_{\mathsf{MPC},T}) := \int_0^K f^0(y_{u_{\mathsf{MPC},T}}, u_{\mathsf{MPC},T})$ (think of $K = n\tau$) ■ (\bar{y}, \bar{u}) opt equilibrium.

 ${\color{black}\blacksquare}~~\delta(T)\to 0~{\rm as}~T\to\infty$

$$\min J_{\infty}(y, u) := \int_0^\infty f^0(y(t), u(t)) dt,$$

s.t. $\dot{y} = f(y, u) \quad y(0) = y_0$

■ $J_K^{cl}(y_0, u_{\mathsf{MPC},T}) := \int_0^K f^0(y_{u_{\mathsf{MPC},T}}, u_{\mathsf{MPC},T})$ (think of $K = n\tau$) ■ (\bar{y}, \bar{u}) opt equilibrium. ■ $\delta(T) \to 0$ as $T \to \infty$

Regularity + turnpike \Longrightarrow

$$\min J_{\infty}(y, u) := \int_0^\infty f^0(y(t), u(t)) dt,$$

s.t. $\dot{y} = f(y, u) \quad y(0) = y_0$

■ $J_K^{cl}(y_0, u_{\mathsf{MPC},T}) := \int_0^K f^0(y_{u_{\mathsf{MPC},T}}, u_{\mathsf{MPC},T})$ (think of $K = n\tau$) ■ (\bar{y}, \bar{u}) opt equilibrium. ■ $\delta(T) \to 0$ as $T \to \infty$

Regularity + turnpike \Longrightarrow

 $\blacksquare \limsup_{k \to \infty} \frac{1}{K} J_K^{\mathsf{cl}}(y_0, u_{\mathsf{MPC},T}) \le f^0(\bar{y}, \bar{u}) + \delta(T)$

・得 ト ・ ヨ ト ・ ヨ ト ・ ヨ

$$\min J_{\infty}(y, u) := \int_0^\infty f^0(y(t), u(t)) dt,$$

s.t. $\dot{y} = f(y, u) \quad y(0) = y_0$

■ $J_K^{cl}(y_0, u_{\mathsf{MPC},T}) := \int_0^K f^0(y_{u_{\mathsf{MPC},T}}, u_{\mathsf{MPC},T})$ (think of $K = n\tau$) ■ (\bar{y}, \bar{u}) opt equilibrium. ■ $\delta(T) \to 0$ as $T \to \infty$

Regularity + turnpike \Longrightarrow

■ $\limsup_{k\to\infty} \frac{1}{K} J_K^{cl}(y_0, u_{\mathsf{MPC},T}) \le f^0(\bar{y}, \bar{u}) + \delta(T)$ ■ \bar{y} is (practically) as. stable for MPC trajectory

$$\min J_{\infty}(y, u) := \int_0^{\infty} f^0(y(t), u(t)) dt,$$

s.t. $\dot{y} = f(y, u) \quad y(0) = y_0$

■ $J_K^{cl}(y_0, u_{\mathsf{MPC},T}) := \int_0^K f^0(y_{u_{\mathsf{MPC},T}}, u_{\mathsf{MPC},T})$ (think of $K = n\tau$) ■ (\bar{y}, \bar{u}) opt equilibrium. ■ $\delta(T) \to 0$ as $T \to \infty$

Regularity + turnpike \Longrightarrow

- $\blacksquare \limsup_{k \to \infty} \frac{1}{K} J_K^{\mathsf{cl}}(y_0, u_{\mathsf{MPC},T}) \le f^0(\bar{y}, \bar{u}) + \delta(T)$
- **\bar{y}** is (practically) as. stable for MPC trajectory

OCP has turnpike property ⇒ MPC-closed loop approximately optimal on infinite horizon (Grüne '13, Grüne/Stieler '14, Grüne/Pirkelmann '18)

OCP has turnpike property ⇒ MPC-closed loop approximately optimal on infinite horizon (Grüne '13, Grüne/Stieler '14, Grüne/Pirkelmann '18)

When does the turnpike property hold?

