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Connection of MPC and Turnpike

Infinite horizon optimal control problem

Consider a state y ∈ Y und control u ∈ U and a system

ẏ = f(y, u) y(0) = y0 (1)

we want to control optimally w.r.t. a running cost f0 : Y × U → R.

↪→ min J∞(y, u) :=

∞∫
0

f0(y(t), u(t)) dt

ẏ = f(y, u) y(0) = y0

solution hard + not robust w.r.t. perturbations
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Connection of MPC and Turnpike

Solution via model predictive control

plant

Solve
truncated
OCP on

[0, T ]

state

yi

min
T∫
0

f0(y, u)

s.t. ẏ = f(y, u)

y(0) = yi

init. part of contro
l

µT(yi) := u∣∣ [0,τ ]

i = i+ 1

Usually τ � T <∞
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Connection of MPC and Turnpike

Trajectories
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Connection of MPC and Turnpike

MPC constructs feedback for infinite horizon problem by iteratively
solving finite horizon problems.

Pros:

Solving on [0, T ] not as hard as on [0,∞].

Robust w.r.t. external influences, perturbation, no need for full future
information

control and state constraints can be handled easily.

Cons:

Why should the feedback µT (yi) be optimal for the original problem
on infinite horizon?
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Connection of MPC and Turnpike

Turnpike Property

t = T

t = 0 solution on [0, T ]

solution on [0,∞]
ȳ: turnpike

τ

Feedback µT (y0)
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Connection of MPC and Turnpike

Performance estimates (Grüne & Pannek 2017)

min J∞(y, u) :=

∫ ∞
0

f0(y(t), u(t)) dt,

s.t. ẏ = f(y, u) y(0) = y0

Jcl
K(y0, uMPC,T ) :=

∫K
0 f0(yuMPC,T

, uMPC,T ) (think of K = nτ)

(ȳ, ū) opt equilibrium.

δ(T )→ 0 as T →∞

Regularity + turnpike =⇒

lim supk→∞
1
KJ

cl
K(y0, uMPC,T ) ≤ f0(ȳ, ū) + δ(T )

ȳ is (practically) as. stable for MPC trajectory

Jcl
K(y0, uMPC,T ) ≤ infu∈Ũ JK(y0, u) + δ1(T ) +Kδ2(T ) + δ3(K)
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min J∞(y, u) :=

∫ ∞
0

f0(y(t), u(t)) dt,
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K(y0, uMPC,T ) ≤ infu∈Ũ JK(y0, u) + δ1(T ) +Kδ2(T ) + δ3(K)

Manuel Schaller Turnpike and MPC 7 / 27



Connection of MPC and Turnpike

Necessary and sufficient conditions

OCP has turnpike property ⇒ MPC-closed loop approximately optimal on
infinite horizon (Grüne ’13, Grüne/Stieler ’14, Grüne/Pirkelmann ’18)

When does the turnpike property hold?

strict dissipativity =⇒ Turnpike (Carlson et al. ’91, Grüne ’13,
Grüne/Stieler/Pirkelmann ’18)

Turnpike + Controllability =⇒ str. dissipativity (Grüne/Müller ’16)

System stabilizable: Turnpike ⇐⇒ Detectability (Grüne/Guglielmi
’18)

Stabilizability and Detectability ⇒ Turnpike for OC of PDEs (Trélat,
Zhang, Zuazua, Poretta, Gugat, Zamorano, Breiten et al. ... ’13−’19)
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System stabilizable: Turnpike ⇐⇒ Detectability (Grüne/Guglielmi
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Zhang, Zuazua, Poretta, Gugat, Zamorano, Breiten et al. ... ’13−’19)

Manuel Schaller Turnpike and MPC 8 / 27



Connection of MPC and Turnpike

Necessary and sufficient conditions

OCP has turnpike property ⇒ MPC-closed loop approximately optimal on
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Zhang, Zuazua, Poretta, Gugat, Zamorano, Breiten et al. ... ’13−’19)

Manuel Schaller Turnpike and MPC 8 / 27



Connection of MPC and Turnpike

Recap

MPC approximates infinite horizon problem by iteratively solving
finite horizon subproblems if turnpike holds

MPC feedback given by part of optimal control u∣∣[0,τ ]
in every loop
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Connection of MPC and Turnpike

Using the turnpike property numerically?

t = T

t = 0 exact sol.
numerical sol.

τ

Feedback µT (y0)

Goal: Discretization errors towards T have little influence on
MPC-Feedback, if T is large.

Manuel Schaller Turnpike and MPC 10 / 27



Turnpike and exponential decay of discretization errors
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Turnpike and exponential decay of discretization errors

Linear-quadratic OCP

Optimal Control problem.

min
y,u

1

2

T∫
0

‖C(y(t)− yd)‖2Y + ‖R(u(t)− ud)‖2U dt

s.t. ẏ = Ay +Bu+ f

y(0) = y0 ∈ X

with

X, Y , U Hilbert Spaces

A generates C0-semigroup on X, B admissible control operator,
C ∈ L(X,Y )

R ∈ L(U,U) , ‖Ru‖2U ≥ α‖u‖2U for α > 0

Manuel Schaller Turnpike and MPC 11 / 27



Turnpike and exponential decay of discretization errors

Optimality conditions

(y, u) optimal, Lagrange multiplier λ ∈ C(0, T ;X) s.t.