■ strict dissipativity ⇒ Turnpike (Carlson et al. '91, Grüne '13, Grüne/Stieler/Pirkelmann '18)

OCP has turnpike property ⇒ MPC-closed loop approximately optimal on infinite horizon (Grüne '13, Grüne/Stieler '14, Grüne/Pirkelmann '18)

When does the turnpike property hold?

- strict dissipativity ⇒ Turnpike (Carlson et al. '91, Grüne '13, Grüne/Stieler/Pirkelmann '18)
- Turnpike + Controllability ⇒ str. dissipativity (Grüne/Müller '16)

OCP has turnpike property ⇒ MPC-closed loop approximately optimal on infinite horizon (Grüne '13, Grüne/Stieler '14, Grüne/Pirkelmann '18)

When does the turnpike property hold?

- strict dissipativity ⇒ Turnpike (Carlson et al. '91, Grüne '13, Grüne/Stieler/Pirkelmann '18)
- Turnpike + Controllability ⇒ str. dissipativity (Grüne/Müller '16)

A ∃ ► A ∃ ► ∃ | = \0 Q Q

OCP has turnpike property ⇒ MPC-closed loop approximately optimal on infinite horizon (Grüne '13, Grüne/Stieler '14, Grüne/Pirkelmann '18)

When does the turnpike property hold?

- strict dissipativity ⇒ Turnpike (Carlson et al. '91, Grüne '13, Grüne/Stieler/Pirkelmann '18)
- Turnpike + Controllability ⇒ str. dissipativity (Grüne/Müller '16)
- Stabilizability and Detectability ⇒ Turnpike for OC of PDEs (Trélat, Zhang, Zuazua, Poretta, Gugat, Zamorano, Breiten et al. ... '13-'19)

(日) (周) (日) (日) (日) (日) (000)

MPC approximates infinite horizon problem by iteratively solving finite horizon subproblems if turnpike holds

- MPC approximates infinite horizon problem by iteratively solving finite horizon subproblems if turnpike holds
- MPC feedback given by part of optimal control $u_{\mid [0,\tau]}$ in every loop

Using the turnpike property numerically?

 $\label{eq:Goal: Discretization errors towards T have little influence on $$MPC-Feedback, if T is large.}$

Contents

Turnpike and exponential decay of discretization errors

(日) (周) (三) (三)

Linear-quadratic OCP

Optimal Control problem.

$$\min_{y,u} \frac{1}{2} \int_{0}^{T} \|\boldsymbol{C}(y(t) - y_d)\|_{Y}^{2} + \|\boldsymbol{R}(u(t) - u_d)\|_{U}^{2} dt$$

s.t. $\dot{y} = Ay + Bu + f$
 $y(0) = y_0 \in X$

with

- X, Y, U Hilbert Spaces
- A generates C0-semigroup on X, B admissible control operator, $C \in L(X, Y)$
- $\blacksquare \ R \in L(U,U) \text{ , } \|Ru\|_U^2 \geq \alpha \|u\|_U^2 \text{ for } \alpha > 0$

ELE SQC

< 3 > < 3 >

Optimality conditions

(y, u) optimal, Lagrange multiplier $\lambda \in C(0, T; X)$ s.t.

$$C^*Cy - \lambda' - A^*\lambda = C^*Cy_d, \qquad \lambda(T) = 0$$
$$R^*Ru - B^*\lambda = R^*Ru_d,$$
$$y' - Ay - Bu = f, \qquad y(0) = y_0$$

(日) (周) (日) (日) (日) (日) (000)

Optimality conditions

(y, u) optimal, Lagrange multiplier $\lambda \in C(0, T; X)$ s.t.

$$C^*Cy - \lambda' - A^*\lambda = C^*Cy_d, \qquad \lambda(T) = 0$$
$$R^*Ru - B^*\lambda = R^*Ru_d,$$
$$y' - Ay - Bu = f, \qquad y(0) = y_0$$

•
$$(ar{y},ar{u},ar{\lambda})$$
 solves steady state problem

Theorem (Grüne, S., Schiela 2018)

Let (A,B) be exponentially stabilizable, (A,C) be exponentially detectable. Then there is $\mu, c > 0$ ind. of T, such that

$$\|\boldsymbol{y}(t) - \bar{\boldsymbol{y}}\| + \|\boldsymbol{u}(t) - \bar{\boldsymbol{u}}\| + \|\boldsymbol{\lambda}(t) - \bar{\boldsymbol{\lambda}}\| \sim c(e^{-\mu t} + e^{-\mu(T-t)})$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

Decay of discretization errors

($\tilde{y}, \tilde{u}, \tilde{\lambda}$ **)** numerical solution of optimality system on space/time grid

Theorem (Grüne, S., Schiela 2018)

Let (A, B) be exponentially stabilizable, (A, C) be exponentially detectable. Then there is $\mu, c > 0$ ind. of T such that if

space/time grids $(t) \sim c e^{\mu t}$

we have

 $\|y(t) - ilde{y}(t)\| + \|u(t) - ilde{u}(t)\| + \|\lambda(t) - ilde{\lambda}(t)\| \le ce^{\mu t}$

A B M A B M

Decay of discretization errors

($\tilde{y}, \tilde{u}, \tilde{\lambda}$ **)** numerical solution of optimality system on space/time grid

Theorem (Grüne, S., Schiela 2018)

Let (A, B) be exponentially stabilizable, (A, C) be exponentially detectable. Then there is $\mu, c > 0$ ind. of T such that if

space/time grids(t) $\sim c e^{\mu t}$

we have

$$\|y(t)- ilde y(t)\|+\|u(t)- ilde u(t)\|+\|\lambda(t)- ilde \lambda(t)\|\leq ce^{\mu t}$$

If (A, B) exactly controllable, then one can also impose an end time condition on the state and the statements remain true.

Manuel Schaller

(日) (周) (日) (日) (日) (日) (000)

Goal oriented error estimation for MPC

三日 のへの

(日) (周) (三) (三)

Refinement for a quantity of interest (Meidner&Vexler '07)

Given: Quantity of interest $I(y, u) : Y \times U \to \mathbb{R}$. **Wanted:** Time and space grid, such that numerical solution (\tilde{y}, \tilde{u}) on grid has small error w.r.t. I, i.e.

 $I(y, u) - I(\tilde{y}, \tilde{u}) < tol$

Refinement for a quantity of interest (Meidner&Vexler '07)

Given: Quantity of interest $I(y, u) : Y \times U \to \mathbb{R}$. **Wanted:** Time and space grid, such that numerical solution (\tilde{y}, \tilde{u}) on grid has small error w.r.t. I, i.e.

$$I(y, u) - I(\tilde{y}, \tilde{u}) < tol$$

In general, one could choose

$$I^T(y,u) = \int_0^T f^0(y,u) \, dt$$

Refinement for a quantity of interest (Meidner&Vexler '07)

Given: Quantity of interest $I(y, u) : Y \times U \to \mathbb{R}$. **Wanted:** Time and space grid, such that numerical solution (\tilde{y}, \tilde{u}) on grid has small error w.r.t. I, i.e.

$$I(y, u) - I(\tilde{y}, \tilde{u}) < tol$$

In general, one could choose

$$I^T(y,u) = \int_0^T f^0(y,u) \, dt$$

In the particular MPC-case, one is only interested in $u_{[0,\tau]}$, so we choose

$$I^{\tau}(y,u) = \int_0^{\tau} f^0(y,u) \, dt$$

A numerical example

A priori analysis suggests, that to obtain small error w.r.t. $I^{\tau}(y, u)$, only refinement on $[0, \tau]$ is needed.

A numerical example

A priori analysis suggests, that to obtain small error w.r.t. $I^{\tau}(y, u)$, only refinement on $[0, \tau]$ is needed.