C∗Cy − λ′ −A∗λ = C∗Cyd, λ(T ) = 0

R∗Ru−B∗λ = R∗Rud,

y′ −Ay −Bu = f, y(0) = y0

(ȳ, ū, λ̄) solves steady state problem

Theorem (Grüne, S., Schiela 2018)

Let (A,B) be exponentially stabilizable, (A,C) be exponentially
detectable. Then there is µ, c > 0 ind. of T , such that

‖y(t)− ȳ‖+ ‖u(t)− ū‖+ ‖λ(t)− λ̄‖ ∼ c(e−µt + e−µ(T−t))
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Turnpike and exponential decay of discretization errors

Decay of discretization errors

(ỹ, ũ, λ̃) numerical solution of optimality system on space/time grid

Theorem (Grüne, S., Schiela 2018)

Let (A,B) be exponentially stabilizable, (A,C) be exponentially
detectable. Then there is µ, c > 0 ind. of T such that if

space/time grids(t) ∼ ceµt

we have

‖y(t)− ỹ(t)‖+ ‖u(t)− ũ(t)‖+ ‖λ(t)− λ̃(t)‖ ≤ ceµt

If (A,B) exactly controllable, then one can also impose an end time
condition on the state and the statements remain true.

Manuel Schaller Turnpike and MPC 13 / 27
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Goal oriented error estimation for MPC

Refinement for a quantity of interest (Meidner&Vexler ’07)

Given: Quantity of interest I(y, u) : Y × U → R.
Wanted: Time and space grid, such that numerical solution (ỹ, ũ) on
grid has small error w.r.t. I, i.e.

I(y, u)− I(ỹ, ũ) < tol

In general, one could choose

IT (y, u) =

∫ T

0
f0(y, u) dt

In the particular MPC-case, one is only interested in u∣∣[0,τ ]
, so we choose

Iτ (y, u) =

∫ τ

0
f0(y, u) dt
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Goal oriented error estimation for MPC

A numerical example

A priori analysis suggests, that to obtain small error w.r.t.
Iτ(y, u), only refinement on [0, τ ] is needed.

Example (Distributed control of heat)

min
1

2

T∫
0

‖y(t)−yref‖2L2(Ω) + α‖u(t)‖2L2(Ω) dt

ẏ = 0.1∆y + sy + u on Ω

y = 0 on ∂Ω

y(0) = 0 on Ω

Manuel Schaller Turnpike and MPC 15 / 27
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Goal oriented error estimation for MPC

Time adaptivity - open loop (α = 10−1, s = 5, τ = 0.5)
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Goal oriented error estimation for MPC

Time adaptivity - open loop
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Goal oriented error estimation for MPC

Time adaptivity - MPC-closed loop
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Time adaptivity - MPC-closed loop
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Intermezzo: Decay of error indicators
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Error indicators for Iτ (y, u)

Iτ (y, u) =
∫ τ

0 ‖y(t)− yref‖2 + α‖u‖2, here τ = 0.5.

Theorem (S. 2019)

(A,B) stabilizable, (A,C) detectable. Then with ητ error indicators for Iτ

‖ητ (t)‖ ∼ c(τ)e−µt c(τ), µ > 0 ind. of T.
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Space adaptivity - open loop (α = 10−3, s = 0)

yref(x1, x2):
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Space adaptivity - MPC-closed loop
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Space-time adaptivity - open loop (yref = yref(t, x))
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Space-time adaptivity - open loop
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Space-time adaptivity - MPC-closed loop
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Recap

If stabilizable+detectable, then

Turnpike property.
Influence of discretization errors decays exponentially in time
↪→ in MPC-context: coarsening of grids towards T .

Goal oriented space-time error estimation techniques confirm these
findings

Ongoing work:

Combine nonlinear solver with error estimation techniques and
MPC-controller in an efficient manner

Manuel Schaller Turnpike and MPC 26 / 27



Goal oriented error estimation for MPC

Recap

If stabilizable+detectable, then

Turnpike property.
Influence of discretization errors decays exponentially in time
↪→ in MPC-context: coarsening of grids towards T .

Goal oriented space-time error estimation techniques confirm these
findings

Ongoing work:

Combine nonlinear solver with error estimation techniques and
MPC-controller in an efficient manner

Manuel Schaller Turnpike and MPC 26 / 27



Goal oriented error estimation for MPC

References
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Perturbations stay local in time

Notation:

‖M−1‖L2,C = ‖M−1‖(L2(0,T ;X)×X)2→C(0,T ;X)2

‖M−1‖L2,L2 = ‖M−1‖(L2(0,T ;X)×X)2→L2(0,T ;X)2

Theorem (Grüne, S., Schiela, 2018)

(ỹ, ũ, λ̃) computed solution, (y, u, λ) exact solution and

(δy, δu, δλ) := (ỹ, ũ, λ̃)− (y, u, λ)

0 ≤ µ < 1
‖M−1‖(L2,L2)

‖e−µ ·ε1‖L2(0,T ;X) + ‖e−µ ·ε2‖L2(0,T ;X) ≤ ρ, ρ ≥ 0

Then, there is a constant C ≥ 0 indep. of T s.t.

‖e−µ ·δy‖C(0,T ;X) + ‖e−µ ·δu‖L2(0,T ;U) + ‖e−µ ·δλ‖C(0,T ;X)

≤ Cρ‖M−1‖L2,C

Manuel Schaller Turnpike and MPC 1 / 1
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