Example (Distributed control of heat)

$$\begin{split} \min \frac{1}{2} \int_{0}^{T} \|y(t) - y_{\mathsf{ref}}\|_{L_{2}(\Omega)}^{2} + \alpha \|u(t)\|_{L_{2}(\Omega)}^{2} \, dt \\ \dot{y} &= 0.1 \Delta y + sy + u \quad \text{ on } \Omega \\ y &= 0 \quad \text{ on } \partial\Omega \\ y(0) &= 0 \quad \text{ on } \Omega \end{split}$$

-

★ 3 > < 3 >

- ∢ 🗇 እ

Time adaptivity - open loop ($\alpha = 10^{-1}, s = 5, \tau = 0.5$)

Time adaptivity - open loop

Time adaptivity - MPC-closed loop

Time adaptivity - MPC-closed loop

Intermezzo: Decay of error indicators

Theorem (S. 2019) (A, B) stabilizable, (A, C) detectable. Then with η^{τ} error indicators for I^{τ} $\|\eta^{\tau}(t)\| \sim c(\tau)e^{-\mu t}$ $c(\tau), \mu > 0$ ind. of T.

Space adaptivity - open loop ($\alpha = 10^{-3}, s = 0$)

 $y_{\mathsf{ref}}(x_1, x_2)$:

B ▶ < B ▶

Space adaptivity - open loop ($\alpha = 10^{-3}, s = 0$)

Space adaptivity - MPC-closed loop

Space-time adaptivity - open loop $(y_{ref} = y_{ref}(t, x))$

▶ < ∃ ▶ < ∃ ▶</p>

Space-time adaptivity - open loop

Spatial DOFs per second (5000 total space DOFs)

Goal oriented error estimation for MPC

Space-time adaptivity - MPC-closed loop

Recap

If stabilizable+detectable, then

- Turnpike property.
- Influence of discretization errors decays exponentially in time → in MPC-context: coarsening of grids towards *T*.
- Goal oriented space-time error estimation techniques confirm these findings

Recap

If stabilizable+detectable, then

- Turnpike property.
- Influence of discretization errors decays exponentially in time → in MPC-context: coarsening of grids towards *T*.
- Goal oriented space-time error estimation techniques confirm these findings

Ongoing work:

 Combine nonlinear solver with error estimation techniques and MPC-controller in an efficient manner

References

- Grüne, S., Schiela: Sensitivity analysis of optimal control for a class of parabolic PDEs motivated by model predictive control, SICON 2019
- Grüne, S., Schiela: Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations, Dec 2018, submitted
- Grüne, S., Schiela: Specialized Space-Time Adaptivity for Model Predicitve Control of parabolic PDEs, in preparation

References

- Grüne, S., Schiela: Sensitivity analysis of optimal control for a class of parabolic PDEs motivated by model predictive control, SICON 2019
- Grüne, S., Schiela: Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations, Dec 2018, submitted
- Grüne, S., Schiela: Specialized Space-Time Adaptivity for Model Predicitve Control of parabolic PDEs, in preparation

Thank you for your attention!

Perturbations stay local in time

Notation:

$$\| M^{-1} \|_{L_2,C} = \| M^{-1} \|_{(L_2(0,T;X) \times X)^2 \to C(0,T;X)^2}$$
$$\| M^{-1} \|_{L_2,L_2} = \| M^{-1} \|_{(L_2(0,T;X) \times X)^2 \to L_2(0,T;X)^2}$$

Theorem (Grüne, S., Schiela, 2018) $\begin{aligned} &(\tilde{y}, \tilde{u}, \tilde{\lambda}) \text{ computed solution, } (y, u, \lambda) \text{ exact solution and} \\ &\bullet (\delta y, \delta u, \delta \lambda) := (\tilde{y}, \tilde{u}, \tilde{\lambda}) - (y, u, \lambda) \\ &\bullet 0 \leq \mu < \frac{1}{\|M^{-1}\|_{(L_2, L_2)}} \\ &\bullet \|e^{-\mu} \cdot \varepsilon_1\|_{L_2(0,T;X)} + \|e^{-\mu} \cdot \varepsilon_2\|_{L_2(0,T;X)} \leq \rho, \quad \rho \geq 0 \\ &\text{Then, there is a constant } C \geq 0 \text{ indep. of } T \text{ s.t.} \end{aligned}$

$$\begin{aligned} \|e^{-\mu \cdot} \delta y\|_{C(0,T;X)} + \|e^{-\mu \cdot} \delta u\|_{L_2(0,T;U)} + \|e^{-\mu \cdot} \delta \lambda\|_{C(0,T;X)} \\ &\leq C \rho \|M^{-1}\|_{L_2,C} \end{aligned}$$